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Abstract: The demand for event-driven real-time applications for timely and reliable data acquisition
is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints
such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal
with timely delivery, one desirable approach is to improve network throughput so that more real-time
applications with tighter time constraints can be satisfied in any given network. To deal with reliable
delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along
with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a
method of using multiple channels and a way to optimize the size of the sharable slot. The proposed
channel-slot–scheduling algorithm tries to optimize the size of a sharable slot when multiple channels
are used. The algorithm also deals with situations where nodes generate multiple data packets in
each round of a data-gathering period. It is shown through simulation that our approach greatly
outperforms others on some selected metrics.
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1. Introduction

Recently, demand has been growing for wireless sensor networks (WSNs) in industrial sectors
where a large number of sensor nodes cooperate to perform data gathering for a device or process
control as well as for traditional data monitoring. One example of an industrial WSN application is
the safety monitoring and control system (SMOCS) [1], which is used to ensure safety in a working
environment by collecting and analyzing data readings (or context information) from the monitored
objects. Based on the context of the collected information, the SMOCS server needs to take the
appropriate actions. For example, the server may require some specific data (i.e., multimedia data)
with high traffic rate from specific sensors embedded with audio/video camera devices for better
judgment of the situation. Therefore, with different traffic demands in sensor nodes, there is a need for
deterministic data acquisition times to provide real-time services more effectively. However, it is a
challenge to shorten the data-gathering time of applications with varying traffic in wireless multi-hop
sensor networks since a node's bandwidth demand may vary over time, depending on a particular
situation or application.

For data transmission in WSNs, most of the existing media access control (MAC) protocols
use either carrier sense multiple access (CSMA) or time division multiple access (TDMA). In fact,
contention-based MAC protocols that use CSMA usually try to send data with their best effort,
and are thus very flexible in low-data-rate applications [2–5]. However, when traffic load increases,

Sensors 2016, 16, 505; doi:10.3390/s16040505 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 505 2 of 21

performance can be greatly reduced due to an increasing number of collisions and retransmissions.
On the other hand, some TDMA-based MAC protocols usually allocate slots to nodes so that data
transmission can be performed in a contention-free manner [6–9], making them more suitable to
high-data-rate applications. However, if the allocated slots do not correctly satisfy the demand of the
nodes, either some time slots are wasted if they exceed the demand or some data might be missed
if the slots are not sufficient. Therefore, it is highly desirable to find the optimized length of a slot
(and thus, total data gathering time), considering varying traffic load conditions.

Due to the limited energy resources, contention-based approaches that use a single channel for
transmission usually focus on enhancing energy efficiency for low duty-cycle applications by reducing
idle listening as much as possible. T-MAC [3] with an adaptive duty-cycle tries to mitigate the wasted
time in S-MAC [2] by allowing a node to sleep earlier if there is no data to transmit or receive within
a specific period of time. By employing a low-power listening technique, B-MAC [4] can reduce
waiting time in channel access, thereby minimizing energy consumption. Since contention-based
MAC protocols usually suffer from data collisions and long delays when the traffic load is high,
contention-free MAC protocols try to solve the problems by allocating slots to nodes so they can send
data in a contention-free manner. GinMAC [6] introduced slot scheduling to enhance the reliability
of data transmission; however, its design is targeted to fixed, small, tree-based networks. TDGEE [7]
builds an energy-balanced tree where sensor nodes can send data with different transmission power
levels. IH-MAC [8] tries to improve energy efficiency by integrating broadcast scheduling and link
scheduling. In RT-MAC [9], nodes four hops away are allowed to send data at the same time to
mitigate interference and to enhance throughput. In TreeMAC [10], nodes configured vertically in a
tree can reuse the same time slot to reduce the schedule length, which may cause irregular interference.
To avoid this problem, instead of invoking slot reuse, I-MAC [1] allocates the dedicated slots to sensor
nodes, according to demand, in a way such that all receiving slots get priority over any sending nodes,
thereby maximizing data aggregation and filtering and reducing energy consumption. However,
I-MAC may not be suitable for large-scale networks, because the data-gathering time tends to increase
significantly in accordance with an increase in tree depth.

Another approach to handling varying traffic loads and reducing data-gathering time is to use
a multi-channel technique [11–17]. In this context, MMSN [11] is the first multi-channel approach,
especially designed for WSNs, that uses frequency assignment and a contention-based mechanism for
data transmission within a time slot, resulting in high contention and long delays in dense networks.
MC-LMAC [12] aims at maximizing network throughput by exploiting a multi-channel technique.
However, the clash problem may affect its performance when multiple senders transmit data to
the same receiver within the same time slot. Y-MAC [13] uses a channel-hopping technique and
contention-based channel access for transmission. However, it is not easy to determine a suitable length
for the schedule, which significantly affects delivery latency. TFMAC [14] exploits a multi-channel
technique to improve throughput. To provide a conflict-free schedule, each node can use different
channels within different time slots for data transmission. However, channel coordination between
nodes may incur high costs, especially in dense networks. In TMCP [15], to reduce the degree of
contention among neighboring nodes and to increase network throughput, a tree network is divided
into multiple small networks that have the same root and one dedicated channel for communications.
Unlike other existing approaches, there is no control channel in EM-MAC [16], and thus, it allows each
node to dynamically select a channel and wake-up time by using a pseudo-random function.

Wireless HART and ISA100 [18], as industrial standards, exploit a slotted frequency-hopping
technique to enhance transmission reliability. However, there is a need to design a scheduling
mechanism to achieve high performance in data gathering. Thus, some studies [19,20] were conducted
into efficient link scheduling in WirelessHART. In fact, Saifullah et al. introduced real-time transmission
scheduling based on a branch-and-bound technique [19], as well as an efficient algorithm to cope
with the network dynamics in WirelessHART networks. Han et al. presented reliable routing graphs
that address the reliability problems in routing [20], as defined in the WirelessHART standard, to
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achieve end-to-end real-time transmission. DICSA [21] is a distributed link-scheduling approach
based on network layer information, and uses a child-parent relationship to perform slot assignment.
Thus, it can provide concurrent and collision-free slot reservation while significantly reducing
overhead. The work by Dezfouli et al. [22] tries to address the problem of real-time communications in
dynamic WirelessHART networks by introducing an efficient solution that can support the mobility
of sensor nodes. However, this is still one of the critical issues in WSNs, and at present, there is no
complete solution that can achieve a level of performance that can satisfy the service scenarios of real
industrial applications.

