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Abstract: In this paper, a method of vascular structure identification in intraoperative 3D
Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used
in brain tumor surgery to investigate in real time the current status of cerebral structures. The
use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood
vessels. However, these structures can be used as landmarks to estimate and correct the brain
shift. This work proposes an alternative method for extracting small vascular segments close to
the tumor as landmark. The patient image dataset involved in brain tumor operations includes
preoperative contrast TIMR (cTIMR) data and 3D intraoperative contrast enhanced ultrasound data
acquired before (3D-iCEUSq,,¢) and after (3D-iCEUS,,,;) tumor resection. Based on rigid registration
techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS;44+ and 3D-iCEUS,,,4
data. The method was validated by using three similarity measures (Normalized Gradient Field,
Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on
data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases.
Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain
tissue deformations, blood vessels were successfully identified.
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1. Introduction

Intraoperative ultrasound imaging is nowadays commonly used in neurosurgery during brain
tumor operations [1]. At the beginning of the intervention, the ultrasound images show the surgeon
the intraoperative state of the tumor (Figure 1b) [2]. The tumor size or position can be possibly slightly
different at the operation time point from the preoperative state depicted in the preoperative MR data
(Figure 1a). During the operation ultrasound imaging is a valuable tool to detect the residuals of
tumor with the goal to optimize the tumor removal (Figure 1c,d) [3]. However, the interpretation of
the ultrasound can be complex [4,5]. The acquisition of the images through the skull opening, called
craniotomy, requires skill and experience. Firstly, the sweep of the ultrasound probe is limited by the
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small opening. The presence of air between the probe and the brain surface blocks the propagation
of ultrasound burst. Secondly, the scanned brain area in the images is limited. The orientation of the
image and the interpretation of the information it shows can be complex, mostly for images acquired
at the end of the operation.

blood
*vessel

Figure 1. Patient image data acquired during tumor resection. The brain tumor (white arrow) is
represented in the preoperative cT1MR data (a) and in the 3D-iCEUSq,,+ (b) acquired at the beginning
of the operation. After tumor removing, the resection cavity (indicated by two white arrows in (c) and
(d) is well visible in the B-mode ultrasound image (c). In the 3D-iCEUS,,,; acquired at the end of the
operation (d); the borders of the cavity can be easily interpreted as a blood vessel.

A common method to assist the neurosurgeon in the visual analysis of the intraoperative
ultrasound images is to visualize them overlapped to the preoperative MR data in the navigation
system because the preoperative image data offers an overview of the entire head [2,6,7]. This technique
has limitations for ultrasound images acquired at the end of the operation [5]. The brain structures
are so largely deformed, mainly because of tissue resection, so that the information included in the
visualization planes does not correspond at all anymore [8].

The evaluation and correction of the brain shift has been extensively studied. Methods are based
on similarity measures based on image intensities [9-12], anatomical landmarks [13-15] or biomedical
deformation models [16,17]. An interesting previous work proposed to use the vascular structures
surrounding the tumor as landmarks in order to estimate the brain deformations [14,18]. In this work,
the extraction of the blood vessels was performed in preoperative MR angiographic (MRA) data and
in intraoperative Doppler ultrasound images. MRA examination is in routine not acquired in case of
brain tumor. Doppler ultrasound can be performed intraoperatively but has limitations to depict the
diameters with accuracy and to provide 3D visualization. Moreover, information about brain tissue
itself is missing. Several medical studies were conducted to evaluate contrast-enhanced ultrasound
imaging for the visualization of brain tumors and the detection of residuals of tumor [19-21]. This
imaging modality enables to enhance vascularized structures, like lesions and tumors, but also blood
vessels [22,23].

In this paper, an alternative method of vascular structures identification in contrast-enhanced
ultrasound data is presented with a possible application in the brain shift estimation. Instead of
considering the preoperative MRA and intraoperative Doppler ultrasound as previously mentioned,
this work introduces the possibility of using cTIMR and 3D-iCEUS data which are routinely involved
in brain tumor operations. The method has three main steps i.e., the selection of a vascular
segment in cT1IMR, the identification of this pattern firstly in 3D-iCEUSq,,¢, then in the 3D-iCEUS,,,;.
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Vesselness-based segmentation methods and rigid registrations techniques were employed, ensuring
a computing time compatible with an intraoperative use. Another contribution of this work is
the evaluation of the method on CEUS images acquired at the end of the operation, when tissue
deformations are large.

