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Abstract: Video stabilization is an important technology for removing undesired motion in videos.
This paper presents a comprehensive motion estimation method for electronic image stabilization
techniques, integrating the speeded up robust features (SURF) algorithm, modified random sample
consensus (RANSAC), and the Kalman filter, and also taking camera scaling and conventional camera
translation and rotation into full consideration. Using SURF in sub-pixel space, feature points were
located and then matched. The false matched points were removed by modified RANSAC. Global
motion was estimated by using the feature points and modified cascading parameters, which reduced
the accumulated errors in a series of frames and improved the peak signal to noise ratio (PSNR) by
8.2 dB. A specific Kalman filter model was established by considering the movement and scaling of
scenes. Finally, video stabilization was achieved with filtered motion parameters using the modified
adjacent frame compensation. The experimental results proved that the target images were stabilized
even when the vibrating amplitudes of the video become increasingly large.
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1. Introduction

Photographic jitter, caused by the vibration of a moving camera, often produces undesirable
effects, which video stabilization methods are designed to mitigate or eliminate. Image stabilization
technologies such as mechanical image stabilization (MIS), optical image stabilization (OIS) [1], and
most recently electronic image stabilization (EIS) [2] are widely applied in areas such as camera
capture, vehicle monitoring, and airborne and shipboard observations. Mechanical and optical image
stabilization methods usually involve adjusting the spatial positions of an element or group of elements.
Compared with MIS and OIS, EIS as a software-based approach has the advantage of lower cost and
easier integration, though there are limitations to the software’s accuracy and speed and the hardware’s
image performance. EIS may also be used as the fine stabilization frame in a coarse/fine combination
two-level stabilization approach [3–5]. For an in-vehicle camera, EIS is relatively cost-efficient and may
be the best option.

Research into this approach has focused on developing accurate, high-speed EIS with image
blur alleviation. EIS systems generally have three main components: Global motion estimation,
motion smoothing, and motion compensation [6–19]. These involve: (1) extracting high-precision
features and obtaining precise positioning points; (2) separating the camera’s intentional scanning
movement and random noise vibration using discrete filters based on motion estimation results;
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(3) recovering the original frames using the smoothing parameters in the process of motion
compensation. Block matching is primarily used for feature extraction and detecting the motion
vector of a moving frame [6,7]. However, block matching cannot deal with scalar and rotational
movement without excess computation time; in these cases, local gradient operators such as Harris and
bit-plane operators are preferred [8,9]. Moreover, a moving frame has the characteristics of a dynamic
scene, which may dictate a multi-resolution design. To address this issue, adaptive pyramid algorithms
with a probabilistic direction have been proposed to respond to disturbances [10–14]. Another issue
in EIS design is position-varying vibration caused by the shaking of in-vehicle cameras. Numerous
suppression techniques [15–22] such as Kalman filtering, tracking differential filtering, Wiener filtering,
cascaded calculation and oriented descriptors have been employed to increase the robustness of the
motion estimation system against vibrations. Despite the aforementioned research, two aspects of this
approach have not been comprehensively addressed: (1) the extraction and suppression techniques
were designed for a balance between speed and accuracy rather than with attention to conceptual
design; (2) the techniques were tested mostly for improvement of image quality. The techniques used
in EIS have been developed to handle features in some different pixel spaces, but cannot capture the
full complexity of features in all different pixel spaces. In addition, previous studies evaluated the
effect of video stabilization by the signal-to-noise ratio rather than suppression variabilities. Moreover,
the signal-to-noise ratio is affected by hardware limitations when discussing object motion. The main
purpose of this paper is to address these two deficiencies in the research.

In this paper, a comprehensive motion estimation method for electronic image stabilization is
realized that integrates the SURF algorithm, modified RANSAC, and the Kalman filter, taking camera
scaling and conventional camera translation and rotation into full consideration. The SURF algorithm
is selected for feature point extraction and description, as it is scale- and rotation-invariant offering
more robustness for scaling, rotation, and translation parameters. Previous discussions [23–25] have
shown that in the pixel space of one pixel, the Oriented BRIEF (Orb) method performs better than SURF
in terms of speed and accuracy; with a smaller pixel space, e.g., 0.1 pixels, different result variabilities
are observed and considered in the design. In this paper, we consider control of accuracy as well as
suppression variabilities. To achieve this goal, the SURF algorithm is selected for first consideration
for accuracy improvement in a comparative discussion concerning sub-pixel space, as the speed of
feature point extraction will rely on the embedded system structure in future work. The exclusion of
false matched points is realized with modified RANSAC. In addition, linear correlation coefficients for
trajectory curves are calculated to assess the efficiency of vibration suppression in an experiment using
mobile in-vehicle videos. They also are used for the selection of reference frames in image sequences,
when considering the effect of cascaded parameters in the Kalman filtering process.