The current IEEE 802.15.4 MAC has some problems in supporting low-power WSNs, i.e.,
high energy consumption, and interference or fading problems. To cope with these problems, the
IEEE 802.15.4e standard combines TDMA and a channel-hopping technique (similar to the HART
technology) [23]. However, it does not address, in a concrete manner, how a link schedule is made.
Thus, some schedule-based approaches associated with this standard were recently presented [24–26].
These approaches use either centralized scheduling [24], in which a schedule is made by a centralized
node (sink or gateway), or distributed scheduling [25,26], in which the scheduling pattern is built
based on topology information at individual node. Since they usually require all information about
the network topology, it is hard to adapt to the changes in traffic load quickly.

It is worth mentioning that the aforementioned approaches do not address data aggregation
during convergecast. That means each generated packet is usually individually sent to a server,
without aggregation, referred to as a raw-data gathering. For example, some researchers [27–29] tried
to find an optimal schedule length for convergecast data transmission. Due to the use of a dedicated
slot with the same size, part of the time slot might be wasted if each node has different amounts of
data to transmit. On the other hand, the generated packets can be aggregated at the receiver before
forwarding to the sink, referred to as aggregated-data gathering. This way of data collection is designed
to reduce network overhead and energy consumption accordingly. Therefore, some approaches [30–32]
are aimed at finding optimal contention-free scheduling with the use of a multi-channel technique in
an aggregation tree such that the aggregated data can reach the sink in minimal time.

In this study, we consider a protocol that allocates a sharable slot to each level of a tree, and
the nodes at the same level compete to transmit their data within the sharable slot [33]. This way of
scheduling maximizes data aggregation. However, it is hard to effectively determine the sharable slot
size. Therefore, we propose an optimized sharable slot-scheduling algorithm that tries to optimize the
size of a sharable slot with the use of multiple channels, taking into consideration changes in traffic
load. Every node determines its own exact bandwidth demand, which accounts for an optimal size of
a sharable slot, by collecting the child’s bandwidth demand and by calculating the total number of
packets that need to be forwarded in each round of the data-gathering period. Moreover, multiple
channels are utilized to enhance concurrent data transmission. A pseudo-random function [34] is
employed to efficiently assign different channels to different siblings at the same tree level. In this way,
channel competition for data transmission can be reduced significantly.

The rest of this paper is organized as follows: Section 2 gives preliminary information about this
work. In Section 3, we present the formal design of our approach in detail. Section 4 describes the
simulation setup and the simulation results. Finally, we provide conclusions and suggest future work
in Section 5.

2. Preliminary

2.1. Network Model

Figure 1 illustrates a network model that is especially designed for the SMOCS system [1].
There are m available channels for data communications. It is assumed that transmissions on different
channels can be carried out simultaneously without interference, and each sensor node is embedded
with only one half-duplex transceiver for communications.
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Figure 1. An illustration of a network model for a SMOCS system.

Two communicating nodes can have a link if they are located within transmission range of each
other. If a node joins a tree, it becomes a tree-node; otherwise, it is an orphan. The link between a
node and its child is called a tree-link. This link can be affected by node failure, battery drainage,
or environment factors.

In this approach, the network operates in repeated cycles. A cycle is organized into multiple
sharable slots, and the nodes located at the same level (the same distance in hops to a sink) in the
tree topology use the same sharable slot for data transmission. Therefore, the number of sharable
slots corresponds to the maximum tree size (the highest level of the tree). A node can wake up
at the assigned slot to transmit or receive data and enter a sleep mode to preserve energy at other
times. Within one cycle, each node can create multiple data packets and forward them to a server.
Therefore, the design of a communication protocol should adapt to various traffic loads to achieve
desirable performance.

2.2. Notations

For the rest of the paper, the following notations are used for convenience:

- T(i): A set of nodes that belongs to a tree rooted at node i
- n(l): A set of nodes at level l
- S(i): A sibling group of node i
- S(i)1: n(l) ´ S(i)
- C(i): Child list for node i
- p(i): Parent of node i
- level(i) or li: Level of node i
- η(i): Number of packets that node i generates during one round of data acquisition
- SS(l): Size of sharable slot for nodes at level l
- SSRx(i) = SSRx(level(i)): Size of sharable slot of node i for receiving data (also indicates receiving

sharable slot allocated to the level to which node i belongs)
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- SSTx(i) = SSTx(level(i)): Size of sharable slot of node i for sending data (also indicates sending
sharable slot allocated to the level to which node i belongs)

- H: Highest level of a given tree

2.3. Problem Identification

In the previously proposed sharable-slot approach [33], a sharable slot is allocated to each level
of a tree, starting from the nodes at the highest level down to those at the lowest, and thus data
transmission is performed progressively from the bottom to the top of the tree through channel
competition by nodes at each level. This approach constrains the nodes’ data transmission time by
using a sharable slot, and ensures the reliability of hop-to-hop data transmission by employing a
CSMA mechanism.

The sharable-slot approach targets real-time and reliable applications in industrial sectors where
wireless links are often unstable due to various obstacles and interference unfriendly to wireless
communications. However, it is very difficult to determine the optimal size of a sharable slot, because
the size is affected by the number of competing nodes and by external interference from signals
generated by other networks using the same frequency band. If a sharable slot allocated to a certain
level is small, some of the nodes at that level may fail to transmit data. Conversely, if the size is big,
some parts of a sharable slot may be wasted, resulting in a longer data-gathering time, or superframe.
If the superframe gets larger, it may fail to support the real-time applications that need the tighter time
constraints. Accordingly, it would be of great importance to optimize the size of a sharable slot.

Let us denote SSTx plq as the time span taken for all nodes at level l to successfully execute data
transmission using a specific protocol. Then, a superframe (SF) in the sharable slot approach can be
expressed as follows:

SF “
H
ÿ

l“1

SSTx plq (1)

The problem of optimizing the SF can be reduced to optimizing the size of each sharable slot,
that is, SSTx(l), l = 1 . . . H, as follows:

SSTx plq “
ÿ

iPnplq

tTx piq (2)

where tTx piq denotes the maximum transmission delay of node i at level l. Then, tTx piq can be
expressed in the form of the following function:

tTx piq “ f pP, |S piq| , |S piq1|, nPkts piqq (3)

where tTx piq depends on the used protocol, P; the number of siblings of node i is presented as |S piq|;
|S piq1| is the number of non-siblings of node i; and the number of packets to be processed or forwarded
by node i is denoted as nPkts(i).

It is natural for more siblings to lead to more competition in data transmission. Therefore, if a
CSMA mechanism is used for data transmission, we can reduce competition between the nodes by
using multiple channels. As illustrated in Figure 2, if two channels x and y are used, sibling nodes c,
d, and e compete for data transmission to node a. Furthermore, if one of the siblings, say e, initiates
request to send (RTS) first by random competition delay, and if a hidden node, say c, does not initiate
RTS until node a starts responding with clear to send (CTS), collision will not occur. Therefore, if a
random delay is set in the multiple transmission times of RTS, we can avoid data collision.
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Figure 2. The use of multiple channels to reduce collision when using CSMA.

