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Abstract: Mobile group consumption refers to consumption by a group of people, such as a couple,
a family, colleagues and friends, based on mobile communications. It differs from consumption
only involving individuals, because of the complex relations among group members. Existing data
collection systems for mobile group consumption are centralized, which has the disadvantages of
being a performance bottleneck, having single-point failure and increasing business and security
risks. Moreover, these data collection systems are based on a synchronized clock, which is often
unrealistic because of hardware constraints, privacy concerns or synchronization cost. In this paper,
we propose the first asynchronous distributed approach to collecting data generated by mobile
group consumption. We formally built a system model thereof based on asynchronous distributed
communication. We then designed a simulation system for the model for which we propose a
three-layer solution framework. After that, we describe how to detect the causality relation of
two/three gathering events that happened in the system based on the collected data. Various
definitions of causality relations based on asynchronous distributed communication are supported.
Extensive simulation results show that the proposed approach is effective for data collection relating
to mobile group consumption.

Keywords: asynchronous; distributed; data collection; mobile group consumption

1. Introduction

Group consumption refers to consumption by a group of people; for example, a couple having
dinner at a restaurant, two friends watching a film at the cinema or a girl, accompanied by two
of her colleagues, going shopping to buy a skirt. The people in the group usually have certain
relations, and the opinion of any person in the group may affect the choice of goods or services
being consumed. This kind of consumption differs from consumption that only involves individuals,
because the consumption decision results from interaction and negotiation among group members.
Group consumption is not uncommon in our daily lives. In fact, when people are in public places,
70% of their time is spent in the company of other persons [1]. In many cases, they participate in
group consumption.

In recent years, a growing number of people have been using mobile phones to scan, search and
receive information from retailers and to order various services and goods. According to a survey by
the InMobi Insights Team, about 46% of people have made purchases using their mobile devices, and
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80% of people plan to do so in the next 12 months [2]. We refer to group consumption based on mobile
devices as mobile group consumption. An example thereof can be seen in Figure 1. Having observed this
trend, many companies increasingly invest in marketing efforts to promote consumption based on
mobile devices. In 2014, 32.7 billion U.S. dollars were spent globally on mobile advertisements, which
is about one fourth of the total network advertisements [3]. However, current mobile advertising does
not sufficiently consider the role of group characteristics in consumption.
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Figure 1. An illustration of mobile group consumption. Several people wander around a shopping
mall with different regions. Each person is denoted by a node, and those belonging to groups have
the same shape, except for the circle. The circle nodes denote the people who do not belong to groups
(i.e., individuals). The picture on the left is a snapshot of people at timestamp 1, and the picture on
the right is a snapshot of people at timestamp ¢, after f;.

The analysis of mobile group consumption first requires an effective data collection system to be
built. Typical data that need to be collected include the trajectories and actions of group members for a
specified time interval. Various technologies can be used to achieve this purpose. For example, WiFi
signals transmitted from access points to consumers’ mobile phones can be collected. The RFID tags
attached to mobile phones could also be read for analysis.

Existing data collection systems [4-6] that can be used for mobile group consumption are based
on centralized processing. A central server is needed to gather information from consumers. These
systems encounter the following challenges: (1) in many scenarios, it is difficult to find a server that
is appropriately powerful; (2) even if there is a suitable server available, it presents a single point of
failure, a computational bottleneck, especially in the scenarios including a large number of shops and
consumers and performing complex data processing after data collection; (3) the users may not be
willing to share their data with a central server due to security or business concerns. Moreover, existing
work assumes the existence of a synchronized clock, which incurs high overhead when there is a large
number of constantly-moving consumers. Sometimes, synchronization is even impossible because of
device hardware constraints or people’s privacy concerns. A new approach is highly demanded to
solve the aforementioned problems.

