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Abstract: Many applications require the localization of a moving object, e.g., a robot, using sensory
data acquired from embedded devices. Simultaneous localization and mapping from vision performs
both the spatial and temporal fusion of these data on a map when a camera moves in an unknown
environment. Such a SLAM process executes two interleaved functions: the front-end detects
and tracks features from images, while the back-end interprets features as landmark observations
and estimates both the landmarks and the robot positions with respect to a selected reference
frame. This paper describes a complete visual SLAM solution, combining both point and line
landmarks on a single map. The proposed method has an impact on both the back-end and the
front-end. The contributions comprehend the use of heterogeneous landmark-based EKF-SLAM
(the management of a map composed of both point and line landmarks); from this perspective,
the comparison between landmark parametrizations and the evaluation of how the heterogeneity
improves the accuracy on the camera localization, the development of a front-end active-search
process for linear landmarks integrated into SLAM and the experimentation methodology.
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1. Introduction

Simultaneous localization and mapping (SLAM) is an essential functionality required on a moving
object for many applications where the localization or the motion estimation of this object must be
determined from sensory data acquired by embedded sensors. The object is typically a robot or a
vehicle, the position of which is required to deal with robust navigation in a cluttered environment.
A SLAM module could also be required on smart tools (phones, glasses) to offer new services, e.g.,
augmented reality [1–3].

The robot or smart tool could be equipped with a global navigation satellite system (GNSS)
receiver for outdoor applications to obtain directly a position with respect to the Earth reference
frame [4]; at present, indoor localization with respect to a building reference frame could also be
provided using ultra-wide band (UWB) [5], WiFi [6] or RF devices [7], on the condition that a hotspot
or antenna network has been previously installed and calibrated. However, the direct localization is
not always available (i.e., occlusions, bad propagation, multiple paths); so generally, they are combined
using loose or tie fusion strategies, with motion estimates provided by an inertial measurement unit
(IMU), integrating successive accelerometer and gyro data [8–10]. Nevertheless, even GPS-IMU fusion
could fail or be too inaccurate. Depending on the context, a priori knowledge could be exploited;
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a map matching function can be sufficient, as in the GPS-based navigation systems available on
commercial vehicles.

Considering mobile robots or the emerging autonomous vehicles, it is necessary to also make
use of data acquired on the environment with embedded exteroceptive sensors, e.g., laser range
finders [11], 3D sensors (ToF cameras [12], Kinect [13]) or vision with many possible modalities (mono,
stereo, omni). Here, only visual SLAM is considered, due to the fact that it could be integrated both
in low-cost unmanned ground and aerial vehicles and on smart tools equipped with cameras. Many
visual SLAM methods have been proposed during the last decade [3,14].

A SLAM method combines two interleaved functionalities shown in Figure 1: the front-end detects
and tracks features from images acquired from the moving robot, while the back-end, interpreting
these feature and landmark observations, estimates both the landmark and robot positions with respect
to the selected reference frame.
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Figure 1. General block diagram of the SLAM solution. The blocks in gray represent the contributions
of the present method.

The back-end can be based either on estimation (Kalman [15], information [16], particle filters [17])
or optimization (bundle adjustment) frameworks [18]. The more classic landmarks are 3D points,
detected as interest points (SIFT [19], SURF [20], FAST [21]), matched by using their descriptors (binary
robust independent elementary features (BRIEF) [22]), or tracked by using Kanade-Lucas-Tomasi
(KLT) feature tracker [23], or an active-search strategy [24]. Generally, the set of 3D points extracted
from an image does not give any semantic information, unlike 3D lines, which correspond generally
to sharp 3D edges in the environment. This is the reason why segment-based SLAM from either an
estimation [25] or optimization [26] back-end, has been proposed. The main challenge of these methods
concerns the front-end, i.e., the robustness of the line detection and tracking in successive images.

The initialization of such landmarks with their minimal Euclidean parameters requires more
than one observation. One way to solve this problem was the delayed initialization [3,27], in which a
landmark was added to the map only when it was known in the Euclidean space. This does not allow
use of landmarks that are very far from the robot. An alternative solution is to add them to the map,
as soon as they are observed (i.e., undelayed initialization), and it has been proposed for point [28,29]
or line [25] landmarks. The pros and cons of several representations for 3D points and 3D lines have
been analyzed in [30].

This article is devoted to the analysis of a visual SLAM solution using a heterogeneous map,
as a more complete approach where points and lines are both included from features extracted in
images acquired by a camera moving in the environment, and with undelayed initialization. Therefore,
the contributions of the proposed method comprehend the use of heterogeneous landmark-based
SLAM (the management of a map composed of heterogeneous landmarks), and from this perspective,
the comparison between landmark parametrizations, the development of a front-end active-search
process for linear landmarks integrated into SLAM (the processing of linear landmarks by the
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inclusion of detection and tracking algorithms taken from the state of the art) and the experimentation
methodology. These contributions correspond to the gray blocks in Figure 1. Only the first two
contributions were covered in [31], which dealt with the information fusion back-end for the map
computation. The present article extends this concept to its application on real images, by developing
the proposed front-end. Even if optimization-based methods make it possible to avoid the possible
divergence of methods based on estimation due to linearization of the observation model, the fusion
is performed from an extended Kalman filter, as a very light approach that can be integrated into a
dedicated architecture to be used on small aerial vehicles.

Section 2 covers the techniques and parametrizations for the initialization and update of point
and line landmarks on the map. Section 3 describes the detection and tracking methods selected
and developed for the front-end. Section 4 focuses on experiments, including a simulation part that
compares landmark representations, a real image part that recalls the integration of segments with the
already existing point-based front-end and an integral experiment. The results of the experiments are
presented and discussed in Section 5. Finally, Section 6 offers some conclusions.

2. SLAM Back-End

The SLAM back-end deals with the initialization of observed features as landmarks on the
map and the estimation or update of both the landmarks and the robot positions with respect to a
selected reference frame. This section deepens the description of each landmark parametrization,
the initialization and update algorithms and it derives from the theoretical study presented in [31].

The undelayed landmark initialization (ULI) is presented in [30] for different point and line
parametrizations. The main idea is to model the uncertainty derived from unmeasured degrees of
freedom by a Gaussian prior that handles unbounded limits, in a manner that can be handled by EKF.

The implications of uncertainty are different for point and line landmarks. For points, depth is
initially unknown, and uncertainty is present along the visual ray until infinity. In the case of infinite
straight lines, uncertainty is present in two degrees of freedom, corresponding to a depth that should
be covered up to infinity and all possible orientations.

2.1. 3D Point Parametrizations

In this section, a Euclidean point is described as a reference, for subsequent covering of the
ones used for initialization purposes (i.e., homogeneous point and anchored homogeneous point).
Each description includes camera projection and back-projection.

Point parametrizations used for initialization are shown in Figure 2.
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Figure 1: Point parameterizations. Image extracted from
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1) Euclidean point: The parameters of an Euclidean
point consist on its Cartesian coordinates.

LEP = p = [x y z]
T ∈ R3

The projection to camera frame is given by the
following equation:

u = KRT (p− T) ∈ P2 (1)

where,

K =

�
αu 0 u0

0 αv v0

0 0 1

�

R and T are the rotation matrix and translation
vector that define the camera C. Underlined vectors like
u represent homogeneous coordinates.

2) Homogeneous point: Homogeneous points are
conformed by a 4-vector, which is composed by the
3D vector m and scalar ρ.

LHP = p =

�
m
ρ

�
= [mx my mz ρ]

T ∈ P3 ⊂ R4

In order to convert from homogeneous to Euclidean
coordinates, the following equation is applied:

p =
m

ρ
. (2)

In the camera frame, m is the director vector of the
optical ray, and ρ has a linear dependence to the inverse
of the distance d defined from the optical center to the
point.

ρ = �m�
d

This allows to express the unbounded distance
of a point along the optical ray from 0 to infinity,
into this bounded interval in parameter space ρ ∈
(0, �m�/dmin].

The frame transformation of an homogeneous point
is performed according to the next equation:

p = HpC =

�
R T
0 1

�
pC, (3)

where super-index C indicates the frame to which
the point is refered, and matrix H sepecifies the frame
to which the point is transformed.

The projection of a point into the image frame is
performed with the following expression:

u = KRT (m− Tρ) ∈ P2. (4)

Expressing an homogeneous point in the camera
frame, the projected image point is u = KmC, and
ρC is not measurable. Back-projection is then:
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,

where ρC must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
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Figure 2. Point parametrizations used for initialization. (a) Homogeneous point parametrization;
(b) anchored homogeneous point parametrization.
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2.1.1. Euclidean Point

A Euclidean point is parametrized by its Cartesian coordinates.

LEP = p = [x y z]T ∈ R3

The projection to the camera frame is performed as follows:

u = KRT (p− T) ∈ P2 (1)

where,

K =




αu 0 u0

0 αv v0

0 0 1




is the intrinsic parameter matrix and R and T are the rotation matrix and translation vector that define
the camera C. Homogeneous coordinates are represented by underlined vectors, like u.