In the application of in-vehicle EIS methods, these techniques can be integrated in the static or
mobile system, depending on the motion state of the vehicle. In this paper, the scheme proposed
is applied to mobile in-vehicle videos. The comprehensive technique for video stabilization is a
cascade-correlation algorithm applied to two-dimensional digital signal processing. It possesses
the inherent characteristics of structural pipeline models, which make it suitable for mapping onto
FPGA substrates and available for a miniaturized embedded system. Here, we focus only on the
cascade-correlation algorithm and its effect. The architecture design of the embedded system is
not discussed.

2. Materials and Methods

2.1. The Scheme of the EIS Method

The scheme in this paper is designed as shown in Figure 1. In the process of global motion
estimation, the feature points in the original videos are distinguished and the affine matrices are
determined by using the values of matched feature points in the previous and current frames. The
image motion is then compensated with the affine matrices.
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First, in the SURF algorithm, the potential feature points are distinguished with a Hessian 
matrix and non-maximum suppression, in which box filters are used to approximate Gaussian 
derivatives to simplify the Hessian matrix calculation, as shown in Figure 2a. At the same time, the 
original image is transformed into coordinates using the multi-resolution pyramid technique. Thus 
a copy of the image is obtained with the same size but with reduced pixel bandwidth, achieving the 
space of different sub-pixel scale in parallel, as shown in Figure 2b. The feature points are selected 
by locating extreme points by means of the gradient value around the points. The Haar wavelet 
responses in both x- and y-directions around the point of interest are then computed to set a 
multidimensional vector as the SURF feature descriptor. 

 

Figure 2. (a) Approximation of Gaussian derivatives using box filters; (b) scale space of different  
sub-pixels in parallel. 
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process of global motion estimation.  ( ) , yn n nI p x  and  1 1 1( ) , yn n nI p x    refer to the 
corresponding points, as shown in Formula (1): 

   1 1 1n n n nI p A I p B     (1) 

The cascading parameters are defined in Formula (2), in which 1 1
1

1 1

n n
n

n n

a b
A

c d
 


 

 
  
 

 refers to 

rotation and scaling, and 1
1

1

n
n

n

e
B

f





 
  
 

 to translation. Figure 3 shows how the adjacent affine 

matrix is achieved subsequent to the previous frame through cascading parameters, which describe 
the current frame’s motion relative to the reference frame. To reduce accumulated errors in a series 

 

Figure 1. Block graph of the stabilization process.

First, in the SURF algorithm, the potential feature points are distinguished with a Hessian matrix
and non-maximum suppression, in which box filters are used to approximate Gaussian derivatives to
simplify the Hessian matrix calculation, as shown in Figure 2a. At the same time, the original image is
transformed into coordinates using the multi-resolution pyramid technique. Thus a copy of the image
is obtained with the same size but with reduced pixel bandwidth, achieving the space of different
sub-pixel scale in parallel, as shown in Figure 2b. The feature points are selected by locating extreme
points by means of the gradient value around the points. The Haar wavelet responses in both x- and
y-directions around the point of interest are then computed to set a multidimensional vector as the
SURF feature descriptor.
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Figure 2. (a) Approximation of Gaussian derivatives using box filters; (b) scale space of different
sub-pixels in parallel.

Second, the affine model between two adjacent nth and (n ´ 1)th frames is described for
the process of global motion estimation. Inppq “

`

xn, yn
˘

and In´1ppq “
`

xn´1, yn´1
˘

refer to the
corresponding points, as shown in Formula (1):

In ppq “ An´1 In´1 ppq ` Bn´1 (1)

The cascading parameters are defined in Formula (2), in which An´1 “

«

an´1 bn´1

cn´1 dn´1

ff

refers

to rotation and scaling, and Bn´1 “

«

en´1

fn´1

ff

to translation. Figure 3 shows how the adjacent affine

matrix is achieved subsequent to the previous frame through cascading parameters, which describe
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the current frame’s motion relative to the reference frame. To reduce accumulated errors in a series of
frames, the modified cascading parameters An´ 1 and Bn´1 are deduced from the adjacent cascading
parameters, as defined in Equation (2):

In ppq “ An´1 In´1 ppq` Bn´1 “ ¨ ¨ ¨ “ An´1 I1 ppq ` Bn´1

An´1 “
śn´1

i“1 Ai pn ě 2q
Bn´1 “ An´1Bn´2 ` Bn´1

`

n ě 0, B0 “ 0
˘

(2)
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Third, the removal of false matching points with the modified RANSAC method is realized.
Iteratively, the foreground and background scenes are distinguished and the false matching points
are removed by using a local optimal motion estimation model, along with matched points in the
foreground. The data are thus preprocessed to remove noise, or false matching points.