2. Materials and Methods

2.1. Patient Image Dataset

Tumor operations were guided by using a neuronavigation system (SonoNavigator, Localite, Sankt
Augustin, Germany), including an AplioXG ultrasound device (Toshiba Medical Systems Europe,
Zoetermeer, Netherlands) with 2D ultrasound transducers. At the beginning of the intervention,
preoperative 3D contrast T1 Magnetic Resonance (cTIMR) data were registered with the patient’s head,
based on anatomical landmarks. The procedure was then improved using a surface-based registration
technique. During the operation and in addition to the acquisition of intraoperative B-mode ultrasound
volumes (noted 3D-iUS), two 3D intraoperative contrast enhanced ultrasound (3D-iCEUS) data were
acquired after the injection of 4.8 milliliter of an ultrasound contrast agent (SonoVue, Bracco s.p.a.,
Milan, Italy) at a rate of 3.0 mL/min using a syringe pump (ACIST VueJect, Bracco s.p.a, Milano, Italy)
and using the contrast harmonic imaging (CHI) method. The size and density of the micro-bubbles in
the SonoVue contrast agent was 1.9 £ 0.1 micromillimeter and 3.4 & 0.5 micro-bubbles/mL as recently
reported in [24]. The first volume, denoted 3D-iCEUSq,,, was obtained transdurally immediately
after the craniotomy when the tumor was still entire, and the second one, denoted 3D-iCEUS,, ;, was
acquired after removing the tumor at the end of the surgery. The surgeon scanned the cerebral region
of interest (ROI) with the ultrasound probe (large linear array transducer with a field of view of 38 mm,
a range of frequencies of 4.8 MHz to 11.0 MHz and an average frequency of 8 MHz was selected
for the acquisitions). The transducer was tracked. The neuronavigation system reconstructs a 3D
volume from the 2D-iCEUS slices and overlaid it onto the cTIMR data. The pixel size in the original
2D ultrasound images is 0.422 mm x 0.422 mm and the voxel size of the reconstructed 3D-iCEUS data
is 1 x 1 x 1 mm3. The data involved in the surgery process are shown in Figure 1.

2.2. Vascular Structure Segmentation

A common solution to distinguish the blood vessels in the 3D-iCEUS data is their extraction by
using segmentation methods. However, the segmentation of vascular structures in ultrasound image
data is generally a complex task because of the speckle and the blood vessel diameters less than 2
millimeters (Figure 1b,d). Model-based techniques, which include a priori knowledge of the object
shape or its data representation, are required to guide the segmentation process and improve the
success of algorithms [25,26]. In this work, the extraction of blood vessels is performed in two steps:
the computation of a Hessian based vesselness measure for enhancing the vascular structures, followed
by the Otsu thresholding algorithm [27]. Moreover, the segmentation is performed in limited target
regions of interest in the 3D-iCEUS data, as it will be explained in Section 2.3. The vesselness measure,
which is used, was introduced by Sato [28,29] to describe tubular structures within an image using the
Hessian matrix. The Hessian matrix H of an image I is defined by:

921 I 21
ox2 oxdy  0x0z
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H= |35 o )
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The second order derivative of the image I is computed from convolution with a Gaussian kernel
of standard deviation ¢.
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where G, is a Gaussian function with a standard deviation ¢.

1 x?+y? 422
Go = WGXP(—T) (3)

Then, the multiscale Hessian matrix will be computed as:

H, = V?I, 4)

Based on experimental analysis of an ideal tube model, Sato et al. [28,30,31] proposed a vessel
enhancement filter function given by

0 if Ac=0
A2 .
v(0) = ¢ P (gayp)re if M <0A#0 5)
Y .
exp (W)'/\c if A1 >0,Ac #0

where a7 < ap and A = min(—Ay, —A3). The values of a1 and a; are 0.5 and 2, respectively; and
A1 > Ap > A3 (eingenvalues of the Hessian matrix).

Moreover, it has been shown that the variation of sigma values ¢ enables to describe vascular
structures with different radii sizes. Therefore, v(c) is computed at each voxel position in the image

for different values of the standard deviations 0;,;;, < 0 < 0jux and the maximum response kept vy is
described by:

— 6
o1 Uminrggagxo'maxv(o') ( )
Finally the obtained image of vesselness responses is thresholded using the Otsu method [27] in
order to extract the vascular structures. Figure 2 presents an illustration of blood vessel segmentation
process from cTIMR, 3D-iCEUS,;+ and 3D-iCEUS,,,;. An additional step of 3D representation is
added here.
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Figure 2. Illustration of vascular structure segmentation in cT1IMR, 3D-iCEUS;4,+ and 3D-iCEUS,,,,;.
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2.3. Vascular Structure Identification

The proposed method consists in identifying the vascular structures in the image data involved

in the patient treatment. During the planning stage, some vascular structures close to the tumor are
selected by the neurosurgeon. These patterns are automatically recognized in the 3D-iCEUS data by
using image registration techniques. The identification method of vascular structures is depicted in
Figure 3 and is described as follows:

Step 1: Selecting a vascular segment pattern in cT1IMR

Interaction with the application in the operating room has to be limited because of sterilization
constraints and restricted time. Due to this, during the operation planning, the user delineates
interactively a region of interest including a blood vessel near to the tumor in the cTIMR data.
The vascular structure is segmented using the method described in Section 2.2. It performs well
because the blood vessels are enhanced in the cTIMR data due to the contrast agent, and any
other anatomical structure represented with similar intensities is included in the region of interest.
The segmented blood vessel represents the pattern (white frame, Step 1, Figure 3) that is searched
for in the 3D-iCEUSg;,+ and 3D-iCEUS,,,; data.