2.1.2. Homogeneous Point

Homogeneous points are four-vector composed of the 3D vector m and scalar ρ, as introduced
in [32].

LHP = p =

[
m
ρ

]
=
[
mx my mz ρ

]T ∈ P3 ⊂ R4

The vector m gives the direction from the origin O to the point p, while ρ serves as a scale factor
for providing the magnitude for each coordinate of the point.

The conversion from homogeneous to Euclidean coordinates is given by the following equation:

p =
m
ρ

(2)

Depending on the characteristics of the parameters m and ρ, there are three different canonical
representations for a homogeneous point. The original Euclidean point refers to the case when ρ = 1,
inverse-depth has mz = 1 and in inverse-distance ‖m‖ = 1.

In the camera frame, m is the director vector of the optical ray, and ρ has a linear dependence on
the inverse of the distance d defined from the optical center to the point:

ρ =
‖m‖

d

The unbounded distance of a point along the optical ray from zero to infinity can then be expressed
in the bounded interval in parameter space ρ ∈ (0, ‖m‖/dmin].

The frame transformation of a homogeneous point is performed according to the next equation:

p = HpC =

[
R T

0 1

]
pC (3)

where super-index C indicates the frame to which the point is referred and matrix H specifies the
frame to which the point is transformed.

The projection of a homogeneous point into the image frame is performed with the following equation:

u = KRT (m− Tρ) ∈ P2 (4)
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By expressing a homogeneous point in the camera frame, the projected image point is u = KmC,
where super-index C indicates the frame to which the point is referred. In this case, ρC is not measurable.
Back-projection is then:

mC = K−1u

The complete homogeneous point parametrization is the following:

LHP = p =

[
m
ρ

]
= H

[
K−1u

ρC

]
=

[
RK−1u + TρC

ρC

]
(5)

where ρC must be given as a prior and represents the inverse-distance from the origin of the coordinates,
that is the scalar value that makes ‖m‖ = 1.

2.1.3. Anchored Homogeneous Point

Linearity is supposed to be improved by the addition of an anchor that serves as a reference to
the optical center at the initialization time of the landmark. The landmark is then composed of seven
elements that include Cartesian coordinates of the anchor, the point with respect to the anchor and an
inverse-distance scalar.

LAHP =




p0

m
ρ


 =

[
x0 y0 z0 mx my mz ρ

]T ∈ R7

The conversion from the anchored homogeneous point to Euclidean coordinates can be obtained
by the following equation:

p = p0 +
m
ρ

(6)

The projection and frame transformation process is given below:

u = KRT (m− (T− p0) ρ) ∈ P2 (7)

The anchor is chosen to be the position of the optical center at the initialization time, given by
T. That way, the term multiplying the unmeasured degree of freedom ρ (i.e., (T− p0) ρ) is small after
initialization. This helps to decouple the uncertainty of the most uncertain parameter ρ. The complete
anchored homogeneous point parametrization for back projection and transformation is the following:

LAHP =




p0

m
ρ


 =




T

RK−1u
ρC


 (8)

where ρC must be given as the prior.

2.2. 3D Line Parametrizations

The line parametrization includes the projection to the image frame and back-projection to 3D.
The Plücker line and anchored homogeneous point line are shown in Figure 3.
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Abstract—

I. INTRODUCTION

II. LANDMARK PARAMETERIZATION

In [?], Solà et al. introduce an undelayed landmark
initialization (ULI) for different points and lines param-
eterizations. It consists on substituting the unmeasured
degree of freedon by a Gaussian prior that handles
infinite uncertainty but that is still manageable my the
EKF.

For different landmark types such as points and
lines, uncertainty has distict implications. For points,
there is uncertainty in distance and it covers all the
visual ray until infinity. Infinite straight lines handles
uncertainty in two degrees of freedom, which corre-
spond to a distance that should be covered up to infinity,
and all possible orientations. In the next sections, point
and line parameterizations used for ULI are covered, for
then deepen in the initialization process itself.

A. 3D point parameterizations

This section explains some point parameterizations.
The aspects included in each description refer to the
parameterization itself, camera projection, coordinate
transformation, and back-projection.

Figure 1: Point parameterizations. Image extracted from
[?]

1) Euclidean point: The parameters of an Euclidean
point consist on its Cartesian coordinates.

LEP = p = [x y z]
T ∈ R3

The projection to camera frame is given by the
following equation:

u = KRT (p− T) ∈ P2 (1)

where,

K =

�
αu 0 u0

0 αv v0

0 0 1

�

R and T are the rotation matrix and translation
vector that define the camera C. Underlined vectors like
u represent homogeneous coordinates.

2) Homogeneous point: Homogeneous points are
conformed by a 4-vector, which is composed by the
3D vector m and scalar ρ.

LHP = p =

�
m
ρ

�
= [mx my mz ρ]

T ∈ P3 ⊂ R4

In order to convert from homogeneous to Euclidean
coordinates, the following equation is applied:

p =
m

ρ
.O (2)

In the camera frame, m is the director vector of the
optical ray, and ρ has a linear dependence to the inverse
of the distance d defined from the optical center to the
point.

ρ = �m�
d

This allows to express the unbounded distance
of a point along the optical ray from 0 to infinity,
into this bounded interval in parameter space ρ ∈
(0, �m�/dmin].

The frame transformation of an homogeneous point
is performed according to the next equation:

p = HpC =

�
R T
0 1

�
pC, (3)

where super-index C indicates the frame to which
the point is refered, and matrix H sepecifies the frame
to which the point is transformed.

The projection of a point into the image frame is
performed with the following expression:

u = KRT (m− Tρ) ∈ P2. (4)

Expressing an homogeneous point in the camera
frame, the projected image point is u = KmC, and
ρC is not measurable. Back-projection is then:

mC = K−1u.

The complete homogeneous point parameterization
is given in the following equations:

LHP = p =

�
m
ρ

�
= H

�
K−1u
ρC

�
=

�
RK−1u + TρC

ρC

� (5)

,

where ρC must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
the optical center at initialization time of the landmark.
Thus, the landmark is a 6-vector that includes the anchor
3D coordinates, the Cartesian coordinates of the point
with respect to the anchor, and an inverse-depth scalar.

LAHP =

�
p0

m
ρ

�
= [x0 y0 z0 mx my mz ρ]

T ∈ R7.

The convertion from anchred homogeneous point to
Euclidean coordinates can be achieved by the following
equation:

p = p0 +
m

ρ
. (6)

The projection and frame transformation process is
given in the next expression:

u = KRT (m− (T− p0) ρ) ∈ P2. (7)

The complete anchores homogeneous point param-
eterization is the following:

LAHP =

�
p0

m
ρ

�
=




T
RK−1u

ρC


 , (8)

where ρC must be given as prior.
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T and b = [b b]
T can be represented as

homogeneous 6-vector, known as Plücker coordinates:
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where n = a × b, n = ab − ba, n,v ∈ R3, and
having the following Plücker constraint: nTv = 0.

Geometrically speaking, n is the vector normal to
the plane π containing the line and the origin, and
v is the director vector from a to b. The Euclidean
orthogonal distance from the line to the origin is given
by �n�/�v�. Thus, �v� is the inverse-depth, analogous
to ρ of homogeneous points. Plücker line geometrical
representation is shown in figure 2.
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defined as:

K =

�
αv 0 0
0 αu 0

−αvu0 αuv0 αuαv

�
.
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1) Plücker line: A line in P3 defined by two points
a = [a a]

T and b = [b b]
T can be represented as

homogeneous 6-vector, known as Plücker coordinates:

LPL =

�
n
v

�
= [nx ny nz vx vy vz]

T ∈ P5 ⊂ R6 ,

where n = a × b, n = ab − ba, n,v ∈ R3, and
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representation is shown in figure 2.
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When Plücker coordinates are expressed in camera
frame, projection is only obtained by

l = K · nC (10)

Line’s range and orientation expressed in vC are not
measurable.
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The complete Plücker line parameterization is the
following:

LPL = H
�

nC

vC

�
= H

�
K−1l
Eβ

�
=

�
RK−1l + T× REβ

REβ

�
,

(16)

where β must be provided as a prior.

2) Anchored Homogeneous-points line: Another
way of representing a line is by the endpoints that
define it. Departing from the anchored homogeneous
point parameterization, an homogeneous-point line is an
11-vector defined as follows:
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An homogeneous 2D line is obtained by the cross
product of two points lying on it, l = u1×u2 and thus,

l = KRT ((m1 ×m2)− (T− p0)× (ρ1m2 − ρ2m1)) .
(18)

Comparing this result to what was obtained for
Plücker coordinates, it can be seen that the product
m1 × m2 is a vector orthogonal to the plane π,
analogous to the Plücker sub-vector n. Also, the term
(ρ1m2 − ρ2m1) is a vector joining the two support
points of the line, therefore related to Plücker sub-vector
v.