If a dedicated channel is assigned to every sibling group, Equation (3) can be reduced to
Equation (4) by removing |S piq1|:

tTx piq “ f pP, |S piq| , nPkts piqq (4)

Another benefit of using multiple channels is that the probability of parallel transmission can be
increased significantly within a sharable slot, thereby increasing throughput. This can help satisfy
more real-time applications with tighter deadlines.

If every node generates multiple packets in each round of data collection, nPkts(i) can be expressed
as follows:

nPkts piq “
ÿ

kPTpiq

η pkq (5)

If η p.q “ 1, we get nPkts piq “ |T piq|, where |T(i)| indicates the cardinality of T(i).
If there is no competition, nPkts(i) has to be appropriate to the number of slots that a node requires

to forward data packets in its sub-tree, assuming that a slot indicates the time span that a node takes to
transmit one packet without competition.

In fact, the probability that the hidden terminal problem can occur within a sibling group can be
negligible when CSMA is used, if the random delay is set properly, as explained in Figure 2. In that
case, the packet transmission time of node i is independent of |S(i)|. Thus, Equation (4) can be
changed to Equation (6):

tTx piq “ f pP, nPkts piqq (6)

Equivalently, we get:
tTx piq “ nPkts piq ˆ onePacketDelay piq (7)

where onePacketDelay(i) corresponds to the time span that node i takes to transmit one packet to its
parent. However, if collision is avoided within a sibling group, onePacketDelay(i) is the same for all
nodes. It can be calculated easily by considering the data transmission process of RTS, CTS, DATA and
ACK. Then, we can get an optimal sending sharable slot SSTx(l) of level l as follows:

SSTx plq “ max
!

ÿ

jPSpiq
tTx pjq

ˇ

ˇ

ˇ
i P n plq

)

ˆ onePacketDelay (8)

where onePacketDelay is constant. Then, the problem of getting SSTx(l) is simplified to the one of finding
a sibling group with the maximum number of packets to transmit within a sharable slot, corresponding
to the first term of Equation (8).
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3. Protocol Design

3.1. Time Frame Structure

Figure 3 shows the time frame of our proposed approach, which starts with the initial construction
period (ICP) followed by a repeating cycle consisting of the data transmission period (DTP) and the
maintenance period (MP). At the beginning of the time frame (initial time synchronization), tree
construction and data scheduling are executed. For time synchronization [35–37], flooding time
synchronization protocol (FTSP) [36], which is proposed for tree-based topology networks, is used
owing to its high accuracy from exploiting a linear regression technique. Next, data scheduling is
performed to calculate bandwidth demands of the network, and then sharable data slots are assigned
to the nodes at each level. The DTP is executed according to the scheduled data slots. In the MP,
the operations (i.e., time synchronization, tree maintenance, and scheduling recovery) are performed
conditionally, if necessary.
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3.2. Tree Construction

The construction of a tree is based on the principle that a node builds a bi-directionally reliable
path, but takes the shortest path if there are two or more candidate parents that provide bi-directionally
reliable links. If node i successfully sends data to node j, link (i, j) is said to be reliable. Accordingly, link
(i, j) is said to be bi-directionally reliable (or B-reliable) if both link (i, j) and link (j, i) are reliable. If every
tree-link in a tree is B-reliable, the tree is said to be a B-reliable tree [1].

In the beginning, every node enters a tree construction period to build a B-reliable tree topology
for data communications. First, the sink starts the tree construction process by broadcasting a tree
initiation (T-Init) message. When receiving T-Init, an orphan with a B-reliable link to the sink tries to
join the tree by transmitting a tree join–request (T-Req) message. Upon receiving T-Req, the receiver
sends a tree join–acknowledgement (T-Ack) message to the orphan node to confirm that it accepts the
orphan as its child, a tree member. When the orphan receives T-Ack, it takes the source node as its
parent. Note that a sender always attaches information about its neighbors with associated link quality
accordingly, in the tree construction message, so that the receiving node can easily justify the quality
of the appropriate link between them. Other nodes that overheard the T-Req message can invoke the
same process to join the tree. If a node overhears multiple T-Req messages, it should join the member
node at the lowest depth in the tree, as described in the shortest path algorithm [1].

3.3. Channel and Slot Scheduling

In this section, we formally describe three key things. First, we describe how a node synchronizes
its channel with its parent’s channel, and how it takes a channel different from the channels of other
sibling groups at the same level. Second, we present a method to determine the optimal size of a
sharable slot when different sibling groups use different channels in a tree. Finally, slot scheduling
is discussed.



Sensors 2016, 16, 505 8 of 21

3.3.1. Distributed Channel Allocation

With the aim of mitigating overhead and enhancing flexibility, we use distributed channel
scheduling in which a node can determine the channel on which to send or receive data without
the need of channel coordination. For this purpose, a linear congruential generator (LCG) [34] is
used to generate a random number with a given seed. This means that if we know the seed, we
can determine the random sequence accordingly. Therefore, if the ID of each node is used as a seed,
the output value when applying the LCG can be considered the channel index of that node. More
specifically, the LCG can be expressed as:

Xn`1 “ paXn ` cqmod m p0 ď a, c ă m; n ě 0q (9)

where m is a modulus, a is a multiplier, c is a increment, Xn is the current seed (X0 is the initial seed). If m
is given as the number of available channels, and X0 is set to the ID of a node, tX1, X2, . . . , Xm´1, Xmu

presents the sequence of the channel index of the node.
In our application, a node can use different channels to send and receive data. More specifically,

a node uses its own ID as the seed to determine the receiving channel index while using its parent’s
ID as the seed to determine the sending channel index for communications. This approach does
not require any channel coordination between sender and receiver, therefore overhead is kept to
a minimum.

3.3.2. Bandwidth Demand Calculation

For convenience, the bandwidth demand of a node is simply expressed as the number of data
packets that it has to forward since the transmission delay, onePacketDelay, of a packet is constant,
as explained in Equation (8).