Step 2: Blood vessel identification in 3D-iCEUSg;4¢

The pattern is firstly searched in the 3D-iCEUSq,,+ data acquired before resection. In order to
reduce the computing time, the search space (large white frame, Step 2, Figure 3) is smaller than
the entire 3D-iCEUSq44¢, but large enough to take the tissue deformations into account. It has
twice the volume of the region of interest defined in the cTIMR data, and is centered on the
same image position. The enhanced structures in this region are segmented and then a rigid
registration method is used to find the sample in the 3D-iCEUS;,+ data (yellow frame, Step 2,
Figure 3) which corresponds best to the pattern. A rigid transformation is sufficient here, since
the goal is the identification of the position of the blood vessel in the 3D-iCEUS;44,+ data, which
looks like the vascular segment pattern selected in the cT1MR data. The blood vessel detected in
the 3D-iCEUSq,,+ then becomes the new pattern, which has to be identified in the 3D-iCEUS,,,4
data after resection.

Step 3: Blood vessel identification in the 3D-iCEUS,,,4

A similar method as described in the step 2 enables to find the position of the target blood vessel
(red frame, Step 3, Figure 4) within the search space (yellow frame, Step 3, Figure 3) defined in the
3D-iCEUS,,,; data acquired after tumor resection.

Finally, the preselected vessel in the cT1IMR is overlapped on the 3D-iCEUS;;4,+ and 3D-iCEUS,, 4

images for visualization purpose. Figure 4 illustrates the workflow of the entire method and
illustrations of the blood vessel identification on patient data is shown in Section 3.

Step 1 Step 2 Step 3
Tissue
deformation
Blood vessel
identification Identification
_ —_—

3D-iCEUS, . before tumor
resection

Preop. cTIMR

3D-iCEUS, 4 after tumor
resection

Figure 3. Process of the proposed vascular structure identification.
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Figure 4. Workflow of the proposed method.

It should be noted that the method is so far not able to recognize an incorrect identification of
the selected blood vessel. In this case, the user has to reposition interactively the area including the
vascular segment corresponding to the pattern. However, the approach is to minimize the interaction
between surgeon and computer in operating room because of the sterilization requirement.

2.4. Validation

One key point in image registration is the similarity measure. The Normalized Cross Correlation
(NCC) and the Normalized Mutual Information (NMI) are typical similarity measures commonly
used [32,33]. The NCC computes pixel-wise normalized cross-correlation between two images and
usually aims at registering images of the same modality. The NMI describes how well one image can
predict the other one and is, therefore, suitable for multi-modality registration. Robust and easier to
interpret, the Normalized Gradient Field (NGF) measures a normalized distance between the gradients
of the images to be registered [34,35]. Some works proposed calculating the similarity measures from
binary data, arguing that the registration process is, in this way, accelerated [36-39]. These three
similarity measures were used for comparison in the registration algorithm. In order to validate the
method, a neurosurgeon visually checked that the vascular segments, automatically identified in
the 3D-iCEUS;;4;+ and 3D-iCEUS,,,;, corresponded to the blood vessel selected in the cTIMR data.
Moreover, the results of the algorithm were quantitatively compared with a registration, interactively
performed, using the Dice Similarity Index (DSI) and the Hausdorff distance. The DSI represents the
percentage of overlapping of two objects. Its value is 1 if they overlap perfectly and 0 if they do not
intersect at all. The Hausdorff distance represents the maximal distance between two objects. The
computing time of the registration process was also measured for each similarity measure. The NCC,
NMI and NCC measures were alternately computed by using the following equations:

1 - _
NCC = o, ;(xi — )i —7) )
_ HX) +H(Y)
R (A ®

where x; and y; are respectively the set of points of images X (fixed image) and Y (moving image). In
addition, ¥ and 7 are the mean of X and Y; and o and 0y are their standard deviation. H(X) and H(Y)
are the entropies of random variables X and Y, and H(X, Y) represents their joint entropy.

VI(x)
n(l,x):= { W VI(x) #0 o

otherwise
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d°(Y, X) = ||n(X, x) x n(Y,x)||? (10)
d(Y,X) =< n(X,x),n(Y,x) >> (11)

where n(1, x) is a regularized normalized gradient field of a given image I(x). Then, d°(Y, X) and
d%(Y, X) represent the distance between the gradients of images X and Y.
Besides, the Dice Similarity Index (DSI) and the Hausdorff distance are described as follows:

2[XNY|
D(X,Y) = ——r (12)

X[+ Y]
du(X,Y) = in ||x — y||, in ||y — 13
H(X,Y) maX{rpeagrynelylx vl r;leaggg}glly xll} (13)

where X is the fixed image and Y the moving image.

3. Results

The collection of data has been performed at the University Hospital, Department of Neurosurgery,
University of Leipzig, Germany, in the context of a previous research project funded by the German
Research Society (Deutsche Forschungsgemein-schaft) and accepted by the ethic commission of the
University of Leipzig. The implementation was done with an Intel Celeron, 1.5 GHz and 2 GB of
memory using MeVisLab tool. The manual registration was validated by the neurosurgeon of this
institution. The identification algorithm was tested on ten datasets of patients who overcame a brain
tumor operation. A simple vascular segment near to the tumor was selected in the preoperative
cT1IMR data.