Figure 4 shows this parameterization.

Figure 4: Anchored homogeneous-points line parame-
terization. Image extracted from [?]
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The complete Plücker line parameterization is the
following:

LPL = H
�

nC

vC

�
= H

�
K−1l
Eβ

�
=

�
RK−1l + T× REβ

REβ

�
,

(16)

where β must be provided as a prior.

2) Anchored Homogeneous-points line: Another
way of representing a line is by the endpoints that
define it. Departing from the anchored homogeneous
point parameterization, an homogeneous-point line is an
11-vector defined as follows:

LHPL =




p0

m1

ρ1

m2

ρ2


 ∈ R11

For each point, the transformation and projection of
a pinhole camera is , as previously stated,

ui = KRT (mi − (T− p0) ρi) (17)

An homogeneous 2D line is obtained by the cross
product of two points lying on it, l = u1×u2 and thus,

l = KRT ((m1 ×m2)− (T− p0)× (ρ1m2 − ρ2m1)) .
(18)

Comparing this result to what was obtained for
Plücker coordinates, it can be seen that the product
m1 × m2 is a vector orthogonal to the plane π,
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v.

Figure 4 shows this parameterization.

Figure 4: Anchored homogeneous-points line parame-
terization. Image extracted from [?]

III. LANDMARK INITIALIZATION

Points are stacked as a 2-vector containing Cartesian
coordinates in pixel space, and are modeled as a Gausian
variable.

u =

�
u
v

�
∼ N {ū,U}
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Plücker line back projection is shown in figure 3.
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where ρC must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
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Thus, the landmark is a 6-vector that includes the anchor
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with respect to the anchor, and an inverse-depth scalar.
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Geometrically speaking, n is the vector normal to
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orthogonal distance from the line to the origin is given
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having the following Plücker constraint: nTv = 0.

Geometrically speaking, n is the vector normal to
the plane π containing the line and the origin, and
v is the director vector from a to b. The Euclidean
orthogonal distance from the line to the origin is given
by �n�/�v�. Thus, �v� is the inverse-depth, analogous
to ρ of homogeneous points. Plücker line geometrical
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For Plücker line back projection, vectors nC and vC

are computed according to these expressions:

2

mC = K−1u.

The complete homogeneous point parameterization
is given in the following equations:

LHP = p =

�
m
ρ

�
= H

�
K−1u
ρC

�
=

�
RK−1u + TρC

ρC

� (5)

,

where ρC must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
the optical center at initialization time of the landmark.
Thus, the landmark is a 6-vector that includes the anchor
3D coordinates, the Cartesian coordinates of the point
with respect to the anchor, and an inverse-depth scalar.

LAHP =

�
p0

m
ρ

�
= [x0 y0 z0 mx my mz ρ]

T ∈ R7.

The convertion from anchred homogeneous point to
Euclidean coordinates can be achieved by the following
equation:

p = p0 +
m

ρ
. (6)

The projection and frame transformation process is
given in the next expression:

u = KRT (m− (T− p0) ρ) ∈ P2. (7)

The complete anchores homogeneous point param-
eterization is the following:

LAHP =

�
p0

m
ρ

�
=




T
RK−1u

ρC


 , (8)

where ρC must be given as prior.

B. 3D line parameterizations

In this section, some line parameterizations are cov-
ered. The description of projection to image frame, bi-
linear transformation and back-projection are included.
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Abstract—

I. INTRODUCTION

II. LANDMARK PARAMETERIZATION

In [?], Solà et al. introduce an undelayed landmark
initialization (ULI) for different points and lines param-
eterizations. It consists on substituting the unmeasured
degree of freedon by a Gaussian prior that handles
infinite uncertainty but that is still manageable my the
EKF.

For different landmark types such as points and
lines, uncertainty has distict implications. For points,
there is uncertainty in distance and it covers all the
visual ray until infinity. Infinite straight lines handles
uncertainty in two degrees of freedom, which corre-
spond to a distance that should be covered up to infinity,
and all possible orientations. In the next sections, point
and line parameterizations used for ULI are covered, for
then deepen in the initialization process itself.

A. 3D point parameterizations

This section explains some point parameterizations.
The aspects included in each description refer to the
parameterization itself, camera projection, coordinate
transformation, and back-projection.

Figure 1: Point parameterizations. Image extracted from
[?]

1) Euclidean point: The parameters of an Euclidean
point consist on its Cartesian coordinates.

LEP = p = [x y z]
T ⇤ R3

The projection to camera frame is given by the
following equation:

u = KRT (p� T) ⇤ P2 (1)

where,

K =

⇤
�u 0 u0

0 �v v0

0 0 1

⌅

R and T are the rotation matrix and translation
vector that define the camera C. Underlined vectors like
u represent homogeneous coordinates.

2) Homogeneous point: Homogeneous points are
conformed by a 4-vector, which is composed by the
3D vector m and scalar ⇥.
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�
m
⇥

⇥
= [mx my mz ⇥]

T ⇤ P3 ⇥ R4

In order to convert from homogeneous to Euclidean
coordinates, the following equation is applied:

p =
m

⇥
.O (2)

In the camera frame, m is the director vector of the
optical ray, and ⇥ has a linear dependence to the inverse
of the distance d defined from the optical center to the
point.

⇥ = �m�
d

This allows to express the unbounded distance
of a point along the optical ray from 0 to infinity,
into this bounded interval in parameter space ⇥ ⇤
(0, ⌃m⌃/dmin].

The frame transformation of an homogeneous point
is performed according to the next equation:

p = HpC =

�
R T
0 1

⇥
pC, (3)

where super-index C indicates the frame to which
the point is refered, and matrix H sepecifies the frame
to which the point is transformed.

The projection of a point into the image frame is
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u = KRT (m� T⇥) ⇤ P2. (4)

Expressing an homogeneous point in the camera
frame, the projected image point is u = KmC, and
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mC = K�1u.

The complete homogeneous point parameterization
is given in the following equations:
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�
K�1u
⇤C

⇥
=

�
RK�1u + T⇤C

⇤C

⇥ (5)

,

where ⇤C must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
the optical center at initialization time of the landmark.
Thus, the landmark is a 6-vector that includes the anchor
3D coordinates, the Cartesian coordinates of the point
with respect to the anchor, and an inverse-depth scalar.

LAHP =
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m
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⌅
= [x0 y0 z0 mx my mz ⇤]

T ⇧ R7.

The convertion from anchred homogeneous point to
Euclidean coordinates can be achieved by the following
equation:
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⇤
. (6)

The projection and frame transformation process is
given in the next expression:

u = KRT (m � (T � p0) ⇤) ⇧ P2. (7)

The complete anchores homogeneous point param-
eterization is the following:
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=

⇧
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T
RK�1u
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⌃
� , (8)

where ⇤C must be given as prior.

B. 3D line parameterizations

In this section, some line parameterizations are cov-
ered. The description of projection to image frame, bi-
linear transformation and back-projection are included.

1) Plücker line: A line in P3 defined by two points
a = [a a]

T and b = [b b]
T can be represented as

homogeneous 6-vector, known as Plücker coordinates:

LPL =
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n
v
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= [nx ny nz vx vy vz]

T ⇧ P5 ⌅ R6 ,

where n = a ⇤ b, n = ab � ba, n,v ⇧ R3, and
having the following Plücker constraint: nTv = 0.

Geometrically speaking, n is the vector normal to
the plane ⇥ containing the line and the origin, and
v is the director vector from a to b. The Euclidean
orthogonal distance from the line to the origin is given
by  n / v . Thus,  v is the inverse-depth, analogous
to ⇤ of homogeneous points. Plücker line geometrical
representation is shown in figure 2.

Figure 2: Plücker line geometrical representation. Image
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When Plücker coordinates are expressed in camera
frame, projection is only obtained by
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Line’s range and orientation expressed in vC are not
measurable.
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frame is performed as shown next:
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The whole transformation and projection process for
Plücker coordinates in terms of R , T, n, and v is:

l = K · RT · (n � T ⇤ v)⇥ (9)

where K is the instrinsic projection Plücker matrix
defined as:

K =
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0 �u 0

��vu0 �uv0 �u�v

⌅
.

When Plücker coordinates are expressed in camera
frame, projection is only obtained by

l = K · nC (10)

Line’s range and orientation expressed in vC are not
measurable.

For Plücker line back projection, vectors nC and vC

are computed according to these expressions:

2

nC = K�1 · l (11)
vC = �1 · e1 + �2 · e2 (12)

where �1, �2 ⇧ R and
⇧
e1, e2,n

C
⌃

are mutually
orthogonal.

Defining � = (�1, �2) ⇧ R2, vector vC can be also
expressed as:

vC = E · �, (13)

where vC ⇧ ⇥C for any value of �.