For a single channel, the bandwidth demand of a node consists of two factors: (a) the number of
packets that the node generates and also receives from its children, and (b) the sum of the bandwidth
demands that its children need. If each child uses a distinct channel, the children can receive packets
from their own children in parallel; however, the children cannot transmit their packets in parallel,
since they have the same parent as a receiver. Therefore, the sending-demand of the children is the
total of the sending-demands of all children, whereas the receiving-demand of the children is given as
the maximum of the receiving-demands of all children. More specifically, the bandwidth demand of
node i, B(i), can be presented as follows:

B piq “
´

ÿ

kPTpiq
η pkq `D piq

¯

(10)

where D(i) is calculated by:

D piq “

#

´

ř

xPCpiq
ř

kPTpxq η pkq
¯

`max tD pxq | x P C piqu i f C piq ‰ ∅
0 i f C piq “ ∅

If η p.q “ 1, Equation (10) is simplified as follows:

B piq “ p|T piq| `D piqq (11)

where |T(i)| indicates the cardinality of T(i).
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The bandwidth demand of each node can be counted by starting from the nodes at the bottom of
the tree. Figure 4 shows an example with a simple tree of 14 nodes. The bandwidth demand calculated
for each node is given in the figure as pα, βqwith η p.q “ 1, where pα, βq “ p|T piq| , D piqq. Leaf node 4
has to send one packet, but does not have to give out bandwidth. Intermediate node 1 has two children:
nodes 2 and 3. It has eight packets to transmit, resulting in (α = 8), and its two children, nodes 2 and 3,
have sending demands of 4 and 3, respectively, and receiving demands of 3 and 2, respectively. Then, it
takes the sum of sending demands and the maximum of the receiving demands, resulting in (β “ 10).Sensors 2016, 16, 505 9 of 20 
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3.3.3. Sharable Slot Size

After collecting the bandwidth demands of all nodes, a sink produces a slot schedule that includes
the size of each sharable slot and its starting time. The size of a sharable slot is determined by a sibling
group that has the maximum number of packets to transmit, because different sibling groups can
transmit packets in parallel. Therefore, the size of a sharable slot, SS(l), for nodes at level l, can be
calculated by:

SS plq “ max
!

ÿ

xPSpiq

ÿ

kPTpxq
η pkq

ˇ

ˇ

ˇ
i P n plq

)

“ max
!´

ÿ

kPTpppiqq
η pkq

¯

´ η pp piqq
ˇ

ˇ

ˇ
i P n plq

)

(12)

If every node generates one packet in each round of data acquisition, that means η p.q “ 1, and
Equation (12) can be rewritten as follows:

SS plq “ max
!

ÿ

xPSpiq
|T pxq|

ˇ

ˇ

ˇ
i P n plq

)

“ max tp|T pp piqq| ´ 1q | i P n plqu (13)

This corresponds to the sum of α’s for the sibling group that has the maximum number of packets
to transmit, as illustrated in Figure 4. For example, at level 2, S(2) = S(3) = {2, 3} has seven packets, and
S(10) = S(11) = {10, 11} has four packets at level 2; therefore, SS(2) = 7.

3.3.4. Slot Scheduling

To maximize data aggregation and filtering, sharable slots need to be scheduled, such that data
transmission is performed progressively from the highest level to the lowest in a tree. Thus, the highest
level is assigned a sharable slot first, and then the lower one is assigned next, and so on, as illustrated
in Figure 5.
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Figure 5. An illustration of a slot scheduling.

As soon as ICP finishes, slot scheduling is performed starting from the sink. In every cycle, a node
at each level determines the starting slot time for receiving data from its children, StartRxSlot, and for
sending data, StartTxSlot, as follows:

StartRxSlott plq “ StartCycle ptq `
ÿH

k“l`2
SS pkq (14)

StartTxSlott plq “ StartCycle ptq `
ÿH

k“l`1
SS pkq “ StartRxSlott plq ` SS pl ` 1q (15)

where StartCycle(.) indicates the starting time of a cycle.
Accordingly, a node at level l can start receiving data packets from its children at StartRxSlott plq

computed by Equation (14) and can start transmitting data to its parent at StartTxSlott plq computed
by Equation (15).

3.4. Data Transmission and Recovery

3.4.1. Data Transmission

According the slot scheduling, a sharable slot is allocated to each level of a tree, starting from the
nodes at the highest level down to those at the lowest one, therefore data transmission is performed in
the level-by-level fashion. As a result, within a particular slot, only the nodes at the corresponding
level is allowed to transmit data, thus the channel contention is limited to the nodes at the same level.
However, within a sharable slot, the nodes at the same level have to contend for transmission, which
may result in collision. To solve this problem, two methods can be applied: (i) for the nodes within the
same sibling group, we employ the CSMA scheme for data transmission; (ii) to solve the interference
problem by the nodes belonging two different sibling groups, a dedicated channel is allocated to each
parent node to receive data (which is done by the distributed channel allocation scheme presented in
Section 3.3.1).



Sensors 2016, 16, 505 11 of 21

As discussed above, channel contention can be limited to a group of sibling nodes in our
approach. Therefore, every node competes with its siblings for data transmission within a sharable slot,
as illustrated in Figure 6. Suppose that a node x1 with its parent x has k ´ 1 siblings, represented as
S(x1) = {x1, x2, . . . , xk}. Then, the k number of nodes will compete with each other to contend for the
same channel (channel X, for example).Sensors 2016, 16, 505 11 of 20 
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If SSRx(i) starts, every node in S(x1) generates a random delay number in delay window DW[0,
D]. A node where random delay number times delay_slot expires will send RTS to its parent x. In this
case, delay_slot indicates the time span required to transmit one control packet. If two or more nodes
generate the same random number, obviously, collision will occur at receiver x. In this case, they
generate a random delay number again with a doubled delay window DW[0, 2D].

If a certain node receives CTS, it starts transmitting DATA immediately. When parent x receives
DATA successfully, it responds with ACK+, which is a modified ACK to include a spare time (see the
following subsection). As soon as a node succeeds in data transmission, it goes into sleep mode until
the corresponding sharable slot of the next superframe starts.

3.4.2. Spare Time Utilization

In industrial sensor networks, a wireless communications link can be broken due to fading,
shadowing, intervention of obstacles in the industrial field, or battery depletion, etc. Thus, a MAC
protocol should be able to respond effectively to the dynamic change in topology. In this work, we
devise a spare time utilization scheme to provide a chance to transmit buffered data to nodes that have
lost their parents. The spare time utilization scheme consists of two processes: spare time announcement
and spare time utilization.

(a) Spare time announcement

A sharable slot is determined based on a sibling group with the maximum number of packets
among the sibling groups. Thus, the sibling groups may not consume a sharable slot completely, thus
producing some spare time. Furthermore, the filtering and aggregation of packets and the loss of
packets in data transmission will additionally produce spare time. Therefore, the consumed time of
node i within the sharable slot, CT(i), in the special case of η p.q= 1, has the following constraint:

CT piq ď SSRx piq “ max

#

p|T pkq| ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

k P n pliq

+

(16)
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Then, spare time ST(i) is presented as follows:

ST piq “ SSRx piq ´ CT piq (17)

Note that SSRx(i) = SSRx(l), since every node at the same level l uses the same sharable slot, and
then ST(i) for η piq ‰ 1 can similarly be calculated.