Table 1 includes the DSI, Hausdorff distances and the processing time values computed between
the segmented blood vessels in the cTIMR and 3D-iCEUS;;,,+ data and between the segmented blood
vessels in the 3D-iCEUSq,;+ and 3D-iCEUS,,,; data, both normalized with the scores obtained by the
expert registration. The values followed by a star indicate that the algorithm failed to find the correct
vascular segment. If it occurred before resection, the identification in the 3D-iCEUS,,,; data was not
performed. It is clearly observed that the proposed approach was able to find correctly the targeted
vascular structure with at least one similarity measure used.

Besides, Table 2 includes the mean DSI values and the mean Hausdorff distances, averaged on
the successful cases, while Table 3 presents the mean computing time. The outcomes show that the
NGF achieves the highest mean rate of registration than the NMI and NCC. Nevertheless, the last ones
performs the registration in a shortest time.

In Figure 5, the results obtained step by step for five cases are illustrated. First, the ROl is defined
in the cTIMR by the surgeon (column (a)) in the planning stage and it encloses the selected vascular
structure so as to reduce the space of segmentation. Second, the vessel is extracted by using the process
described in Section 2.2 (column (b)). Third, the vascular structure extracted from the cTIMR data is
overlaid on the 3D-iCEUS;;;+ (column (c)). It should be observed that the extracted structure is not
spatially aligned with its corresponding in the 3D-iCEUSq,,;. Fourth, after the segmentation of the
vascular structure in 3D-iCEUS;;4¢, column (d) presents the registration results, in which, vascular
structures are aligned. At this step, the blood vessel found in 3D-iCEUSq,,+ becomes the new pattern
and it is superimposed on the 3D-iCEUS,,; image in column (e). In most of cases, there is no matching
between the new pattern with its corresponding vessel in the 3D-iCEUS,,; because of large tissue
deformations at this stage of the operation. Finally, the registration of vascular structures from the
3D-iCEUS;y,, to 3D-iCEUS,,,; is carried out (column (f)).
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Table 1. Quantitative evaluation of the performance of three different similarity measures in the blood vessel registration algorithm using the DSI and the Hausdorff
distance. The values in bold are the best obtained among the three similarity measures. * Indicate that the algorithm failed to find the correct vascular segment.

Blood Vessel Identification in the 3D-iCEUSg;,,+
Using the Pattern from the cTIMR

Blood Vessel Identification in the 3D-iCEUS,, 4
Using the Pattern from the 3D-iCEUSt,,+

Patient  Similarity Measure  ROI in ¢cT1IMR (voxels)
Processing Time (s) DSI Hausdorff Distance (mm)  Processing Time (s) DSI Hausdorff Distance (mm)
NGF 2.8 0.89 8.083 3.5 0.824 12.207
1 NMI 50 x 29 x 8 2 0.903 7.874 2.8 0.937 11.180
NCC 1.8 0.982 7.483 1.7 0.994 10.770
NGF 11.1 0.645 21.772 14 0.813 11.180
2 NMI 19 x 37 x 26 3.5 0.946 17.917 2.3 0.936 10.677
NCC 5.9 0.676 18.815 2.1 0.0* 14.071 *
NGF 3.1 0.976 5.385 1.3 0.986 12.042
3 NMI 35 x 16 x 13 2.9 0.997 5.385 0.3 0.263 * 21.237 *
NCC 0.9 0.979 5.385 0.5 0.0* 22.159 *
NGF 5.7 0.766 12.369 1.5 0.829 9.487
4 NMI 15 x 17 x 22 0.7 0.937 8.124 0.7 0.925 8.602
NCC 0.9 0.839 9.274 7.4 0.825 9.487
NGF 2.1 0.748 13.403 13 0.763 29.172
5 NMI 61 x 55 x 8 22 0.422* 28.792 * 49 0.38 34.015*
NCC 1.2 0.408 * 29.682 * 6.7 0.674 32.016
NGF 0.4 0.0* 22.023 * - - -
6 NMI 8 X 39 x 26 1.8 0.832 9.110 4.9 0.98 10.863
NCC 2.4 0.832 9.110 16.2 0.913 10.863
NGF 17.6 0.953 28.547 56.6 1 17.234
7 NMI 49 x 56 x 29 11.3 0.827 29.653 30.2 0.051 * 19.519 *
NCC 9.1 0.983 28.530 8.8 0.0* 19.519 *
NGF 3.2 0.988 4.690 8.3 0.849 10.050
8 MI 32 x 14 x 19 29 0.031 * 17.720 * - - -
NCC 1.3 0.097 * 15.524 * - - -
NGF 3.1 0.988 14.000 4.1 0.879 14.000
9 NMI 31 x 22 x 22 25 0.475 * 24.083 * - - -
NCC 3.5 0.458 * 25.729 * - - -
NGF 2.7 0.952 2.449 1.5 0.961 3.162
10 NMI 12 x 18 x 12 0.7 0.818 2.500 0.7 0.0* 8.464 *
NCC 24 0.952 2.449 1.8 0.0* 8.718 *
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Figure 5. Illustration of vascular structures identification for five cases: (a) preoperative cT1IMR;

(b) vascular structure selection in cTIMR; (c) overlapping of vascular structure segmented in cTIMR on
CEUS;t4r¢ before registration; (d) overlapping of vascular structure segmented in cTIMR on CEUSq;4¢
after registration; (e) overlapping of vascular structure segmented in CEUSq,,+ on CEUS,,,; before
registration; (f) overlapping of vascular structure segmented in CEUSq,,+ on CEUS,,; after registration.