In order for ��� to be exactly inverse-distance and
e1 be parallel to the image plane, e1 and e2 are obtained
with the next expressions:

e1 =

⇤
nC

2 �nC
1 0

⌅T
✏�

nC
1

⇥2
+
�
nC

2

⇥2 · �nC� (14)

e2 =
nC ⇤ e1

�nC� (15)

Plücker line back projection is shown in figure 3.

Figure 3: Plücker line back-projection. Image extracted
from [?]

The complete Plücker line parameterization is the
following:

LPL = H
⌥

nC

vC

�
= H

⌥
K�1l
E�

�
=

⌥
RK�1l + T⇤ RE�

RE�

�
,

(16)

where � must be provided as a prior.

2) Anchored Homogeneous-points line: Another
way of representing a line is by the endpoints that
define it. Departing from the anchored homogeneous
point parameterization, an homogeneous-point line is an
11-vector defined as follows:

LHPL =

 
���↵

p0

m1

⇤1

m2

⇤2

⌦
���� ⇧ R11

For each point, the transformation and projection of
a pinhole camera is , as previously stated,

ui = KRT (mi � (T� p0) ⇤i) �m1�/⇤1 (17)

An homogeneous 2D line is obtained by the cross
product of two points lying on it, l = u1⇤u2 and thus,

l = KRT ((m1 ⇤m2)� (T� p0)⇤ (⇤1m2 � ⇤2m1)) .
(18)

Comparing this result to what was obtained for
Plücker coordinates, it can be seen that the product
m1 ⇤ m2 is a vector orthogonal to the plane ⇥,
analogous to the Plücker sub-vector n. Also, the term
(⇤1m2 � ⇤2m1) is a vector joining the two support
points of the line, therefore related to Plücker sub-vector
v.

Figure 4 shows this parameterization.

Figure 4: Anchored homogeneous-points line parame-
terization. Image extracted from [?]
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Points are stacked as a 2-vector containing Cartesian
coordinates in pixel space, and are modeled as a Gausian
variable.
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In homogeneous coordinates,

3

mC = K�1u.

The complete homogeneous point parameterization
is given in the following equations:

LHP = p =

�
m
⇤

⇥
= H

�
K�1u
⇤C

⇥
=

�
RK�1u + T⇤C

⇤C

⇥ (5)

,

where ⇤C must be given as prior and represents
inverse-distance from the origin of coordinates.

3) Anchored homogeneous point: In order to im-
prove linearity, an anchor is added as a reference to
the optical center at initialization time of the landmark.
Thus, the landmark is a 6-vector that includes the anchor
3D coordinates, the Cartesian coordinates of the point
with respect to the anchor, and an inverse-depth scalar.

LAHP =

⇤
p0

m
⇤

⌅
= [x0 y0 z0 mx my mz ⇤]

T ⇧ R7.

The convertion from anchred homogeneous point to
Euclidean coordinates can be achieved by the following
equation:

p = p0 +
m

⇤
. (6)

The projection and frame transformation process is
given in the next expression:

u = KRT (m� (T� p0) ⇤) ⇧ P2. (7)

The complete anchores homogeneous point param-
eterization is the following:

LAHP =

⇤
p0

m
⇤

⌅
=

⇧
⌥

T
RK�1u

⇤C

⌃
� , (8)

where ⇤C must be given as prior.

B. 3D line parameterizations

In this section, some line parameterizations are cov-
ered. The description of projection to image frame, bi-
linear transformation and back-projection are included.

1) Plücker line: A line in P3 defined by two points
a = [a a]

T and b = [b b]
T can be represented as

homogeneous 6-vector, known as Plücker coordinates:

LPL =

�
n
v

⇥
= [nx ny nz vx vy vz]

T ⇧ P5 ⌅ R6 ,

where n = a ⇤ b, n = ab � ba, n,v ⇧ R3, and
having the following Plücker constraint: nTv = 0.

Geometrically speaking, n is the vector normal to
the plane ⇥ containing the line and the origin, and
v is the director vector from a to b. The Euclidean
orthogonal distance from the line to the origin is given
by ⌦n⌦/⌦v⌦. Thus, ⌦v⌦ is the inverse-depth, analogous
to ⇤ of homogeneous points. Plücker line geometrical
representation is shown in figure 2.

Figure 2: Plücker line geometrical representation. Image
extracted from [?]
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frame is performed as shown next:
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⇥
.

The whole transformation and projection process for
Plücker coordinates in terms of R , T, n, and v is:

l = K · RT · (n� T⇤ v) I (9)

where K is the instrinsic projection Plücker matrix
defined as:
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⇤
�v 0 0
0 �u 0

��vu0 �uv0 �u�v

⌅
.

When Plücker coordinates are expressed in camera
frame, projection is only obtained by

l = K · nC (10)

Line’s range and orientation expressed in vC are not
measurable.
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For each point, the transformation and projection of
a pinhole camera is , as previously stated,

ui = KRT (mi � (T� p0) ⇤i) (17)

An homogeneous 2D line is obtained by the cross
product of two points lying on it, l = u1⇤u2 and thus,

l = KRT ((m1 ⇤m2)� (T� p0)⇤ (⇤1m2 � ⇤2m1)) .
(18)

Comparing this result to what was obtained for
Plücker coordinates, it can be seen that the product
m1 ⇤ m2 is a vector orthogonal to the plane ⇥,
analogous to the Plücker sub-vector n. Also, the term
(⇤1m2 � ⇤2m1) is a vector joining the two support
points of the line, therefore related to Plücker sub-vector
v.

Figure 4 shows this parameterization.
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2.2.2. Anchored Homogeneous-points line

A line can also be represented by the end points that define it. Applying
the anchored homogeneous point parameterization, an homogeneous-point
line is an 11-vector defined as follows:

LAHPL = [p0 m1 ⇢1 m2 ⇢2]
T 2 R11

For each point, the transformation and projection of a pinhole camera is
as previously stated in equation 3.

An homogeneous 2D line is obtained by the cross product of two points
lying on it, l = u1 ⇥ u2, giving

l = KRT ((m1 ⇥m2)� (T� p0)⇥ (⇢1m2 � ⇢2m1)) . (11)

By comparison to the result obtained for Plücker coordinates, the product
m1⇥m2 is a vector orthogonal to the plane ⇡, analogous to the Plücker sub-
vector n. Also, the term (⇢1m2 � ⇢2m1) is a vector that gives the direction
between the points of the line, therefore related to Plücker sub-vector v.

2.3. Landmark initialization

The process of initialization of a landmark consist on the detection of
a feature in the image, retroprojection to 3D, and inclusion into the map.
Points are represented as a 2-vector containing Cartesian coordinates in pixel
space, and are modeled as a Gausian variable.
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ū2

�
,


U 0
0 U

��

The probability density function for infinite lines like Plücker, pdfN
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in conformed by the homogeneous line representation, and the Gaussian dis-
tribution defined as follows:
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Figure 3. Line parametrizations used for initialization. (a) Plücker line geometrical representation;
(b) Plücker line back-projection; (c) anchored homogeneous-points line parametrization.

2.2.1. Plücker Line

Plücker coordinates are conformed by a six-vector that represents a line in P3 defined by two
points a = [a a]T and b = [b b]T:

LPL =

[
n
v

]
=
[
nx ny nz vx vy vz

]T ∈ P5 ⊂ R6,

where n = a× b, v = ab− ba, n, v ∈ R3, with the Plücker constraint: nTv = 0.
In terms of geometry, n is the vector normal to the plane π containing the line and the origin and v

is the director vector from a to b. The Euclidean orthogonal distance from the line to the origin is given
by ‖n‖/‖v‖. Hence, ‖v‖ is the inverse-distance, analogous to ρ of homogeneous points. Plücker line
geometrical representation is shown in Figure 3a.

Expressions for transformation and inverse-transformation of Plücker coordinates from and to
the camera frame are as shown next:

LPL = H · LCPL =

[
R [T]× R

0 R

]
·
[

nC

vC

]
(9)

LCPL = H−1 · LPL =

[
RT −RT [T]×
0 RT

]
·
[

n
v

]
(10)

The transformation and projection process in terms of R, T, n and v is as follows:

l = K · RT · (n− T× v) (11)

where the intrinsic projection Plücker matrix K is defined as:

K =




αv 0 0
0 αu 0

−αvu0 αuv0 αuαv




When Plücker coordinates are expressed in the camera frame, projection is obtained by:

l = K · nC (12)

The range and orientation of the line are included in vC and are not measurable.
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For Plücker line back projection, vectors nC and vC are obtained with these expressions:

nC = K−1 · l
vC = β1 · e1 + β2 · e2

where β1, β2 ∈ R and
{

e1, e2, nC
}

are mutually orthogonal.