An orphan that lost its parent has to remain active to find an opportunity to send data or rejoin
the network. In that case, the orphan can utilize the spare time of its neighbor to salvage the data
buffered in its queue. A spare time announcement uses a modified ACK message, ACK+ as follows:
ACK+(i) = (level(i), ST(i)). Upon receiving the last of the data from its children, a node computes ST(i)
according to Equation (17) and broadcasts ACK+.

(b) Spare time utilization

Upon receiving ACK+, an orphan sends a spare time request (STREQ) message to the spare time
owner, owner, to request use of the spare time, with STREQ(i) = (level(i), RT(i)), where RT(i) indicates
the requested time of node i and RT(i) < ST(owner), as illustrated in Figure 7.
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Upon receiving STREQ, the owner replies with a spare time response (STRES) message that allows
other nodes to use a part or all of the spare time, based on the remaining spare time. Specifically,
STRES(owner) = (depth(owner), AT(owner)), where AT(owner) indicates the allocated time for requester
i, and AT(owner) ď RT(i).

When the orphan receives STRES from the neighbor, it starts to send data to the neighbor. In this
way, if a node has spare time to receive more data, it has to remain in the active state for a specified
time after sending ACK+ to receive any data requests from its neighbors. Note that the size of the data
(in time units) should not be more than the ST value.

3.5. One Packet Delay and Superframe Size

As discussed previously, onePacketDelay is calculated based on a data transmission sequence,
RD-RTS-CTS-DATA-ACK+ where RD is the random integer value that a sender generates to avoid
collision. The maximum of RD can be obtained from delay window DW[0, D] (in this paper, D is set
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to 5). If two or more nodes do not generate the same lowest random number, message collision will not
occur. However, it is possible to experience collision even though the number of nodes in each sibling
group is small. Thus, if collision occurs, a node generates a random number again after adjusting the
delay window to DW r0, 2Ds once and only once. If it fails again, it gives up sending its packet. Thus,
the maximum random delay is limited to 2D.

Then, the upper bound of onePacketDelay, the maximum possible delay to transmit one packet, is
given as follows:

onePacketDelay ď 2ˆDˆ delay_slot` t pRTSq ` t pCTSq ` t pDATAq ` t pACK`q (18)

Considering the process of data transmission from one node to another, the transmission time of
a data packet, say x, is given as follows:

t pxq “ tts pxq ` tturnon ` tCCA ` tppd ` ttx pxq ` ttr pxq (19)

where, tts indicates the time to transfer a message from the MCU to a radio chip buffer, tturnon indicates
the time to turn the radio chip on, tCCA indicates the time to perform a clear channel assessment
(CCA), tppd indicates the amount of time for the physical layer processing delay, ttx indicates the time
to transmit or broadcast a message, and ttr indicates the time to transfer a message from the radio chip
to the MCU at the receiver size.

In Equation (19), the values for tturnon, tCCA, and tppd depend on the physical layer standard;
however, the rest of them not only depend on the physical layer standard, but also on the size of the
transmitted message. Based on the 802.15.4 standard with a transmission rate of 250 kbps (0.032 ms
per byte) and a synchronization header, PHY header, MAC header, and footer of 11 bytes, we can
calculate ttx pxq for message x as follows:

ttx pxq “ 0.032ˆ p11` size pxqq pin msq

Furthermore, tCCA = 0.128 ms and tppd = 0.192 ms. We assume that tts pxq = tturnon = ttx pxq – 0.
As a consequence, we get t(X), X P {RTS, CTS, DATA, ACK+}, as follows:

t pXq “ 0.32` 0.032ˆ p11` size pXqq pin msq

Then, Equation (18) can be rewritten as follows:

onePacketDelay ď 2.688` 2ˆDˆ delay_slot`
0.032ˆ psize pRTSq ` size pCTSq ` size pDATAq ` size pACK`qq pin msq

Given that delay_slot is 0.832 (=t(RTS)) and size(RTS) = size(CTS) = size(ACK+) = 5 bytes, and
size(DATA) = 100 bytes, we can get the lower bound and the upper bound of onePacketDelay when D is
min value 0 and max value 5, respectively:

6.37 ms ď onePacketDelay ď 14.69 ms

Given the tree, we can calculate the size of an optimal sharable slot in packets for each tree level
using Equation (12). In turn, we can get the optimal size of the SF in a packet. If SF corresponds to k
packets, SF in seconds (SFsec), is expressed as follows:

kˆ 6.37 ms ď SFsec ď kˆ 14.69 ms

This implies that a sink can at least collect data readings from all sensor nodes within kˆ 14.69 ms.
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4. Performance Evaluation

4.1. Simulation Setup

The performance of the proposed protocol (abbreviated as MCMAC) was extensively evaluated
by using the QualNet 5.0.2 simulator [38]. In the network model, nodes are randomly deployed
in an area of 100 ˆ 100 (m2). Three scenarios, in which a sink is located at the center (S1), the top
center (S2) and the corner (S3) of the deployment area were used to evaluate the effect of network
length on performance, as shown in Figure 8 [17]. In the simulation, data transmission was also
performed with consideration for the effects of the industrial environment (i.e., path loss, shadowing,
and multipath fading).
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level using Equation (12). In turn, we can get the optimal size of the SF in a packet. If SF 
corresponds to k packets, SF in seconds (SFsec), is expressed as follows: ݇ × 6.37 ݏ݉ ≤ ܿ݁ݏܨܵ ≤ ݇ × 14.69   ݏ݉

This implies that a sink can at least collect data readings from all sensor nodes within ݇ × 14.69 ms. 

4. Performance Evaluation 

4.1. Simulation Setup 

The performance of the proposed protocol (abbreviated as MCMAC) was extensively 
evaluated by using the QualNet 5.0.2 simulator [38]. In the network model, nodes are randomly 
deployed in an area of 100 × 100 (m2). Three scenarios, in which a sink is located at the center (S1), 
the top center (S2) and the corner (S3) of the deployment area were used to evaluate the effect of 
network length on performance, as shown in Figure 8 [17]. In the simulation, data transmission was 
also performed with consideration for the effects of the industrial environment (i.e., path loss, 
shadowing, and multipath fading). 

 
(a) (b) (c) 

Figure 8. Simulation scenarios: (a) S1 with 50 nodes; (b) S2 with 50 nodes; (c) S3 with 50 nodes.

Since our target application is multi-hop WSN data gathering, it was assumed that one packet
with a 32-byte payload length is generated at each source node in each round of data collection.
The generated packets can be aggregated at the receiver before forwarding to the sink. The transmission
of a packet may fail due to interference or the effect of the propagation environment. Table 1 describes
the simulation setting in detail.

Table 1. Some key simulation parameters and values.