Table 2. Mean DSI values and Hausdorff distances computed forthe three similarity measures and by
comparison with the expert registration.

Mean DSI (Algorithm, Expert) Mean Hausdorff Distances in mm (Algorithm,

Comparative Studies Computed after Registration in the: Expert) Computed after Registration in the:

3D-iCEUSstart 3D-iCEUS, 4 33D-iCEUS tap¢ 3D-iCEUS, 4
NGF vs. Expert 0.870 0.868 13.272 13.170
NMI vs. Expert 0.838 0.832 15.116 15.570
NCC vs. Expert 0.815 0.852 15.198 15.950

Table 3. Mean processing time in s during the registration computed for the successful cases
(patient 10 excluded).

Similarity Measure c¢TIMR — 3D-iCEUSt4+ 3D-iCEUSgt4+ — 3D-iCEUS,,4

NGF 6.1 12.8
NMI 3.5 3.1
NCC 3.2 8.0




Sensors 2016, 16, 497 10 of 14

An illustration of using vascular structures from cT1IMR and 3D-iCEUSq,,+ for correcting the
brain shift is depicted in Figure 6. First, the blood vessels are extracted from the both modalities
and by overlapping them it is clearly observed that they are not aligned. Second, a registration
process is performed to align the segmented structures. By registering the targets, a matrix denoted
T which describes the spatial transformation necessary for aligning structures is obtained. Then,
this transformation matrix is applied on the cTIMR images so as to achieve its matching with the
3D-iCEUSq,;+ data. Finally, the superimposing of these image modalities is presented for the input
before registration and for the output after registration.

Input - Output
- rr =y~

Figure 6. Application of vascular structure identification in brain shift correction between cT1MR and
3D-iCEUSgty.

4. Discussion

4.1. Visual Validation

The visual checking for identification a selected blood vessel was performed without problem in
the 3D-iCEUS;;4y¢. The ultrasound images were easy to interpret because the anatomical structures are,
in general, similarly represented in the 3D-iCEUS;4+ and in the preoperative cT1IMR data. Brain tissues
were already moved at this stage of the operation (after the craniotomy) by comparing the images.
The corresponding planes in the 3D-iCEUS,;,+ and preoperative cTIMR data were coarsely only
translated and the visual comparison of anatomical structures in these planes were still possible. After
tumor resection, the comparison of the 3D-iCEUSg,,+ and the 3D-iCEUS,,,; was much more complex
for the expert. Firstly, the loss of tumor in the 3D-iCEUS,,,; deprives of a valuable reference structure
for the comparison of the images. Secondly, the image quality was by trend lower in the 3D-iCEUS,,,;.
The acquisition was performed with the resection cavity filled with liquid in order to conduct the
ultrasound waves. The liquid outflow outside the cavity caused artifacts in the images. Thirdly, brain
tissues deformed largely between the beginning of the operation and the stage after tumor resection.
Corresponding anatomical structures were elastically deformed. They were represented in different
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slices and the mental reconstruction of the information was difficult. Therefore, the postoperative MR
image were important for assisting the visual evaluation.

4.2. Quantitative Validation

Additionally, the Dice similarity index and the Hausdorff distance were used for quantitatively
assess the results obtained from the experiments. It was observed that the NGF similarity provided the
highest mean DSI values and the lowest mean Hausdorff distances (Table 2). In contrast, it was found
as the slowest (Table 2). Compared to the NMI and NCC, the particularity of the NGF measure is its
robustness in cases of curved vascular segments. A T-test was performed to compare the DSI values
obtained with the different similarity measures and it showed that the NGF and NCC are statistically
different (p-value: 0.0304). As well as, the p-values obtained by comparing the NGF and NM], then the
NMI and NCC were 0.0611 and 0.1747, respectively. In general, the computing time is lower than 15 s
on average. The calculation of the NCC and NMI involves the image intensities and was more quickly
performed (computing time lower than 10 s on average, Table 3) while the NGF requires the previous
computation of the image gradients (computing time lower than 13 s on average, Table 3). However,
these mean computing time values are still acceptable for use in the operating theater. The size of the
ROI plays an important role on the value of the computing time. It should be noticed that the results
from the Table 1 show that the method will always perform a registration even if the correct vascular
structure was not found. Despite the tissues deformation which tends to decrease the DSI value, a
higher value than 0.60 was found acceptable compared to the neurosurgeon validation. However, the
DSI close to 1 indicate the perfect matching obtained.