In this paper, we present an asynchronous distributed data collection approach designed to
analyze mobile group consumption. Our approach does not rely on a central server or synchronized
clock; instead, it relies on distributed and asynchronous message communications. We first built the
system model for asynchronous distributed data collection. Based thereon, we designed a simulation
system. Then, we proposed a three-layer solution for generic distributed processing, including the
processing for local sub-regions, consecutive sub-regions and multiple sub-regions. We subsequently
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developed our proposed approach to detect the causality of two specified marketing activities of group
consumption. Extensive simulations were carried out to evaluate our approach. The results showed
that the approach can effectively support data collection of mobile group consumption. In summary,
this paper makes the following contributions:

e  We build the system model of mobile group consumption based on asynchronous message
passing, i.e., it is not based on a centralized server or synchronized clock. We also describe the
simulation system developed based on this model.

o  We propose a three-layer mechanism to collect data for mobile group consumption in an
asynchronous distributed way. The data collection is firstly handled locally and then coordinated
in convective or more regions if the data collection spans a wide area.

o  We conduct extensive simulations to validate the proposed approach. The results show that the
proposed algorithm is quite effective.

The remainder of the paper is organized as follows: Section 2 presents the system model of
asynchronous distributed data collection that we built for mobile group consumption. Section 3
explains the simulation system based thereon. The detailed data collection solution is described in
Section 4. The simulation results are reported in Section 5. Section 6 reviews related work, and Section 7
concludes the paper.

This paper is based on our previous conference paper [7] published in Proceedings of the
International Conference on Identification, Information & Knowledge in the Internet of Things (IIKI)
2015. In this version, we add the design of our simulation system, extend the approach to support
more complex temporal relations for causality detection, support the message passing with arbitrary
speed and also provide more analytical details and simulation results.

2. System Model

We assume that mobile group consumption happens in a place (e.g., a shopping mall) where shops
broadcast promotion information from time to time. Groups of shoppers wander around and may be
attracted by one or more promotions. Each group includes one or more members. Each promotion is
assumed to last for a certain period of time. People can only receive information about promotions
from a shop if they are located in a specified area of the shop, referred to as the affecting area. If N
persons are gathered in a shop during its promotion time, we refer to this as a gathering event. Each
gathering event exists in a time interval, which is delimited by the start time of the gathering event
(the number of gathered people exceeds N for the first time) and the end time of the gathering event
(the number of gathered people is less than N for the first time). There is a sensing system to collect
and analyze the behavior of customers during mobile group consumption. Our system does not have
a central server.

Temporal relations in this system can either be based on a physical clock or a logical clock. For
the physical clock, all of the clocks in different devices are synchronized in appropriate ways. The
temporal sequence of events can be determined by measuring the timestamps of the synchronized
clocks. The logical clock does not depend on a synchronized clock in the system. In this case, the
sequence of events can only be determined by the exchange of messages among devices or timestamps
in the same device [8]. Figure 2 shows the differences between temporal relations based on the physical
clock and the logical clock, where P; and P, are devices and el,e2... are events that happened in the
corresponding devices. According to the physical clock, the sequence of ¢ and ¢’ can be directly
determined by their timestamps. However, according to the logical clock, except for the sequence of
events that, in the same devices (e.g., e! and e?), can be determined by their timestamps, the sequence
of events can only be determined by message passing. Since there is a message from e! of P; to e® of
P,, it can be concluded that e! happens before ¢°. Similarly, ¢® happens before 2. If message passing
among devices has a finite and arbitrary time delay, we refer to it as asynchronous communication.
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Figure 2. Temporal relations based on different kinds of clocks. P; and P, are devices, each of which is

represented by a time axis oriented from the left to right. ¢!, ¢?

... are events that happened in devices at
different timestamps. An arrow from one event to another represents a message transfer. According to
the physical clock, the sequence of events can be directly determined by their timestamps (e.g., e3 is
before e7). According to the logical clock, the sequence of events is determined by message passing

(e.g., e is before e5) or local timestamps (e.g., e1 is before ey).

Let us define the temporal relations under asynchronous communications more formally. Suppose
that there are n devices P; (i = 1...n) and that each device P; records its alternate states and events
s?, e?, s}, el-l, .y eﬁ, sé [9], where sf denotes the k-th state and ef»‘ denotes the k-th event that changes the
local state from sffl to si-‘, at the device P;.