Defining β = (β1, β2) ∈ R2, vector vC can also be expressed as:

vC = E · β,

where vC ∈ πC for any value of β. Plücker line back projection is shown in Figure 3b.
The complete Plücker line parametrization for back projection and transformation is given in the

following equation:

LPL = H
[

nC

vC

]
= H

[
K−1l

Eβ

]
=

[
RK−1l + T× REβ

REβ

]
(13)

where β must be provided as a prior.

2.2.2. Anchored Homogeneous Points Line

A line can also be represented by the end points defining it. With the application of the anchored
homogeneous point parametrization, shown in Figure 3c, an anchored homogeneous-points line is an
eleven-vector defined as follows:

LAHPL = [p0 m1 ρ1 m2 ρ2]
T ∈ R11

For each point, the transformation and projection of a pinhole camera is as previously stated in
Equation (4).

A homogeneous 2D line is obtained by the cross product of two points lying on it, l = u1× u2, giving:

l = KRT ((m1×m2)− (T− p0)× (ρ1m2− ρ2m1)) (14)

In comparison to the result obtained for Plücker coordinates, the product m1 ×m2 is a vector
orthogonal to the plane π, analogous to the Plücker sub-vector n. Furthermore, the term (ρ1m2− ρ2m1)

is a vector that gives the direction between the points of the line, therefore related to Plücker
sub-vector v.

The complete anchored homogeneous point line parametrization for back projection and
transformation is the following:

LAHPL =




p0

m1

ρ1

m2

ρ2



=




T

RK−1u1
ρC1

RK−1u2
ρC2




(15)

where ρC1 and ρC2 must be given as priors.

2.3. Landmark Initialization

The process of the initialization of a landmark consists of the detection of a feature in the image,
retro-projection to 3D and inclusion into the map. There are three important concepts that are involved
in the landmark initialization: the 3D landmark x itself, the 2D measurement z of the landmark in
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the image and the unmeasured degree of freedom π. All of these are modeled as Gaussian variables,
whose notation is N

{
µ, σ2}. Thus, the cited concepts are expressed as x ∼ N {x̄, P}, z ∼ N {z̄, R}

and π ∼ N {π̄, Π}, respectively. The 3D landmarks x considered for this study are points and lines,
already described in Sections 2.1 and 2.2. The parametrizations for landmark 2D measurements z and
unmeasured degrees of freedom π, as well as the description of the initialization algorithm are covered
in the following sections.

2.3.1. Landmark 2D Measurements in the Image

Points are represented as a two-vector containing Cartesian coordinates in pixel space, leading to
the following:

u =

[
u
v

]
∼ N {ū, U} ,

where U is the covariance matrix of the position of the point.
In homogeneous coordinates,

u =

[
u
1

]
∼ N {ū, U} = N

{[
ū
1

]
,

[
U 0
0 0

]}

Lines can be expressed by a four-vector that represents the coordinates of their end-points, also
with a Gaussian probability density function.

s =

[
u1

u2

]
∼ N {s̄, S} = N

{[
ū1

ū2

]
,

[
U 0
0 U

]}

The probability density function for infinite lines like Plücker, N
{

l̄, L
}

, is composed of the
homogeneous line representation and the covariance matrix defined as follows:

l̄ = ū1× ū2, and

L = [ū1]×U [ū1]
T
× + [ū2]×U [ū2]

T
×

2.3.2. Unmeasured Degrees of Freedom

The uncertainty in 3D points and lines coming from projection is represented by inverse-distance
variables ρC and βC, which are modeled as Gaussian variables. The origin of each of these priors must
be inside the 2σ of their probability density functions.

For points and end-point-based lines, the minimum distance must match the upper 2σ

boundary, hence:

ρ− nσρ = 0, 0 ≤ n < 2

ρ + 2σρ = 1/dmin

Then, n = 1 leads to,
ρ̄ = 1/3dmin and σρ = 1/3dmin

The probability density function of a point based line is defined as tC ∼ N {t̄, T}, with:

t̄ =

[
ρ̄

ρ̄

]
, T =

[
σ2

ρ 0
0 σ2

ρ

]
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The Plücker lines prior βC ∼ N
{

β̄, B
}

take the following values:

β̄ =

[
1/3dmin

0

]
, and B =

[
(1/3dmin)

2 0
0 (1/2dmin)

2

]

This initializes lines at the front of the camera.

2.3.3. Undelayed Landmark Initialization Algorithm

The ULI algorithm was presented in [30] for the construction of landmark-based stochastic maps,
including a single type of landmark L. The approach presented in this paper includes heterogeneous
parametrizations of landmarks L∗ on the same map, where L∗ can be a point or line. The resulting
algorithm is composed of the following steps:

1. Identify mapped magnitudes x ∼ N {x̄, P}.
2. Identify measurements z ∼ N {z̄, R}, where z is either a point or a line (i.e., u or s, respectively).
3. Define Gaussian prior π ∼ N {π̄, Π} for the unmeasured degree of freedom. π can either be ρC,

tC or βC.
4. Back-project the Gaussian measurement, and get the landmark mean and Jacobians.

L̄∗ = g (C̄, z̄, π̄)

GC =
dg
dC

∣∣∣∣
C̄,z̄,π̄

, Gz =
dg
dz

∣∣∣∣
C̄,z̄,π̄

, Gπ =
dg
dπ

∣∣∣∣
C̄,z̄,π̄

,

where g() is the back projection and transformation function for the corresponding landmark.
C = (T,Q) is the camera frame expressed in terms of its position T and orientation Q in
quaternion nomenclature.

5. Compute landmarks’ co- and cross-variances.

PL∗L∗ = GCPCCGT
C + GzRGz

T + GπΠGT
π

PL∗x = GCPCx = GC [PCC PCM]

6. Augment the SLAM map.

x̄←
[

x̄
L∗

]

P←
[

P PT
L∗x

PL∗x PL∗L∗

]

2.4. Landmark Update

The purpose of the landmark update process is to recalculate the parameters of the elements on
the map, (i.e., the robot and landmark poses), given the observation of the already mapped landmarks
in the current frame. This process starts by projecting all of the observable landmarks to the image
plane and selecting those with higher uncertainty for correction. For points, the observation function
h() applies a homogeneous to Euclidean transformation h2e() once having performed the projection
process previously explained, as follows:

z = h2e(u) =

[
u1/u3

u2/u3

]
∈ R2
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Innovation mean y and covariance Y is then obtained as shown next:

y = z− h (x̄)

Y = R + H · P ·HT,

where R = U is the measurement noise covariance and Jacobian H = ∂h
∂x

∣∣∣
x̄
.

For lines, the innovation function computes the orthogonal distances from the detected end-points
ui to a line l, as shown in Figure 4, leading to the following:

z =


 lT · u1/

√
l2
1 + l2

2

lT · u2/
√

l2
1 + l2

2


 ∈ R2 (16)
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endpoints ui to a line l. This leads to the measurement func-
tion

z =
[
z1
z2

]
=

⎡

⎣l⊤ ·u1/
√

l 2
1 + l 2

2

l⊤ ·u2/
√

l 2
1 + l 2

2

⎤

⎦ ∈ R2, (64)

which is in pixels units. If we name this function h1(l, s), the
full observation function is its composition with the projec-
tion functions h() in Table 1,

z = h(x, s) = h1(h(x), s). (65)

The EKF innovation y is defined as the difference be-
tween the actual measurement and the expectation,

y = z − h(x̄, s).

For the measurement z, this corresponds to the distances
from the detected endpoints to the detected line l = u1×u2.
Because this line l is precisely defined by the two endpoints,
the measured vector is zero by definition, and we just need
to consider a covariance R = U ∈ R2 (see (48)) represent-
ing the pixel noise in just two of the four dimensions.4

The expectation corresponds to the distances (64) to the ex-
pected line l̄ = h(C̄, x̄) (Fig. 11). This yields an innovation
y = 0 − h(x̄, s) with covariance Y = R + H·P·H⊤. The rest
of the EKF update is as before.

4.4.3 A First Comment About the Plücker Constraint

When dealing with Plücker lines PL or APL we do not ap-
ply any kind of correction to enforce the Plücker constraint.
We ensured its satisfaction during landmark initialization,
with the specification of the initial covariance in the β-plane,
Sect. 3.1.3, and its validity at any later time is only approxi-
mately guaranteed through cross-correlations. Although this
is of course not the optimal way to proceed, we decided to
leave the method as parallel as possible with the others pre-
sented here, so that we can impute the differences in perfor-
mance exclusively to landmark parametrization—thus not to
algorithmic aspects. Refer to Sect. 8.2 for further discussion.

4The expression R = U is only valid if the pixel noise is defined
isotropic via U = σ 2I2, which is most generally the case. Other-
wise we need to compute R = HsSH⊤

s with Hs the Jacobian of (64)
with respect to the measured segment s. In fact, Hs is such that if
S = diag(U,U) = σ 2I4 then R = U = σ 2I2.