4.3. Limitations and Future Improvements

4.3.1. Image Quality

The quality of the ultrasound images limits the performance of the registration algorithm. Mainly,
it is affected by factors such as: the size of the craniotomy, the location and depth of the tumor in the
brain that may complicate the acquisition process. Also, a precise sweeping of the 2D US probe has
to be performed within a restricted time window, when the contrast agent enhances optimally the
structures. The time window for an optimal acquisition is about 30 s [21]. Nevertheless, a technical
solution to improve the image quality is the reduction of the size of voxel in the 3D ultrasound volume,
for example 0.5 mm x 0.5 mm x 0.5 mm. The use a 3D ultrasound transducer will enable to perform
the acquisition faster to overcome the washed in and out of contrast agent [40].

4.3.2. Misidentification of Vascular Structures

The algorithm succeeded better if a vessel with a specific shape (e.g., curve) is selected. A single
straight vascular segment can be in certain cases, confused with other vascular segments or with
the resection cavity edges in the 3D-iCEUS,,,; data if they are close. Possible approaches to solve
this problem would be to segment no-vascular structures in the images in order remove them in the
registration process. For example, the tumor can be extracted using a model-based segmentation
technique [41]. The resection cavity can be easier identified in the B-mode ultrasound images. Another
interesting possibility to test in the future could be the use of the Scale-Invariant Feature Transform
(SIFT) proposed by David Lowe [42,43] for registering images as applied in [44,45]. However, in
spite of the difficulties mentioned above, the proposed methodology was able to find the correct
vascular structures via at least one similarity measure used and, furthermore it was capable to carry
out successfully the registration.
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4.3.3. Vascular Structures Segmentation

The traditional vesselness based on Hessian matrix was used in this study for vascular structure
segmentation. The future intent could be, for instance, the use of alternative methods based on Gabor
filter and multiobjective optimization applied in [46] on automatic segmentation of coronary arteries.

5. Conclusions

Despite the small size of the vascular structures surrounding the brain tumors, the low signal to
noise ratio in ultrasound image and the brain tissue deformation, it was possible to correctly identify
vascular segments in 3D-iCEUS patient’s data. Moreover, we showed that the NGF is more robust,
especially in cases of vascular segments with specific shapes. However, the NCC and NMI have a lower
computation time than the former. But it is important to notice that the computation time achieved
by the algorithm by using these three similarity measures is still compatible with intraoperative use.
Besides, an application of this work is the use of the vascular structures as landmarks for the estimation
and correction of brain shift. The future works should be the improving of the vascular segmentation
in 3D-iCEUS due to the low signal noise ratio in this modality in general. On the other hand, a
solution has to be found in cases where the blood vessel is not visible in the intraoperative ultrasound
data. For instance, the combination of information included in the B-mode and contrast-enhanced
ultrasound data should make the method more robust.

Acknowledgments: This work has been supported by the National Council of Science and Technology of Mexico
(CONACYT) under the grant number 493442 and under the project Catedras-CONACYT No. 3150-3097. Also,
the authors would like to thank the POA-DAIP, Engineering Division, University of Guanajuato, Campus
Irapuato-Salamanca for providing the necessary funds for covering the costs to publish in open access.

Author Contributions: Claire Chalopin and Dirk Lindner conceived and designed the experiments; Felix Arlt
performed the experiments; Elisee Ilunga, Ivan Cruz-Aceves and Juan Gabriel Avina-Cervantes analyzed
numerical data and proposed the image vision methodology; Claire Chalopin and Elisee Ilunga wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Unsgaard, G.; Rygh, O.; Selbekk, T.; Muller, T.; Kolstad, F; Lindseth, F.; Nagelhus Hernes, T. Intra-operative
3D ultrasound in neurosurgery. Acta Neurochir. 2006, 148, 235-253.

2. Unsgaard, G.; Selbekk, T.; Muller, T.; Ommedal, S.; Torp, S.; Myhr, G.; Bang, J.; Nagelhus Hernes, T. Ability
of navigated 3D ultrasound to delineate gliomas and metastases—Comparison of image interpretations with
histopathology. Acta Neurochir. 2005, 147, 1259-1269.

3. Selbekk, T.; Jakola, A.; Solheim, O.E.A. Ultrasound imaging in neurosurgery: Approaches to minimize
surgically induced image artefacts for improved resection control. Acta Neurochir. 2013, 155, 973-980.

4. Solheim, O.; Selbekk, T.; Jakola, A.; Unsgard, G. Ultrasound-guided operations in unselected high-grade
gliomas-overall results, impact of image quality and patient selection. Acta Neurochir. 2010, 152, 1873-1886.

5. Selbekk, T.; Jakola, A.; Solheim, O.; Johansen, T.; Lindseth, F.; Reinertsen, I.; Unsgard, G. Ultrasound imaging
in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control.
Acta Neurochir. 2013, 155, 973-980.

6. Trantakis, C.; Meixensberger, J.; Lindner, D.; Straub, G.; Grunst, G.; Schmidtgen, A.; Arnold, S. Iterative
neuronavigation using 3D ultrasound. A feasibilty study. Neurol. Res. 2002, 24, 666—-670.

7. Lindner, D.; Trantakis, C.; Renner, C.; Arnold, S.; Schmitgen, A.; Schneider, J.; Meixensberger, ]. Application
of Intraoperative 3D Ultrasound During Navigated Tumor Resection. Minim. Invasive Neurosurg. 2006,
49, 197-202.