Parameter Value

Number of nodes (nNodes) 50´100
Payload length 32 bytes

Noise factor 10 dB
Path loss model Two-ray

Shadowing model Constant
Fading model Rician

Sensor energy model MicaZ
Transmission power ´25 dBm

Dimensions 100 ˆ 100 m2

Simulation time 600 s
Number of frequencies 1–8

MAC protocols MC-LMAC, MCMAC
Routing protocol Tree-based routing
Node placement Random

For the evaluation, the performance of the proposed MCMAC protocol was compared with the
MC-LMAC protocol [17], the slotted multi-channel approach especially designed for WSNs, which is
known for showing the best performance among the same category of protocols. We compared the
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two protocols using different performance metrics: packet reception ratio, network throughput, and
energy efficiency.

The proposed protocol is designed to gather data from sensor nodes and send them to the sink in
a tree-based multi-hop network. Therefore, the tree-based routing scheme (presented in Section 3.2)
was used to build the tree topology, and each node has to maintain a child–parent relationship for data
transmission. Note that the tree-based routing scheme was applied to both MCMAC and MC-LMAC
protocols. Furthermore, it is necessary to determine the length of a cycle time (or the size of a
superframe) required for all nodes to send data to the sink. With MCMAC, the sink can determine the
size of a superframe based on the bandwidth demand of the network. On the other hand, we cannot
determine the superframe size of MC-LMAC exactly, but we can estimate it approximately. However,
this may cause some problems. In fact, if the superframe size is too small, some nodes cannot get a free
time slot for transmission; otherwise, if the size of a superframe is larger than required, this causes
higher latency and lower throughput. Therefore, for fair evaluation, the two protocols were run with
the same size of superframe. We first ran the simulations with MCMAC to obtain the value of the
superframe size, and then used that value to run the simulations with MC-LMAC.

Figure 9 shows the simulation results of the size of a superframe (SF) in MCMAC by changing
the number of nodes and the length of the tree topology (by changing the location of the sink in the
network). We can see that the SF size increases according to the increasing of the number of nodes
and the network length. It should be noted that in MCMAC, the size of a superframe is based on
the sharable slot size which is calculated according to the bandwidth demand of each sensor node
(as shown in Equation (13)). By using the results of a superframe size in MCMAC, we can run the
experiments with MC-LMAC and get the corresponding results for evaluations.
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4.2. Simulation Results and Discussions

In this section, we discuss the evaluation results of our approach compared to MC-LMAC in
terms of packet reception ratio, network throughput, and energy efficiency. All results were obtained
through extensive simulations using the QualNet simulator.

4.2.1. Packet Reception Ratio

In this experiment, it was assumed that every sensor node senses data and transmits only one data
packet to the sink in one round of data collection. To evaluate the performance of the two protocols in
terms of reliability of data transmission, we use packet reception ratio (PRR), which is defined as the
ratio of the number of data packets received by the sink to the number of data packets generated by
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all sensor nodes. Note that PRR is measured based on the number of sensor nodes, whether a node
sends data or not. In the experiments, the number of nodes changes from 50 to 100, and the number of
channels changes from 1 to 8 in the ISM 2.4 GHz band.

Figure 10 shows the PRRs of the two protocols according to variation in network density
(i.e., changing the number of nodes) and the number of channels to be used. In the figure, the
x-axis indicates the number of available channels, whereas the y-axis presents the results of PRR.
Different graphs show the PRRs of the two protocols with different numbers of nodes. The hop count
mostly falls within eight hops, according to the deployment area and network density. It is obvious
that PRR increases in accordance with the increased number of channels for the two protocols, since
collision is reduced when the nodes transmit data on different channels in MCMAC, or when a node
has more chances to get an interference-free slot in MC-LMAC. It is shown that our proposed protocol,
MCMAC, is superior to MC-LMAC in terms of PRR in all cases. More specifically, MCMAC achieves
more than 95% PRR, on average. When the number of channels is small, collisions can occur since the
neighboring nodes at the same depth may choose the same channel to receive data. As the number of
channels increases, PRR also increases, since the neighboring nodes can transmit on different channels.
Moreover, as the number of nodes increases, PRR is reduced, since nodes with the same parent share
the same slot on the same channel. On the other hand, MC-LMAC only achieved more than 80% PRR
on average. When the number of channels is small, MC-LMAC shows low performance since some of
the nodes may not get an interference-free slot. With a network of 100 nodes, a utilized superframe
may not be enough for all nodes to get a free slot. When the number of channels increases, more nodes
can get control of a time slot, and PRR increases accordingly.Sensors 2016, 16, 505 16 of 20 
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Compared to our protocol, MC-LMAC achieves lower PRR since it cannot guarantee the reliability
of data transmission. In fact, before transmitting data, a sender notifies a receiver of upcoming data,
and on which channel to receive data, by sending a preamble during the common frequency (CF)
phase within its controlled slot. So, if a receiver does not get a preamble, it cannot get upcoming data
from the sender. One more problem that lowers PRR in MC-LMAC is the clash when a receiver is
addressed by multiple senders at the same time.
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4.2.2. Network Throughput

One of the important goals in designing a MAC protocol is to provide better performance in data
transmission. Therefore, in this part, we evaluate the two protocols in terms of network throughput,
the rate of successful data packets (measured in bytes) received at the sink per second, taking into
account the impact of network density and the number of channels to be used.

The network throughput of the two protocols is presented in Figure 11, where the x-axis indicates
the number of available channels to be used, and the y-axis indicates network throughput (in kilobits
per second) at the sink. Different graphs present network throughput from changing the number of
source nodes. The hop count for different random deployments falls to about eight hops, depending
on network density.Sensors 2016, 16, 505 17 of 20 
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As shown in Figure 11, network throughput increases when increasing the number of channels or
network density under both protocols. We can see that MCMAC is superior to MC-LMAC in terms of
network throughput by more than 50%. On average, MC-LMAC achieves maximum throughput of
14 kbps, whereas our MCMAC protocol can achieve maximum throughput of 30 kbps. In MCMAC,
when the number of channels increases, collisions are reduced significantly, since a node can use
different channels for data transmission and thus the size of a superframe is effectively reduced by
reinforcing parallel transmission. Therefore, with a sufficient number of channels, MCMAC can
achieve high performance in network throughput and optimal data collection time. Note that a node
always has sufficient time to send data in its buffer, since the slot time is assigned according to the
node’s bandwidth demand. On the other hand, in MC-LMAC, a node may not get a free slot for
transmission if the number of time slots and channels is not sufficient. Moreover, when a receiver
is addressed by multiple senders simultaneously (the clash problem), data can be lost and network
throughput reduced significantly.