4.5 Landmark Re-parametrization

Landmark over-parametrization, which we have defended
for EKF performance so far, is expensive and should only be
used when justified. Landmarks should be reparametrized to
their minimal forms after convergence, that is, when the ob-
servation functions of these minimal forms (the destination
forms) are judged linear enough.

For points, the natural choice is to reparametrize to EP.
The reparametrization is triggered by the linearity test de-
scribed in Civera et al. (2008), which is very cheap to com-
pute and can be easily adapted to HP, AHP and AMPP.

For lines, and because of the need of endpoints, it may
be convenient to choose a non-minimal two-points repre-
sentation L = (p1,p2) (EPL, see Fig. 8), with 6 parameters.
In this case we can use the test for points in Civera et al.
(2008), which must hold for both support points. We can
also use any of the minimal representations, which are of
size 4 (see also Fig. 8). Tests for these other line represen-
tations might be defined from the linearity indices described
in the next section, although these indices are not conceived
for speed. A compromise that would probably lead to satis-
factory operation is to use the test for EPL, which is simple
and does indicate that the line has already converged, and
then reparametrize to any other form of our convenience.
We have not explored these last possibilities.

5 Linearity and Performance Evaluation Tools

We present here the analytical and statistical tools used in
this article to evaluate the performances of all parametriza-
tions.

5.1 Analytical Measure of Linearity

The EKF requires high degrees of linearity in the mea-
surement and dynamic model equations. Defining an ana-
lytic measure of linearity allowing us to compare the de-
grees of linearity of the observation functions for different
parametrizations is therefore of clear importance. In Civera
et al. (2008), an analytic linearity index is proposed, based
on the variation in the first derivative of the function in-
side the 95% probability interval of the most uncertain state
variable: the inverse-distance parameter. This measure is re-
stricted, thanks to the particular symmetries of the problem,
to just 1 DOF, and it is difficult to generalize to our amalgam
of parametrizations. Very related to this work, the trace of
the Hessian of the measurement model is proposed in (Eade
and Drummond 2007) as a measure of the degree of linearity
in several nodes of a multi-map SLAM. This second mea-
sure has the drawback of not incorporating the dimensions
of the uncertainty region.
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Figure 4. Measurement of the orthogonal distances from the detected end-points to the expected
(or predicted) line.

Since the EKF innovation is the difference between the actual measurement and the expectation
and z is the orthogonal distance previously described, the line innovation function is:

y = 0− z,

as the desired orthogonal distance from the predicted line to the matched end-points is zero.
A landmark is found consistent if the squared Mahalanobis distance MD2 of innovation is smaller

than a threshold MD2th.
MD2 = yT · Y−1 · y < MD2th

As that is true, the landmark is updated:

Kalman gain: K = P ·H · Y−1

State update: x̄← x̄ + K · y
Covariance update: P← P−K ·H · P

Point and line parametrizations are modeled as Gaussian variables in [25,29,30], validating the
use of Mahalanobis distance as compared to a chi-squared distribution. Kalman gain is assumed to be
optimal. Since this process is intended to be developed as a light approach that could be integrated
into a dedicated architecture on small vehicles, the selected covariance update formula is used instead
of the Joseph form, which has such a high complexity that it may compromise performance. Successful
results of this formulation are presented in [30].
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3. SLAM Front-End

To obtain the geometrical representation of landmarks given by the SLAM back-end, it is necessary
to process the information coming from the sensors embedded in the moving agent (i.e., cameras
mounted on the mobile robot). The front-end deals with the detection of new landmarks and the
matching of already existent ones in subsequent images.

This section covers the image processing algorithms used for detecting and matching points and
lines. Points have been widely studied and implemented as SLAM landmarks [3,24,33,34]. In the case
of lines, a different front-end strategy was integrated for the detection and tracking of line segments.

3.1. Point Landmarks

A point landmark is modeled as an appearance descriptor composed of a patch of pixels
around the point in the image. Once detected, the patch is used for the matching of the feature
on incoming images.

3.1.1. Point Detection

An active-search approach [24,34] can ensure that the point landmarks are equally distributed in
the image by dividing it into a number of equal regions, in which it is expected to have a landmark
(Figure 5a). At each iteration, an empty region is randomly selected, and a corner point is chosen
to be the strongest Harris point [35] (Figure 5b). This point is used for the landmark initialization,
and its appearance and the current position and orientation of the camera C0 = (T0,R0) are saved.
The appearance of the point is given by the patch of pixels surrounding it, as seen in Figure 5c.

(a) (b) (c)

Figure 5. Point detection process. (a) Image divided into regions; one is randomly selected; (b) selected
region, processed to find a corner point; (c) appearance of the point.

3.1.2. Point Matching

When there are point landmarks already mapped, the matching process searches for a point
landmark x in the frame captured at camera pose Ci. This point has been initialized in the frame
captured with camera pose C0 (Figure 6a,b).

The saved appearance patch of the landmark is warped by applying a homography transformation.
This transformation takes into account the rotation and translation in the camera position and
orientation, with respect to its pose when the landmark was detected. The transformed coordinates of
pixel j of the patch at camera pose i (i.e., qj

i) is computed as follows:

qj
i = Hqj

0 (17)

where:

H = K

[
R T

0 1

]
K−1
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and qj
0 are the coordinates of pixel j of the original patch, as R and T are the rotation matrix and

translation vector between camera pose C0 and camera pose Ci. Once the patch is warped, it is cropped
to be squared in order to maintain the same dimensions of the original. This warping process is shown
in Figure 6c.

The matching process performs the projection of point landmark x into the image at camera pose
Ci to get a point expected position ui, given the current pose i of the camera:

ui = h(Ci, x)

The 2D covariance matrix U of this point is obtained from the 3D covariance matrix PLL
corresponding to landmark L, as follows:

U =
[

URF USF UL
]

PLL
[

URF USF UL
]T

where URF, USF and UL are the Jacobians of the projection u with respect to the robot frame, the sensor
frame and the landmark, respectively.

Then, the zero mean normalized cross-correlation (ZNCC) test [36] is applied to the warped patch
and a region of pixels surrounding the expected point in the image (Figure 6d). The rectangular search
region is based on the projection mean u and the covariance ellipse U. The mean is the center of
the search box, and the square roots of the diagonals of the covariance are the standard deviations,
σu and σv. The search region goes ±3σ at each side of the center. If the ZNCC score is over a threshold,
the point is said to be matched.

(a) (b)

(c) (d)

Figure 6. Point matching process. (a) Frame captured at camera pose C0, where point x was initialized;
(b) frame captured at camera pose Ci, where point x is intended to be matched; (c) patch warping
process, showing the original, the transformed and the cropped patches; (d) projection of landmark
point x into image point ui on the image at camera pose Ci. The search area is indicated by the rectangle
surrounding the point.
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3.2. Line landmarks

Many methods have been proposed to extract lines in the image processing community, generally
starting from the detection of intensity discontinuities (gradient, Laplacian, Canny filter). The first
method, introduced in the 1980s, was the chaining method [37], based on the polygonal approximation
of extracted contours. This method is efficient, but the result is too dependent on its parametrizations
(gradient threshold, contour thinning). This is why the Hough transform became so popular [38];
a recent variant, the kernel-based Hough transform [39], has been implemented and evaluated for line
detection. However, this approach, when working with infinite lines rather than segments, makes its
performance less than optimal for the intended purposes. In [40], the Dseg algorithm is proposed,
close to the chaining method, but using an iterative filtering approach to integrate a contour point in
the processed segment. The Dseg algorithm was compared to the chaining method, with the Hough
transform and with the line segment detector (LSD) detector [41]; it was found that it allows extraction
of a greater number of segments of various lengths.

This section covers the description of a front-end line segment active-search process, developed
for segment-based SLAM. The selected techniques for working with segments are the LSD for the
detection and moving edges (ME) [42] for matching.

An active-search approach was developed and implemented in order to handle the line segment
landmarks, similar to the one previously described for points.

3.2.1. Segment Detection

The process starts by building a grid that divides the image into rectangular cells. A 3× 3 grid was
chosen, as shown in Figure 7a. There are two different ways of detecting lines: the one applied in the
first frame of the sequence, and the one used in all other frames. In the first case, the segment detection
algorithm is run for the whole image, and the longest segments found are selected. The cells containing
a whole or partial segment are marked as “occupied”. This is shown in Figure 7b. The detection
process, applied in a subsequent frame (Figure 7c), departs from the assumption that there are line
landmarks already on the map. Once the EKF back-end computes the 3D position of the robot and the
landmarks seen so far, landmarks are projected to the image. The projection of line landmark x into
the image at camera pose Ci to get a line segment’s expected position si, given the current pose i of the
camera, is performed as follows:

si = h(Ci, x) (18)

Each projection is taken into account for updating the grid. The occupied cells are not considered,
and one empty cell is chosen randomly. The image patch delimited by this cell is used to run the
segment detector and to find the longest segment on it for initializing a new landmark. The line
detected is extended to the other cells, and they are marked as “occupied” when this is the case. This
process is shown in Figure 7d.