8. Maurer, C.R.; Hill, D.L.G.; Maciunas, R.J.; Barwise, J.A.; Fitzpatrick, ].M.; Wang, M.Y. Medical Image
Computing and Computer-Assisted Interventation. In Proceedings of the MICCAI'98: First International
Conference, Cambridge, MA, USA, 11-13 October 1998; pp. 51-62.

9.  Letteboer, M.; Willems, P.; Viergever, M.; Niessen, W. Brain shift estimation in image-guided neurosurgery
using 3-D ultrasound. IEEE Trans. Biomed. Eng. 2005, 52, 268-276.



Sensors 2016, 16, 497 13 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ji, S; Wu, Z.; Hartov, A.; Roberts, D.W.; Paulsen, K.D. Mutual-information-based image to patient
re-registration using intraoperative ultrasound in image-guided neurosurgery. Med. Phys. 2008, 35,
4612-4624.

Coupe, P; Hellier, P.; Morandi, X.; Barillot, C. 3D Rigid Registration of Intraoperative Ultrasound and
Preoperative MR Brain Images Based on Hyperechogenic Structures. Int. . Biomed. Imaging 2012, 2012,
doi:10.1155/2012/531319.

Fuerst, B.; Wein, W.; Muller, M.; Navab, N. Automatic ultrasound-MRI registration for neurosurgery using
the 2D and 3D {LC2} Metric. Med. Image Anal. 2014, 18, 1312-1319.

Comeau, R.; Sadikot, A.; Fenster, A.; Peters, T. Intraoperative ultrasound for guidance and tissue shift
correction in image-guided neurosurgery. Med. Phys. 2000, 27, 787-800.

Reinertsen, I.; Lindseth, F.; Unsgaard, G.; Collins, D. Clinical validation of vessel-based registration for
correction of brain-shift. Med. Image Anal. 2007, 11, 673-684.

Hartov, A.; Roberts, D.; Paulsen, K. A comparative analysis of coregistered ultrasound and magnetic
resonance imaging in neurosurgery. Neurosurgery 2008, 62, 99-101.

Ferrant, M.; Nabavi, A.; Macq, B.; Jolesz, E; Kikinis, R.; Warfield, S. Registration of 3-D intraoperative
MR images of the brain using a finite-element biomechanical model. IEEE Trans. Med. Imaging. 2001,
20, 1384-1397.

Hawgkes, D.; Barratt, D.; Blackall, J.; Chan, C.; Edwards, P; Rhode, K.; Penney, G.; McClelland, J.; Hill, D.
Tissue deformation and shape models in image-guided interventions: A discussion paper. Med. Image Anal.
2005, 9, 163-175.

Reinertsen, I.; Lindseth, F; Askeland, C.; Iversen, D.H.; Unsgard, G. Intra-operative correction of brain-shift.
Acta Neurochir. 2014, 156, 1301-1310.

Hansen, C.; Wilkening, W.; Ermert, H.; Engelhardt, M.; Schmieder, K.; Krogias, C.; Eyding, ]. Intraoperative
contrast enhanced perfusion imaging of cerebral tumors. In Proceedings of the 2005 IEEE Ultrasonics
Symposium, Rotterdam, The Netherlands, 18-21 September 2005; Volume 2, pp. 743-746.

Kanno, H.; Ozawa, Y.; Sakata, K.; Sato, H.; Tanabe, Y.; Shimizu, N.; Yamamoto, I. Intraoperative power
Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors. J. Neurosurg. 2005,
102, 295-301.

Prada, F; Perin, A.; Martegani, A.; Aiani, L.; Solbiati, L.; Lamperti, M.; Casali, C.; Legnani, F.; Mattei, L.;
Saladino, A.; et al. Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 2014,
74, 542-552.

Holscher, T.; Ozgur, B; Singel, S.; Wilkening, W.; Mattrey, R.; Sang, H. Intraoperative ultrasound using phase
inversion harmonic imaging: first experiences. Neurosurgery 2007, 60, 382-387.

Prada, F,; Bene, M.; Saini, M.; Ferroli, P.; DiMeco, F. Intraoperative cerebral angiosonography with ultrasound
contrast agents: How I do it. Acta Neurochir. 2015, 157, 1025-1029.

Hyvelin, ] M.; Greis, C.; Gaud, E.; Costa, M.; Helbert, A.; Bussat, P.; Bettinger, T.; Frinking, P. Characteristics
and echogenicity of clinical ultrasound contrast agents: An in vitro and in vivo comparison study. In
Proceedings of the 21 European Symposium on Ultrasound Contrast Imaging, An ICUS Conference, Erasmus
MC Rotterdam, Rotterdam, The Netherlands, 21-22 January 2016; pp. 5-8.

Gill, J.; Ladak, H.; Steinman, D.; Fenster, A. Accuracy and variability assessment of a semiautomatic
technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med. Phys.
2000, 27, 1333-1342.

Chalopin, C.; Krissian, K.; Meixensberger, J.; Muns, A.; Arlt, F,; Lindner, D. Evaluation of a semi-automatic
segmentation algorithm in 3D intraoperative ultrasound brain angiography. Biomed. Tech. 2013, 58, 293-302.
Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,
62-66.