4.2.3. Energy Efficiency

In a sensor node, the radio consumes the most energy, compared with the other components.
Moreover, the energy consumption of a radio when operating in sending, receiving, or listening states
is much more than that in idle or sleep mode. For instance, the CC2420 radio, used in TelosB or Kmotes,
consumes 23 mA when receiving or listening, 8.5 mA in transmitting at ´25 dBm, 21 µA in an idle
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state, and 1 µA in sleep state [39]. Thus, for energy conservation, the radio should be turned off when
it is not required.

Since the energy of a sensor node is constrained, a well-designed approach with effective control
of the radio should be able to achieve high energy efficiency to prolong network lifetime. Thus, we
use, as the definition of energy efficiency, consumed energy per successfully received packet to evaluate
how effectively a protocol uses energy for packet transmission. Energy efficiency can be calculated by
measuring total energy consumed by all sensor nodes (except for the sink) and then dividing it by the
total number of packets received at the sink.

Energy efficiencies for the two protocols are presented in Figure 12, where the x-axis illustrates
the number of available channels and the y-axis presents energy efficiency, expressed in milli-joules
per packet. It is shown that the MCMAC protocol significantly outperforms the MC-LMAC protocol.
The improvement under MCMAC comes from two aspects: (i) a node only wakes up at the scheduled
slot to receive or transmit data and goes into sleep mode at other times; (ii) packet aggregation and
filtering is maximized thanks to the principle design of the proposed slot scheduling, such that a
sending slot always comes right after a receiving slot. But a node under MC-LMAC does not know
when potential packets will arrive, and thus, it has to remain active during the CF period in every slot.
Since the number of CF slots in the CF period is equal to the number of utilized channels, every node
has to consume more time waiting for incoming packets when increasing the number of used channels,
thereby resulting in higher energy consumption.
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5. Conclusions and Future Works

In this work, we propose optimized sharable slot scheduling that aims at optimizing the size
of a sharable slot with the use of multiple channels. It also handles general situations where a node
can generate multiple packets. Thanks to the improved throughput, the proposed algorithm enables
a protocol to support more real-time applications with tighter time constraints for data gathering.
According to extensive simulation results, our proposed approach outperforms the MC-LMAC protocol
in terms of packet reception ratio, network throughput, and energy efficiency. Therefore, it can be said
that our proposed approach is highly suitable for real-time applications in industrial sensor networks.

In fact, the performance of a WSN protocol is significantly affected by the environment.
Therefore, the performance of the proposed approach should be verified in the future under different
environmental conditions, especially in an industrial environment with a real sensor test-bed.
Moreover, a case study for testing the protocol’s performance in handling multimedia data or bursty
data should be conducted.



Sensors 2016, 16, 505 19 of 21

Acknowledgments: This research was supported by the Commercialization Promotion Agency for R&D
Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP), Korea.

Author Contributions: Phan Van Vinh and Hoon Oh wrote and revised the manuscript. Hoon Oh analyzed
packet delay. Phan Van Vinh performed the experiments.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Oh, H.; Van Vinh, P. Design and implementation of a MAC protocol for timely and reliable delivery
of command and data in dynamic wireless sensor networks. Sensors 2013, 13, 13228–13257. [CrossRef]
[PubMed]

2. Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless
sensor networks. IEEE/ACM Trans. Netw. 2004, 12, 493–506. [CrossRef]

3. Dam, T.V.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks.
In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles,
CA, USA, 5–7 November 2003; ACM: New York, NY, USA, 2003; pp. 171–180.

4. Polastre, J.; Hill, J.; Culler, D. Versatile low power media access for wireless sensor networks. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA,
3–5 November 2004; ACM: New York, NY, USA, 2004; pp. 95–107.

5. Sha, L.; Kai-Wei, F.; Sinha, P. CMAC: An Energy Efficient MAC Layer Protocol Using Convergent Packet
Forwarding for Wireless Sensor Networks. In Proceedings of the 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON ’07), San Diego, CA, USA,
18–21 June 2007; pp. 11–20.

6. Suriyachai, P.; Brown, J.; Roedig, U. Time-critical data delivery in wireless sensor networks. In Proceedings
of the 6th IEEE International Conference on Distributed Computing in Sensor Systems, Santa Barbara, CA,
USA, 21–23 June 2010; Springer-Verlag: Berlin, Germany, 2010; pp. 216–229.

7. Le, C.; Baihai, Z.; Lingguo, C.; Qiao, L.; Zhuang, M. Tree-based delay guaranteed and energy efficient MAC
protocol for wireless sensor networks. In Proceedings of the Industrial Control and Electronics Engineering
(ICICEE) Conference, Xi’an, China, 23–25 August 2012; pp. 893–897.

8. Arifuzzaman, M.; Matsumoto, M.; Sato, T. An intelligent hybrid MAC with traffic-differentiation-based QoS
for wireless sensor networks. IEEE Sens. 2013, 13, 2391–2399. [CrossRef]

9. Singh, B.K.; Tepe, K.E. Feedback Based Real-Time MAC (RT-MAC) Protocol for Wireless Sensor Networks.
In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM 2009), Honolulu, HI, USA,
30 November–4 December 2009; pp. 1–6.

10. Song, W.Z.; Huang, R.; Shirazi, B.; LaHusen, R. TreeMAC: Localized TDMA MAC Protocol for Real-Time
High-Data-Rate Sensor Networks. In Proceedings of IEEE International Conference on Pervasive Computing
and Communications (PerCom 2009), Galveston, TX, USA, 9–13 March 2009; pp. 1–10.

11. Zhou, G.; Huang, C.; Yan, T.; He, T.; Stankovic, J.A.; Abdelzaher, T.F. MMSN: Multi-frequency media access
control for wireless sensor networks. In Proceedings of the 25th IEEE International Conference on Computer
Communications, Barcelona, Spain, 23–29 April 2006; pp. 1–13.

12. Incel, O.D.; van Hoesel, L.; Jansen, P.; Havinga, P. MC-LMAC: A multi-channel MAC protocol for wireless
sensor networks. Ad Hoc Netw. 2011, 9, 73–94. [CrossRef]

13. Kim, Y.; Shin, H.; Cha, H. Y-MAC: An energy-efficient multi-channel MAC protocol for dense wireless sensor
networks. In Proceedings of the 7th international conference on Information processing in sensor networks,
St. Louis, MO, USA, 22–24 April 2008; pp. 53–63.

14. Jovanovic, M.D.; Djordjevic, G.L. TFMAC: Multi-channel MAC protocol for wireless sensor networks.
In Proceedings of the 8th Telecommunications in Modern Satellite, Cable and Broadcasting Services
Conference, Serbia, 26–28 September 2007; pp. 23–26.