The Kalman filter is then applied for removal of high-frequency vibration from the trajectory
curves by distinguishing the camera’s intentional motion from vibrations or jitters. The tracking of the
estimated state and the variance or uncertainty is applied by the Kalman filter model [20], as shown in
Figure 4. State variable X̂t

t´1 at time (t´ 1) is estimated by using the Kalman state transition model
φt

t´1 and the filtered result X̂t´1 at time (t´ 1). The observation data Ŷt
t´1 are estimated by using

X̂t
t´1 and the observation model Ct. The error variance forecast Pt

t´1 at time t is defined by using φt
t´1,

the error variance Pt´1 at time (t´ 1) and the process noise covariance matrix Qt´1. At time t, the
Kalman gain Kt is then calculated by Pt

t´1, Ct, and the observation noise covariance matrix Rt. The
error variance Pt at time t is defined by using the unit matrix I, Kt, Ct and Pt

t´1. At time t, the filtered
or expected state X̂t is then updated using X̂t

t´1, Kt, Ŷt
t´1, and the actual observation Yt at time t. The

parameters of each frame in the videos are then recursively calculated.
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Finally, the motion is compensated by using the filtered affine matrices Ân and B̂n at frame n.
The position compensation parameters Ac

n´1 “ Ân´1
`

An´1
˘´ 1 and Bc

n´1 “ ´Ân´1
`

An´1
˘´1 Bn´1 `

B̂n´1 are applied according to Equation (3):

În ppq “ Ac
n´1 In ppq ` Bc

n´1 (3)

where In ppq and În ppq refer to the initial and stabilized nth frames, respectively, and the modified
cascading parameters An´1 and Bn´1 are deduced for smaller accumulated errors by using the
selected reference frame (the first frame in a continuous sequence) instead of the adjacent frame. It
is then refreshed periodically. The current frame is set as the reference frame when the suppression
variabilities in the scenes, e.g., linear correlation coefficients for the trajectory curves (stated in
Section 2.3), are smaller than certain values, i.e., 0.9, for the consideration of the efficiency assessment
of vibration suppression.

2.2. Selection of Feature Point Detection Algorithms

In this section, the SURF algorithm is investigated in sub-pixel space and compared with two
widely used methods, the Scale Invariant Feature Transform (SIFT) [23,24] and Orb [25] algorithms, to
find the best algorithm for fast and accurate feature point detection.

We test the algorithms on a series of different images with a resolution of 640 ˆ 480. For
purposes of accuracy evaluation, 81 extra feature points are placed on the original image in a regular
two-dimensional grid. Pixel intensity is interpolated at sub-pixel accuracies of 0.5, 0.3 and 0.1 pixels.
Three sample images with different features are illustrated in Figure 5, where image (a) has a dark
scene, image (b) has a bright object in the scene, and image (c) has several cars against a clear green
outdoor scene. Results of speed and accuracy tests are listed in Figure 6. The accuracy for feature
point detection is defined as the ratio of the number of detected points to 81; a point is recognized as
being detected when its Euclidean distance, as calculated from the initial position, is smaller than the
sub-pixel accuracy. The speed of point detection is derived from the calculation time for one image,
measured in microseconds (ms). For comparison, we give an example of the outdoor scene results at
0.1 pixels (Figure 7); the other tests have similar results. At the same time, the algorithms are tested
on sample images in the video sequences. Figure 8 shows video frames from the sample sequences
in MATLAB’s image processing toolbox, (a) and (b) are the indoor and outdoor scenes respectively.
Average values of the results of speed and accuracy tests are listed in Figure 9, for ten frames starting
with the presented one in the sequences. The tests also have similar results. The results show that the
SURF algorithm accurately detects the feature points in the sub-pixel space; an improvement in speed
is expected from mapping onto FPGA substrates in future work.
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2.3. Quality Assessment by Using PSNR and Trajectory Tracking

Peak signal to noise ratio (PSNR) and trajectory tracking are applied when assessing the quality
of image stabilization. The PSNR is defined in Equation (4):

PSNR pIm, Inq “ 10log
2552

MSE pIm, Inq
(4)

where Im and In refer to two frames, and MSE pIm, Inq “
1

MN

N
ř

i“1

M
ř

j“1
pIm pi, jq ´ In pi, jqq2 refers to the

mean square error of the two frames, with the values calculated by scanning through one image with
N rows and M columns.