The patch of the cells where lines were detected in the present frame is saved for the line matching
process, as well as the current position and orientation of the camera C0 = (T0,R0). Each line is defined
by its end points, and only the pixels surrounding it are used for matching, as can be seen in Figure 7e.
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(a) (b)

(c) (d)

(e)

Figure 7. Line detection process. (a) Initial image divided in a 3× 3 grid of cells. (b) Line segments
detected. Only the ones that are longer than a threshold are selected. The cells that contain them are
marked as “occupied”. (c) Later image of the sequence. The map already contains line landmarks.
(d) Existing landmarks are projected into the image, and the occupation grid is updated. Occupied
grids are marked with a textured pattern. The first image also shows the randomly-selected empty cell
and the segment detected on it. The second image shows the result of extending the detected segment.
Cells occupied by this segment are colored in blue. (e) Appearance of the detected lines. Each line is
parametrized by its end points, the pixels surrounding the line are used for matching.

3.2.2. Segment Matching

When there are line landmarks already mapped, the matching process searches for a line landmark
x in the frame captured at camera pose Ci. This line has been initialized in the frame captured with
camera pose C0 (Figure 8a,b).

The saved appearance patch of the landmark is warped by applying a homography transformation.
This transformation takes into account the rotation and translation in the camera position and
orientation, with respect to its pose when the landmark was detected. The transformed coordinates
of pixel j of the patch at camera pose i (i.e., qj

i) are computed applying Equation (17). This warping
process is shown in Figure 8c.

The matching process performs the projection of the line landmark from Equation (18) to estimate
its position of line segment si in the image. For updating the current position of each line landmark,
their estimated position in the image is used for initializing the matching algorithm, and a search for a
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match is performed in the region surrounding the line estimation (Figure 8d). The errors between the
estimated position and the position of the match found are used by the back-end to update the state
and uncertainties of the landmarks and robot poses on the map.

(a) (b)

(c) (d)

Figure 8. Line matching process. (a) Frame captured at camera pose C0, where line x was initialized;
(b) frame captured at camera pose Ci, where line x is intended to be matched; (c) patch warping
process, showing the original and the transformed patches; (d) projection of landmark line x into image
segment si on the image at camera pose Ci. The search area is indicated by the rectangle surrounding
the segment.

To perform the tracking of the points that make up part of line segments, the moving edges
algorithm is implemented as discussed in [43].

The algorithm consists of searching the correspondent point pt+1 on line l(r)t+1 in image It+1 of
point pt in line l(r)t. The search for a match is performed in the direction normal to the line l(r)t, given
by δ. For each point pt, a search interval

{
Qj, j ∈ [−J, J]

}
is defined. Each sample Qj is evaluated

by the criterion ζ j. This evaluation consists in computing the convolution value between an image
patch at the neighborhood ν of Qj, and the mask Mδ, which is a function of the orientation of line l(r)t.
The algorithm is shown in Figure 9.

Thus, the position of point pt+1 on line l(r)t+1 in image It+1 is given by:

Qj∗ = arg max
j∈[−J,J]

ζ j with =

∣∣∣∣It
ν(pt) ∗Mδ + It+1

ν(Qj)
∗Mδ

∣∣∣∣ (19)

A list of k points is produced, from which the segment extremities s = (u1, u2) are extracted.
One way to express the measurement z of the matched segment with respect to the expected

prediction of it is to compute the orthogonal distance of the matched end points u1 and u2 to the
predicted line l, as shown in Equation (16) and Figure 4.

By defining line measurement in this way, the matching can be accomplished regardless of which
points of the corresponding line were detected by the tracker and of the segment length.
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NFA Computation Following an a contratio model, the expected number of events that are as good as
the observed one is given by

Ntest · PH0 [k(r, I) ≥ k(r, i)] (10)

where Ntest is the total number of rectangles considered, PH0 is the probability of the a contrario model
H0, and I is a random image following H0.

H0 is a noise model for the image gradient orientation, in which the line angles in pixels j, denoted θj

are independent random variables uniformly distributed over [0, 2π]. The probability that a pixel on the a
contrario model is an aligned point is

p =
τ

π
(11)

Since θj are random independent variables, k(r, I) follows a binomial distribution

PH0
= [k(r, I) ≥ k(r, i)] = B(n(r), k(r, I), p) = B(n, k, p) =
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Ntest is the total number of rectangles that could be aligned at certain presicion. Since rectangles are
oriented, in an N ×M image, there are a total of NM × NM different rectangles wuth

√
NM different

width values. Thus, the total number of rectangles considered is (NM)5/2. The presicion p takes τ/π as
initial value, but a total of γ values are tried, having a number of tests of (NM)5/2γ.

The Number of False Alarms (NFA) is then

NFA(r, i) = (NM)5/2γ ·
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pj(1− p)(n−j) (13)

This refers to the number of rectangles that have a sufficient number of aligned points to be as rare as
r under H0. If this number is large, the event is common, and thus not relevant one. If, on the contrary,
this number is small, the event is rare, and probably a meaningful one. The threshold � is chosen so that
NFA(r, i) ≤ ε constitutes an ε-meaningful rectangle and produces a detection. This value is chosen to be 1.

2.2 Segment Tracking

In order to perform the tracking points that make part of line segments, the Moving Edges algorithm [2] is
implemented. No prior edge extracton is required for it.

The algorithm consiston searching the correspondent point pt+1 on line l(r)t+1 in image I ∗ t + 1 of point
pt in line l(r)t. A 1D search interval {Qj , j ∈ [−J, J ]} is defined in the direction δ normal to the contour.
For each point pt and for each Qj , in direction δ, a criterion ζj is computed. This criterion consists on the
convolution value computed at Qj , using mask Mδ, which is function of the orientation of the contour. The
algorithm is exemplified in figure 1.

Thus, the new position pt+1 is given by:

Qj∗ = arg max
j∈[−J,J]

ζj with =
���It

ν(pt) ∗Mδ + It+1
ν(Qj)

∗Mδ

��� (14)

A list of k points is produced, from which the segment extremities are extracted.

2.3 Integration into SLAM

The main goal of the LSD and ME is their utilization as a front-end for line segment based SLAM. An
active-search approach was implemented in order to handle the line segment landmarks, similar to the one
previously implemented for points in [4].
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In order to perform the tracking points that make part of line segments, the Moving Edges algorithm [2] is
implemented. No prior edge extracton is required for it.

The algorithm consiston searching the correspondent point pt+1 on line l(r)t+1 in image I ∗ t + 1 of point
pt in line l(r)t. A 1D search interval {Qj , j ∈ [−J, J ]} is defined in the direction δ normal to the contour.
For each point pt and for each Qj , in direction δ, a criterion ζj is computed. This criterion consists on the
convolution value computed at Qj , using mask Mδ, which is function of the orientation of the contour. The
algorithm is exemplified in figure 1.
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Figure 9. Moving edges (ME) algorithm to find correspondent points in image sequences.

(a) Calculation of the direction δ normal to the line l(r)t; (b) search sampling
{

Qj, j ∈ [−J, J]
}

along
the normal direction; (c) Mδ mask at 180◦ and (d) Mδ mask at 45◦.

4. Experiments

This section includes the experimental part that tests the three main contributions of this article.
The first part deals with the back-end and consists of a comparative evaluation between different
landmark parametrizations. A set of simulations tests the benefits of the combination of point and
line landmarks in the same map. The following part deals with the implementation of the developed
segment-based SLAM front-end that includes the line segment active-search process presented in
this paper. Finally, a complete heterogeneous landmark-based SLAM experiment that integrates the
contributions to back-end and front-end is included.

4.1. Simulation of the Back-End for Heterogeneous SLAM

The point and line parametrizations previously presented have been tested independently in
previous studies, such as [25,29,30]. This section offers a comparison of different heterogeneous
approaches, including combinations of distinct landmarks on the same map. The purpose is to show
the benefits of working with a heterogeneous parametrization that combines points and lines in a
single map. The combinations performed are enumerated below:

1. Anchored homogeneous point (AHP)
2. Plücker line (PL)
3. Anchored homogeneous-points line (AHPL)
4. AHP + PL
5. AHP + AHPL

The MATLABr EKF-SLAM toolbox [44] was extended with the heterogeneous functionality to
perform the simulations.

Figure 10a shows the simulation environment. It consists of a house conformed by 23 lines and
an array of 16 points distributed uniformly among the walls.

The robot performs two different trajectories. The first one is a circular path of 5 m in diameter,
with a pose step of 8 cm and 0.09◦. The second is a motion of 70 steps of 4 cm, each taken towards the
scene. The linear noise is 0.5 cm and the angular noise 0.05◦.