We refer to this state as s, happens before state sy, denoted by s, — sy, if:

(1) s, is a state before s, in the same device;

(2) the event immediately after state s, sends a message and the event immediately before state s;,
receives that message;

(3) thereis a state s, such that s, — s. and s, — s, [10].

If 5, does not happen before s, and s;, does not happen before s,, we say that s, is concurrent with
sp, denoted by s, || sp.

3. Simulation System

In order to investigate the problem efficiently, we developed a simulation system named the Group
Consumption Simulation system (GCS). The top-level architecture of this system can be seen in Figure 3.
This system includes four modules: the execution engine, the entity module, the communication
module and the post-processing module.

At the core of the system, the execution engine controls the whole simulation process and triggers
the execution of other modules. The execution engine configures the simulation environment based on
the entity module, performs the simulation based on the communication module and finally conducts
the analysis and displays the graphics based on the post-processing module.

The entity module includes three major models: the scene model, the consumer model and the
shop model. The scene model defines the area of the shopping mall, the layout of shops in the mall,
the composition of each group and the initial location and moving direction of each person. The
consumer model defines the role of each member in a group (e.g., group leader, normal member), the
actions in reaction to a promotion and the motion patterns in the shopping mall in terms of groups and
individuals. It is noted that the motion patterns in open spaces differ from those after being attracted
to a shop. Finally, the shop model defines the promotion time, promotion duration and promotion
frequency of each shop.

The communication module includes both an asynchronous communication model and a
synchronous communication model, which are based on message passing and the global clock,
respectively. The asynchronous communication model follows our specification in Section 2, which is
the major concern of this paper. The synchronous communication model assumes that each entity has
a synchronized clock and can be used as the ground truth for comparison with message passing.
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Figure 3. The architecture of the simulation system for mobile group consumption. The
solid arrows represent data flows. The dashed arrows represent the influence between
two models.

The post-processing module includes the task analysis module and the graphic display module.
The task analysis module allows users to define their tasks of interest; for example, the causality of
different promotions, the impact of a promotion in an area, etc. The graphic display module is used to
display the results of the analysis graphically.

It is noted that some models may affect each other. These influences are indicated using dashed
lines in Figure 3. Consumers’ motions may affect the promotion strategy of a shop, and the promotion
strategy of a shop may also affect consumers’ motions. Therefore, there are bidirectional dashed lines
between the consumer model and the shop model. The shop model may also be affected by the results
of the task analysis module. In the case of the asynchronous communication model, the parameters of
message passing may be affected by consumers’ motions, on the one hand, and affect the results of the
task analysis module, on the other. The impact of different models is left for future work and is not
implemented in the current system.

4. Data Collection Approach

In this section, we present the algorithms that are used to collect data for group consumption in
an asynchronous distributed way.

4.1. Distributed Data Collection

We propose a three-layer solution for distributed data collection of mobile group consumption.
The whole target region is split into several sub-regions. As shown in Figure 4, the first layer processes
data collection in a sub-region; the second layer processes that in adjacent sub-regions; and the third
layer processes that across multiple sub-regions or even across the entire region. Most of the data
collection requirements can be processed locally in the first layer. However, local processing is not
necessarily optimal or correct. For example, users may need to collect data in a 10-m? area centered at
A. Local processing is acceptable when A is located within a sub-region, because the considered area is
included in the sub-region, whereas it may be incorrect when A is near the boundaries of a sub-region,
because the considered area may span two or more adjacent sub-regions. The second layer can be used
to coordinate data from adjacent regions. Other data collection requirements that involve multiple
sub-regions can be coordinated in the third layer.
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Figure 4. A three-layer distributed data collection framework.

4.2. Asynchronous Distributed Data Collection

We further propose the Asynchronous Distributed Data Collection Approach (ADDC), which can
determine the order of different events based on asynchronous communications. We do not assume a
central server or synchronized clock in the system. The order in which all events occur is determined
by messages exchanged among devices. More specifically, the order is based on vector clocks [11]
maintained in the system.

We explain the approach using a typical example from mobile group consumption, the analysis of
causality relations. It is briefly described as follows: A promotion offered by a shop is regarded to be
effective if a gathering event happens. Two gathering events are considered to have a causality relation
if they have temporal sequences (e.g., one gathering event happens before another). In this section, we
identify all such pairs of gathering events.