Trajectory curves are described by tracking a point in the image sequence as shown in Figure 10.
The effect of the stabilization is then determined by comparing the values of the correlation coefficients
rXYpC1q and rXYpC2q. The correlation coefficient rXY of two trajectory curves is calculated by
Equation (5), where pX, Yq is the coordinate data of a point on a curve, N is the total number of
points, X and Y are the mean values of X and Y, respectively:

rXY “

N
ř

i“1

`

Xi ´ X
˘ `

Yi ´Y
˘

d

N
ř

i“1

`

Xi ´ X
˘2

d

N
ř

i“1

`

Yi ´Y
˘2

(5)
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are discussed in the accuracy evaluations and performance assessments. Vibration video sequences 
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The curves’ similarity is therefore greater as the coefficient |rXY| approaches 1, and its values
are used in the following section for discussing experimental results quantitatively with a series of
vibration videos of differing predefined amplitudes. Thus, the values of the correlation coefficients are
calculated to adjust the reference frame in dynamic scenes. In our experiments, the threshold values
are set at 0.9 for robust vibration suppression.

3. Experimental Results and Discussion

This section describes the experimental results. All experiments were performed on a PC with a
3.3 GHz CPU and 4.0 GB of memory and the software was written in C++. The size of the experimental
picture was 640 ˆ 480 pixels and the size of the experimental video was 320 ˆ 240 pixels. The process
of the algorithm was applied as shown in Figure 11. Module performance testing made use of video
clips of scenes of prairie and sky and sample videos captured by the in-vehicle camera. Different
kinds of vibration videos captured using the mobile in-vehicle camera are discussed in the accuracy
evaluations and performance assessments. Vibration video sequences of 30 fps are investigated, with
increasing vehicle speeds of 20 km/h, 40 km/h and 60 km/h on stable concrete road, bumpy sand
aggregate road, and soft mud road. The experimental results are provided here for mobile in-vehicle
videos, in which the values of PSNR are used to estimate the quality of the image stabilization.
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3.1. Module Performance Testing

The module performance of the stabilization method are tested here. First, the mismatched point
removal module was verified by using different kinds of video clips. Two consecutive frames in the
sample video clips of the scenes of prairie and sky are shown in Figure 12, where the positions of the
tank and the flight vehicle are changed, respectively. In Figures 13a and 14a, green matching pairs refer
to true matching, and blue pairs on the target refer to false matching on the foreground. As illustrated
in Figures 13b and 14b, local motion vectors between two frames were used to indicate the matching
pairs, as the motion vector for false matching went in a different direction. To quantify the repeatability
of the module, the affine matrices are calculated 10 times, and the results show that stable feature point
matching is achieved. For the prairie video, the value of PSNR increased from 26.76 dB to 29.61 dB.
For the sky video, the value of PSNR increased from 29.20 dB to 32.25 dB. The corresponding relative
increases in the values of PSNR were both 10%.
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Figure 13. Matching pairs (a) and local motion vectors (b) for the tank target. 

Figure 12. Frames in the video clips showing prairie ((a) and (c)) and sky ((b) and (d)).

The Kalman filter is applied to the videos in connection with the modified cascading parameters
by using the selected reference frame proposed in Section 2.1. One sample frame from the original
video captured using an in-vehicle camera in a moving car is shown in Figure 15. The results of two
different algorithm models are compared, depending on whether the modified cascading parameters
were used. Figure 16 shows the x-direction motion values between two frames in the same image
sequences. The models indicate that the trajectory and values of the curves in (a) and (b) varied as
the reference frame changed; the blue line indicates the motion values of the video sequence and the



Sensors 2016, 16, 486 9 of 15

red line is that of the trajectory curve. The values of PSNR for the region of interest in the image, as
indicated by the green box, were evaluated.
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Figure 16. X-direction motion values between two frames in the same image sequence when (a) the
adjacent frame and (b) the selected frame were used as the reference frame.

As shown in Figure 17, modified cascading parameters were a precondition for achieving better
image quality with a larger PSNR, by up to 8.2 dB.
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3.3. Performance Assessment Using a Vibration Video Sequence 

Figure 17. Comparison of PSNR values for the source video, the filtered video, and the filtered video
with modified cascading.