Yoshinobu, S.; Shin, N.; Atsumi, H.; Thomas, K.; Guido, G.; Shigeyuki, Y.; Ron, K. CVRMed-MRCAS’97:
First Joint Conference Computer Vision. In Proceedings of the Virtual Reality and Robotics in Medicine and
Medical Robotics and Computer-Assisted Surgery, Grenoble, France, 19-22 March 1997; pp. 213-222.

Sato, Y.; Nakajima, S.; Shiraga, N.; Atsumi, H.; Yoshida, S.; Koller, T.; Gerig, G.; Kikinis, R. Three-dimensional
multi-scale line filter for segmentation and visualization of curvilinear structures in medical images.
Med. Image Anal. 1998, 2, 143-168.



Sensors 2016, 16, 497 14 of 14

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

Luu, HM,; Klink, C.; Moelker, A.; Niessen, W.; van Walsum, T. Quantitative evaluation of noise reduction
and vesselness filters for liver vessel segmentation on abdominal CTA images. Phys. Med. Biol. 2015,
60, 3905-3926.

Drechsler, K.; Laura, C.O. Comparison of vesselness functions for multiscale analysis of the liver vasculature.
In Proceedings of the 2010 10th IEEE International Conference on Information Technology and Applications
in Biomedicine (ITAB), Corfu, Greece, 3-5 November 2010; pp. 1-5.

Andronache, A.; von Siebenthal, M.; Székely, G.; Cattin, P. Non-rigid registration of multi-modal images
using both mutual information and cross-correlation. Med. Image Anal. 2008, 12, 3-15.

Pluim, J.; Maintz, J.; Viergever, M. Mutual-information-based registration of medical images: A survey.
IEEE Trans. Med. Imaging 2003, 22, 986—1004.

Hodneland, E.; Lundervold, A.; Rorvik, J.; Munthe-Kaas, A.Z. Normalized gradient fields for nonlinear
motion correction of DCE-MRI time series. Comput. Med. Imaging Graph. 2014, 38, 202-210.

Haber, E.; Modersitzki, J. Bildverarbeitung fiir die Medizin 2005: Algorithmen—Systeme—Anwendungen
Proceedings des Workshops vom 13.-15. Mirz 2005 in Heidelberg; Springer Berlin Heidelberg: Heidelberg,
Germany, 2005; pp. 350-354.

Bogush, R.; Maltsev, S.; Ablameyko, S.; Uchida, S.; Kamata, S. An efficient correlation computation method
for binary images based on matrix factorisation. In Proceedings of the Sixth International Conference on
Document Analysis and Recognition, Seattle, WA, USA, 10-13 September 2001; pp. 312-316.
Chanwimaluang, T.; Fan, G.; Fransen, S. Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed.
2006, 10, 129-142.

Sun, M.; Qiao, G.; Zhang, R.; Zong, G. Characteristics of Independence on Image Gray Level in NCCO
Applications. In Proceedings of the International Conference on Information Technology and Computer
Science (ITCS 2009), Kiev, Ukraine, 25-26 July 2009; Volume 2, pp. 275-278.

Crabb, M.G.; Davidson, J.L.; Little, R.; Wright, P.; Morgan, A.R.; Miller, C.A.; Naish, ]. H.; Parker, G.J.M.;
Kikinis, R.; McCann, H.; et al. Mutual information as a measure of image quality for 3D dynamic lung
imaging with EIT. Physiol. Meas. 2014, 35, 863, d0i:10.1088/0967-3334/35/5/863.

Miins, A.; Meixensberger, ].; Arnold, S.; Schmitgen, A.; Arlt, E; Chalopin, C.; Lindner, D. Integration of a 3D
ultrasound probe into neuronavigation. Acta Neurochir. 2011, 153, 1529-1533.

Chalopin, C.; Lindenberg, R.; Arlt, F.; Muns, A.; Meixensberger, J.; Lindner, D. Brain tumor enhancement
revealed by 3D intraoperative ultrasound imaging in a navigation system. Biomed. Eng./Biomed. Tech. 2012,
57,468-471.

Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh
IEEE International Conference on Computer Vision, Kerkyra, Greece, 2027 September 1999; Volume 2,
pp. 1150-1157.

Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. . Comput. Vis. 2004, 60, 91-110.
Ghassabi, Z.; Shanbehzadeh, J.; Sedaghat, A.; Fatemizadeh, E. An efficient approach for robust multimodal
retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP |. Image Video Process.
2013, 2013, 1-16.

Chen, J.; Tian, J. Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor.
Progress Natural Sci. 2009, 19, 643-651.

Cruz-Aceves, I; Oloumi, F; Rangayyan, R.M.; Avina-Cervantes, J].G.; Hernandez-Aguirre, A. Automatic
segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization.
Biomed. Signal Process. Control 2016, 25, 76-85.

@ © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	Patient Image Dataset
	Vascular Structure Segmentation
	Vascular Structure Identification
	Validation

	Results
	Discussion
	Visual Validation
	Quantitative Validation
	Limitations and Future Improvements
	Image Quality
	Misidentification of Vascular Structures
	Vascular Structures Segmentation


	Conclusions