E1
Sl a)E?(start-start)
N E2
E1
\
& E2 b)E(end-start)
L
TS~ s c)E’(start-start & end-end)

Figure 5. Causality detection based on three different definitions. Each event is presented by a segment.
The message passing is presented by a dashed arrow from the sender to the receiver.

In a classical system with synchronized clocks, a causality relation can be detected based on
the value of the clocks directly, whereas in an asynchronous distributed system, such clocks are not
available. Therefore, we need to utilize message passing to detect the causality relation, which can be
based on different definitions. We describe the most common ones in Figure 5. In the first case, the
causality is based on the start time of the first gathering event and the start time of the second gathering
event. We refer to it as E2(start — start), where 2 refers to the two events considered and start-start
refers to the delimitation time of two gathering events. In the second case, the causality is based on the
end time of the first gathering event and the start time of the second gathering event. We refer to it as
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E?(end — start). In the third case, the situation is more complex. The causality is based on the fact that
the start time of the first gathering event happens before the start time of the second gathering event,
and the end time of the first gathering event happens before the end time of the second gathering
event. We refer to it as E?(start — start & end — end). The dashed lines in Figure 5 denote the message
passing between the two events, hence their “happen before” relation. Our algorithm can support
these three definitions.

Table 1. Notations in the algorithms.

Variable Name Description

shopID ID of a shop
PROMOTION(shopID)  promotion information broadcast by shopID

accepted the variable denoting whether a consumer accepts a promotion
location current location of a consumer
initiator the first shop sending the message
sender the previous shop sending the message
eventID ID of an event
depth the depth of sender in the routing tree
recClock the vector clock attached to a message
clock the vector clock maintained by a consumer or a shop
cardinality the number of consumers in a shop
persons a collection recording detailed consumer IDs in a shop
personlD ID of a consumer
increaselD a function to generate the ID of a new event
gatherThreshold the threshold of gathered consumers to denote the occurrence of a gathering event
detFlag the type of causality relation to be detected
eventList a list of events received by the current shop
oriStart[eventID] the initiator of eventID after it starts, as the current shop knows
oriEnd[eventID] the initiator of eventID after it ends, as the current shop knows
SS[prelD] a flag recording the detection result of the first part of SSEE (E?(start — start & end — end))

parent the parent of the current shop in the routing tree

children the children of the current shop in the routing tree
depthleventID] the parent of the current shop in the routing tree regarding eventID
MSG_NTER(A) a message denoting that A enters the current shop
MSG_OUT(A) a message denoting that A exits the current shop
START a message denoting the start of a gathering event

END a message denoting the end of a gathering event
SUCCESS a message denoting a successful detection of a causality relation
REVERSE a message to notify the reverse of the routing tree
E the specification of an event that needs to be detected
coordinator[E] denotes whether the current node is the coordinator of E

Our approach specifies the actions of two kinds of entities in the system: consumers and
shops. The actions of consumers are specified in Algorithm 1. The actions of shops are specified in
Algorithms 2 and 3. Subsequently, Algorithm 4 specifies the coordination of the processing occurring
in the sub-regions to handle a user’s detection requirement. The notations used in the algorithms are
summarized in Table 1. We illustrate the functions performed by each of the algorithms as follows.

Algorithm 1 specifies the actions that are performed by consumers. The first action triggers the
detection of events related to causality relations. When consumers are in the affecting area of a shop
and the shop is broadcasting promotion information at that moment, the consumers can decide, by
themselves or by consulting within the group, whether to enter the shop to obtain more details (Line 1).
If the consumers decide to accept the promotion and enter the shop (Line 2), their smart mobile devices
update their locations to the shop (Line 3) and send messages to the shop they have entered to notify
them of this action (Line 4). Similarly, when the consumers leave the scope of the shop (Line 6), their
corresponding smart mobile devices update the locations and notify the shop (Lines 7,8). The enter
message and exit message can trigger the shop to detect the start time and the end time of gathering



Sensors 2016, 16, 482 8 of 22

events. The other action performed by consumers is message relay, which is to forward the start
message or end message of gathering events from the initiator to others to build the “happen before”
relations. The order in which different events occur is based on vector clocks used in the asynchronous
system. Thus, the vector clocks in the devices are firstly updated (Lines 10,11) before corresponding
messages are sent to the neighboring shops or people (Line 12).