15. Yafeng, W.; Stankovic, J.A.; Tian, H.; Shan, L. Realistic and efficient multi-channel communications in wireless
sensor networks. In Proceedings of the 27th Conference on Computer Communications, Phoenix, AZ, USA,
13–18 April 2008.

http://dx.doi.org/10.3390/s131013228
http://www.ncbi.nlm.nih.gov/pubmed/24084116
http://dx.doi.org/10.1109/TNET.2004.828953
http://dx.doi.org/10.1109/JSEN.2013.2252163
http://dx.doi.org/10.1016/j.adhoc.2010.05.003


Sensors 2016, 16, 505 20 of 21

16. Tang, L.; Sun, Y.; Gurewitz, O.; Johnson, D.B. EM-MAC: A dynamic multichannel energy-efficient MAC
protocol for wireless sensor networks. In Proceedings of the 12th ACM International Symposium on Mobile
Ad Hoc Networking and Computing, Paris, France, 16–20 May 2011; pp. 1–11.

17. Van Vinh, P.; Oh, H. O-MAC: An optimized MAC protocol for concurrent data transmission in real-time
wireless sensor networks. Wirel. Netw. 2015, 21, 1847–1861. [CrossRef]

18. Petersen, S.; Carlsen, S. Wirelesshart versus ISA100.11a: The format war hits the factory floor. IEEE Ind.
Electron. Mag. 2011, 5, 23–34. [CrossRef]

19. Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. Real-time scheduling for wirelesshart networks. In Proceedings of the
31st IEEE Real-Time Systems Symposium (RTSS) Conference, 30 November–3 December 2010; pp. 150–159.

20. Han, S.; Zhu, X.; Mok, A.K.; Chen, D.; Nixon, M. Reliable and real-time communication in industrial wireless
mesh networks. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) Conference, Chicago, IL, USA, 11–14 April 2011; pp. 3–12.

21. Dezfouli, B.; Radi, M.; Whitehouse, K.; Abd Razak, S.; Hwee-Pink, T. DICSA: Distributed and concurrent
link scheduling algorithm for data gathering in wireless sensor networks. Ad Hoc Netw. 2015, 25, 54–71.
[CrossRef]

22. Dezfouli, B.; Radi, M.; Chipara, O. Real-time communication in low-power mobile wireless networks.
In Proceedings of the 13th Annual IEEE Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 9–12 January 2016.

23. HART Communication Protocol and Foundation. Available online: http//www.hartcomm2.org (acessed on
6 April 2016).

24. Palattella, M.R.; Accettura, N.; Dohler, M.; Grieco, L.A.; Boggia, G. Traffic aware scheduling algorithm for
reliable low-power multi-hop IEEE 802.15.4e networks. In Proceedings of the 23rd IEEE International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia,
9–12 September 2012; pp. 327–332.

25. Accettura, N.; Palattella, M.R.; Boggia, G.; Grieco, L.A.; Dohler, M. Decentralized traffic aware scheduling for
multi-hop low power lossy networks in the internet of things. In Proceedings of the 14th IEEE International
Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Madrid,
Spain, 4–7 June 2013; pp. 1–6.

26. Soua, R.; Minet, P.; Livolant, E. Wave: A Distributed Scheduling Algorithm for Convergecast in IEEE
802.15.4e TSCH Networks. Trans. Emerging Telecommun. Technol. 2015. [CrossRef]

27. Yu, B.; Li, J.; Li, Y. Distributed Data Aggregation Scheduling in Wireless Sensor Networks. In Proceedings of
the 28th Conference on Computer Communications (INFOCOM 2009), Rio De Janeiro, Brazil, 19–25 April
2009; pp. 2159–2167.

28. Chen, X.; Hu, X.; Zhu, J. Minimum data aggregation time problem in wireless sensor networks. LNCS 2005,
3794, 133–142.

29. Malhotra, B.; Nikolaidis, I.; Nascimento, M.A. Aggregation convergecast scheduling in wireless sensor
networks. Wirel. Netw. 2011, 17, 319–335. [CrossRef]

30. Bagaa, M.; Younis, M.; Ksentini, A.; Badache, N. Reliable multi-channel scheduling for timely dissemination
of aggregated data in wireless sensor networks. J. Netw. Comput. Appl. 2014, 46, 293–304. [CrossRef]

31. Bagaa, M.; Younis, M.; Djenouri, D.; Derhab, A.; Badache, N. Distributed low-latency data aggregation
scheduling in wireless sensor networks. ACM Trans. Sen. Netw. 2015, 11, 1–36. [CrossRef]

32. Bagaa, M.; Challal, Y.; Ksentini, A.; Derhab, A.; Badache, N. Data aggregation scheduling algorithms in
wireless sensor networks: Solutions and challenges. IEEE Commun. Surveys Tutor. 2014, 16, 1339–1368.
[CrossRef]

33. Oh, H.; Azad, M.A.K. A big slot scheduling algorithm for the reliable delivery of real-time data packets in
wireless sensor networks. In Proceedings of the Wireless Communications, Networking and Applications
Conference, Shenzhen, China, 27–28 December 2014; pp. 13–25.

34. Borms, J.; Steenhaut, K.; Lemmens, B. Low-overhead dynamic multi-channel MAC for wireless sensor
networks. In Proceedings of the European Conference on Wireless Sensor Networks, Coimbra, Portugal,
17–19 February 2010; pp. 81–96.

35. Elson, J.; Girod, L.; Estrin, D. Fine-Grained Network Time Synchronization Using Reference Broadcasts.
In Proceedings of the 5th Symposium Operating System Design and Implementation, Boston, MA, USA,
9–11 December 2002; pp. 2860–2864.

http://dx.doi.org/10.1007/s11276-015-0887-2
http://dx.doi.org/10.1109/MIE.2011.943023
http://dx.doi.org/10.1016/j.adhoc.2014.09.011
http://dx.doi.org/10.1002/ett.2991
http://dx.doi.org/10.1007/s11276-010-0282-y
http://dx.doi.org/10.1016/j.jnca.2014.07.014
http://dx.doi.org/10.1145/2744198
http://dx.doi.org/10.1109/SURV.2014.031914.00029


Sensors 2016, 16, 505 21 of 21

36. Maroti, M.; Kusy, B.; Simon, G.; Ledeczi, A. The Flooding Time Synchronization Protocol. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems 2004, Baltimore, MD, USA,
3–5 November 2004; pp. 39–49.

37. Greunen, J.V.; Rabaey, J.; Chen, Y.S.; Sheu, J.P. Lightweight Time Synchronization for Wireless Networks.
In Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications,
San Diego, CA, USA, 19 September 2003; pp. 11–19.

38. QualNet Simulator. Available online: http://web.scalable-networks.com/content/qualnet (acessed on
6 April 2016).

39. CC2420 Datasheet, TI. Available online: http://www.ti.com/product/CC2420 (accessed on 6 April 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	

	

	
	
	
	
	
	


	