3.2. Accuracy Evaluation with Vibration Videos of Predefined Amplitudes

The accuracy of the image stabilization method is evaluated for the consideration of suppression
variabilities. Four sample frames in vibration videos are shown in Figure 18, which are captured from
a mobile in-vehicle camera. Accuracy is quantitatively calculated with the correlation coefficients, the
image stabilization improving as the coefficient value approaches one. First, the background video
with no vibration is captured. Second, five segments of vibration videos are captured at an amplitude
of 10 Hz, with each gradually increasing as indicated by the parameter P, which is calculated from
the ratio of the maximum vibration amplitude to the diagonal size of the image. Third, the videos are
stabilized with the comprehensive algorithm. Finally, the correlation coefficients rXYpC1q and rXYpC2q
are calculated, as listed in Table 1, which shows that the parameter rXYpC2q has the stable value of
0.9964 for the stabilized video even when the values of P increase to 2.09%. The results also show that
the PSNR values become larger for the stabilized video in comparison to the source videos.
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Table 1. PSNR values and the correlation coefficients for five segments of video.

Segment No. P PSNR of Source
Video/dB

PSNR of Stabilized
Video/dB rXY pC1q rXY pC2q

1 0.52% 22.95 24.38 0.9962 0.9932
2 0.61% 22.08 24.45 0.9900 0.9928
3 1.26% 20.60 24.40 0.9734 0.9911
4 1.40% 20.46 24.45 0.9615 0.9907
5 2.09% 20.40 24.46 0.9626 0.9964

3.3. Performance Assessment Using a Vibration Video Sequence

The comprehensive module of the algorithm is applied in this section, in which rotation and
translation motions were included in the video. The quality of image stabilization is assessed using
the values of PSNR. Consecutive frames were extracted from the original and the resulting stabilized
sequences are shown in Figure 19. As indicated by the red crossed lines, the images in (a) vibrate
violently in the original sequence, whereas the target images in (b) are stabilized in the new sequence.
In Figure 20, the inter-frame difference images (IDIs) between frames are extracted, which shows that
the profile in the stabilized sequences (b) and (d) is clearer than in the original images (a) and (c). The
IDIs also help calculate the vibration amplitude, and the parameter P is 2.04%. Figure 21 shows the
quality of the experimental video as the average values of PSNR become increasingly large. The values
of PSNR for a reference method are also calculated where the Orb module is applied. The average
values of PSNR for the proposed and the reference methods are 28.02 dB and 27.57 dB respectively. The
average processing time for one image in the video clips is about 210 ms with the current experimental
platform, with the SURF algorithm occupying about 88% of the computation time.
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3.4. Performance Assessment Using the Video Sequences with Increasing Vehicle Speed

In this section, the algorithm performance is assessed by using the vibration video sequences at
30 fps, with increasing vehicle speeds of 20 km/h, 40 km/h and 60 km/h. Six sample frames in the
video sequences are shown in Figure 22. The videos were captured from a mobile in-vehicle camera
when the vehicle was on stable concrete road, bumpy sand aggregate road, and soft mud road. The
average processing time for one image in the video clips is about 230 ms in the current experimental
platform. The experimental results proved that the target images were stabilized and the values of
PSNR increased as the vehicle speed increased, as shown in Table 2.

However, the feature points in a single frame could not be distinguished when captured on the
bumpy sand aggregate road and the soft mud road at the speed of 60 km/h. It is expected in future
work that videos captured using a high-speed camera will have better results at 60 km/h or higher.
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Table 2. PSNR values for three road conditions at the speed of 20 km/h, 40 km/h, and 60 km/h.

NO. Vehicle
Speed/km/h Road Condition PSNR of Source

Video/dB
PSNR of Stabilized

Video/dB

1 20
Stable concrete 23.87 30.87
Bumpy sand 23.51 25.83

Soft mud 24.52 26.85

2 40
Stable concrete 23.46 27.28
Bumpy sand 22.45 24.77

Soft mud 24.34 27.32

3 60 Stable concrete 22.10 25.64

4. Conclusions and Future Work

This paper has proposed a comprehensive motion estimation technique for an improved EIS
method that can be applied to a mobile in-vehicle camera. In the image sequences, correct points were
extracted based on SURF and used to solve for the affine parameters. Modified RANSAC was used
to purify the matching points. The Kalman filtering processes were applied to correctly compensate
for motion by using modified cascade parameters. High-frequency vibration in the video sequences
was effectively removed as translation, rotation, and scene scaling were taken into account. The
experimental results show that the target images were stabilized using the proposed image stabilization
algorithm, and the average PSNR values became increasingly large. The algorithm performance was
assessed by using video sequences from the mobile in-vehicle camera, which showed the target
images stabilized as the vehicle speed increased. It is expected that a high-speed camera would
help achieve better results in future work. As the algorithm possesses the inherent characteristic of
structural pipeline models, it can be integrated into FPGA substrates. The high-speed and super-zoom
requirements of the vehicle platform will also be analyzed and integrated in future work.
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