Besides the heterogeneous landmark capability of the toolbox, the transparency of the objects in
the scene was also considered. By default, objects in the simulation environment of the toolbox are
transparent, so landmarks are visible on almost every image frame. To work in a more realistic manner,
an aspect graph was implemented to only observe visible surfaces of the house at each camera pose.

Both transparent and opaque object visualizations are shown in Figure 11. An example of a
heterogeneous map constructed after a complete turn of the robot around the house is shown in
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Figure 10b. The parametrization used is AHP + PL. For the case of the approaching trajectory, a final
heterogeneous map constructed is shown in Figure 10c. The parametrization used is AHP + AHPL.
They display in green the line landmarks estimated and in blue the point landmarks. Real, predicted
and estimated robot trajectories are displayed in blue, red and green, respectively.

(a) (b)

(c)

Figure 10. Environment world used for the simulation experiments of heterogeneous point and line
SLAM. (a) Initial state of the environment world; (b) environment after performing circular trajectory
with anchored homogeneous point (AHP) + Plücker line (PL) parametrization; (c) environment after
performing approaching trajectory with AHP + AHPL parametrization.

(a) (b)

Figure 11. Different visualization modes of objects in the simulation environment. (a) Sensor view
considering transparent objects; (b) sensor view considering opaque objects.
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For the circular path, a trajectory of five turns, considering transparent and opaque objects,
was performed for each parametrization.

4.2. Integration of Line Segment Active-Search to the SLAM Front-End

The line-based SLAM front-end that was developed and that implements the line segment
active-search presented in this article is covered in this section. The LSD and ME algorithms were
applied to an image sequence showing a piece of furniture inside a room.

Figure 12 shows the operation of this segment-based front-end of an EKF-SLAM process. Infinite
thin lines represent the estimated position of the landmark in the current image, while thicker segments
show the match found. It can be observed that the match corresponds to the estimation in most of
the cases.

(a) Frame 1 (b) Frame 14

(c) Frame 30 (d) Frame 44

(e) Frame 55 (f) Frame 59

Figure 12. Front end operation of segment-based EKF-SLAM in an indoor sequence, showing the
prediction and observation of landmarks. Infinite thin lines represent the estimated position of the
landmark in the current image, while thicker segments show the match found.
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4.3. Heterogeneous SLAM Experiment

The complete heterogeneous SLAM solution was tested with the experiment described in
this section.

The mobile robot used was a CRS Robotics F3 system, with a Microsoft LifeCam Studio camera
mounted on it, along with a 9DOF Razor IMU that provided the robot state estimation at each frame.
A total of 401 images with a 1280× 720 resolution form the sequence. From this robot, it was possible
to get the ground truth information with a repeatability of ±0.05 mm. The robot described a total
trajectory of 0.4653 m. To get a prediction of the motion, the information provided by the IMU was
used in a constant acceleration motion model. The inclusion of this additional sensor made it possible
to cope with the inherent scale ambiguity of monocular systems.

Figure 13 presents certain frames of the sequence, showing the landmarks used to update the
state of the map. The AHP and AHPL were the parametrizations selected for the experiments, as they
were the ones that provided better simulation results.

(a) Sensor capture in Frame 81 (b) Map in Frame 81

(c) Sensor capture in Frame 201 (d) Map in Frame 201

(e) Sensor capture in Frame 401 (f) Map in Frame 401

Figure 13. Point and line heterogeneous EKF-SLAM frames. (a,c,e) The front-end part; infinite thin
lines represent the estimated position of the landmark in the current image, while thicker segments
show the match found; circles represent the prediction of points, and points themselves are the match
found; (b,d,f) The maps created on each frame, with the landmarks’ estimation, the current pose of the
camera represented by the small reference frame and the trajectory described.
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5. Results and Discussion

For the analysis, root mean square error (RMSE) evaluation is used to compute errors. At each
instant k, the estimated position (xk, yk, zk) is compared to the ground truth position (x̂k, ŷk, ẑk).

εk =

√
(
(
(xk − x̂k)

2 + (yk − ŷk)
2 + (zk − ẑk)

2
)
) (20)

From the previous results, the mean and standard deviation of the error are computed as follows:

µε =
1
N

N

∑
k=1

εk (21)

σε =

√√√√ 1
N

N

∑
k=1

(εk − µε)
2 (22)

Simulation of the back-end for heterogeneous SLAM was intended to compare the different
parametrizations and to show the benefits of landmark heterogeneity.

The parametrization with the highest error is the Plücker line. Anchored parametrizations
achieved the best performance, for both points and lines. There is an improvement effect in line
parametrizations by the addition of points. Even for the anchored cases, already having a relative good
performance while working independently, the heterogeneity improves the results, in such a way that
the combination of both AHP and AHPL is the one with the least error along the simulated trajectories.

The position error of the robot in the case of a circular trajectory with transparent and opaque
objects is shown in Figure 14; these results are summarized in Table 1. For the case of the approaching
trajectory, the results are shown and summarized in Figure 15 and Table 2.

(a) Transparent objects. (b) Opaque objects.

Figure 14. Robot position estimation errors for the circular trajectory.

Table 1. Robot position error mean and standard deviation, for transparent and opaque object
visualization, for the different heterogeneous landmark parametrizations in the circular trajectory
in the simulated environment.

AHP PL AHPL AHP + PL AHPL + AHPL

Mean Transparent objects 0.05856 0.1532 0.05861 0.1109 0.04982
Opaque objects 0.06332 0.08806 0.04561 0.06634 0.04114

Standard Deviation Transparent objects 0.02426 0.07139 0.02268 0.05733 0.02025
Opaque objects 0.0316 0.03961 0.0236 0.02298 0.02368
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Figure 15. Robot position estimation errors for the approach trajectory.

Table 2. Robot position error mean and standard deviation for the different heterogeneous landmark
parametrizations in the approach trajectory in the simulated environment.

AHP PL AHPL AHP + PL AHP + AHPL

Mean 0.038 0.053 0.044 0.040 0.038

Standard Deviation 0.024 0.023 0.024 0.025 0.023

The complete SLAM experiment integrating the back-end with the developed front-end is used to
compare the heterogeneous approach with a classic point-based SLAM applied to the same sequence.
The ground truth and estimated trajectories for each SLAM approach tested are shown in Figure 16.

Figure 16. Ground truth, point SLAM estimated and heterogeneous SLAM estimated trajectories.

Figure 17 presents results in terms of the robot position estimation error, comparing the IMU
estimation to both point and heterogeneous SLAM. As can be observed, the heterogeneous approach
results in lower errors, as previously presented in the simulation part. Near Frame 200, there was a
change in the motion direction of the robot, which can be seen as a peak in the position estimation error
graph. Even in this case, heterogeneous SLAM achieved a better performance than the point-based
SLAM. Table 3 shows a comparative summary of the errors from the three cases.
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(a) IMU (b) SLAM approaches

Figure 17. Robot position estimation error comparison between IMU, point SLAM and heterogeneous
SLAM approaches.

Table 3. Robot position error mean, maximum, minimum and standard deviation, for IMU estimation,
point and heterogeneous SLAM solutions in the real environment.

Mean Max Min SD

IMU 0.0018 0.0047 0.0002 0.0007

Point SLAM 0.0011 0.1500 0.0000 0.0012

Heterogeneous SLAM 0.0008 0.0107 0.0000 0.0011

6. Conclusions

The purpose of this paper is to prove the benefits of including heterogeneous landmarks when
building a map from an EKF-based visual SLAM method. Several authors have shown interest in
the use of heterogeneous landmarks. For the front-end, the interest for joint tracking of points and
lines is found in [45], while for the back-end, a theoretical study is presented in [31], and preliminary
results of an EKF-based SLAM method, based on heterogeneous landmarks, are presented in [46].
The experiments performed that the authors describe have shown that the robot localization or the
SLAM stability can be improved by combining several landmarks, i.e., points and lines. The use of just
monocular vision provides only partial observations of landmarks by features extracted from images;
here, undelayed initialization of landmarks is used, as was proposed initially by Solà et al. [25,29] for
points and lines. The use of simulated data has shown how the choice of the landmark representation
has an impact on the accuracy of the map. The best ones, considering the construction of a map with
heterogeneous landmarks, are anchored homogeneous points and anchored homogeneous points lines.
These parametrizations were used in a complete heterogeneous SLAM experiment that produced
better results than the classic point-based case, by reducing the camera position estimation error.

Another contribution of this paper is a method proposed for a segment-based SLAM front-end.
This method relies on the line segment active-search process presented in this article and on
state-of-the-art line detection and matching processes. The methods that compose the developed
front-end that resulted were discussed, recalling, first, their theoretical background and, then,
presenting some experimental evaluations on image sequences that show the stability of the process.

Finally, a complete heterogeneous landmark-based SLAM experiment was presented, integrating
the contributions with the back-end and the front-end and confirming the results obtained
independently.

In future work, constraints will be exploited in the map, typically when points and lines are
extracted from known portions of the scene.
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