Algorithm 1: Asynchronous Distributed Data Collection Approach (Consumer)
When PROMOTION(shopID) is received do
if accepted then
location = shoplD
send MSG_ENTER(ID) to shopID
5 end

B W N e

6 When leaves the scope of shopID do
7 location = null
8 send MSG_OUT(ID) to shopID

9 When START (initiator, sender, eventID, depth, recClock) or
END(initiator, sender, eventID, depth, recClock) is received do
10 clock[ID]=clock[ID]+1
11 clock[1..n]=max(clock[1..n], recClock[1..n])
12 send corresponding START (initiator, sender, eventID, depth, clock) or END(initiator, sender,
eventID depth, clock) to neighboring shops or people

Algorithms 2 and 3 specify the actions performed by shops (we split the process into two
algorithms because of page size constraints). They include the detection of the start time and end time
of gathering events, the detection of causality relations based on different definitions and the building
of a routing tree whose root can finally store detection results.

We illustrate the details as follows. When an enter message is received from a consumer (Line 1),
the recorded number of consumers in the shop and the detailed IDs of the consumers are updated
firstly (Lines 2,3). If the recorded number of consumers is greater than the threshold gatherThrehold, a
new gathering event is detected (Line 4). The local clock is increased by one (Line 5), and the function
increaselD is invoked to generate the event ID (Line 6). The new event ID is a string including the ID of
the shop and also a local event sequence ID (e.g., shopl_event6). It is used to distinguish different
events generated by shops. After that, a relay message is sent to people within and around the shop
(Line 7). These people move around and/or send the information to their neighbors; hence, the
“happen before” relation is built.

When a new gathering event is found, the algorithm further detects the causality relation.
We use SS to denote E2(start — start), ES to denote EZ(end — start) and SSEE to denote
E?(start — start & end — end). If the current detection is based on SS, the start time of a previous
gathering event (recorded in oriStart[preEventID]) leads to a successful detection (Lines 9,10). Similarly,
the detection based on ES can be seen in Lines 11,12. If the detection is based on SSEE, only the first
part can be complete; the start time of the first gathering event happens before the start time of the
second gathering event. The result is recorded for further processing (Lines 13,14).

Similarly, when an exit message of a consumer is received (Line 18), the recorded number of
consumers in the shop and the detailed IDs of the consumers are updated (Lines 19-20). If the recorded
number of consumers is less than gatherThrehold, the end time of the existing gathering event is detected
(Line 21). The vector clock is updated locally (Line 22), and a message is sent to people within and
around the shop (Line 23). The causality detection based on SSEE can be completed here by checking
the second part; the end time of the first gathering event happens before the end time of the second
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gathering event. If it holds, the whole causality relation is detected, and a successful message is sent
out (Lines 24-27).

Algorithm 2: Asynchronous Distributed Data Collection Approach (Shop).

O 0 NS U kR WN =

A < e
A W N = o

15

16

17

When MSG_ENTER(personlD) is received do
cardinality = cardinality + 1

persons = persons |J {personID}

if cardinality > gatherThreshold then

clock[ID]=clock[ID]+1
eventlD=increaselD(eventID)
broadcast START(ID,ID,eventID,1,clock)
foreach prelD € eventList do
if detFlag="SS" and oriStart[prelD] # null then
‘ send SUCCESS(prelD, eventID, clock, “SS”) to parent
else if detFlag="ES” and oriEnd[prelD] # null then
‘ send SUCCESS(prelD, eventID, clock, “ES”) to parent
else if detFlag="SSEE" and oriStart[prelD] # null then
‘ SS[prelD]=true
end
endfch

end

When MSG_OUT(personID) is received do
cardinality = cardinality - 1

persons = persons — {personlD}

if cardinality < gatherThrehold then

clock[ID]=clock[ID]+1
broadcast END(ID,ID,eventID,1,clock)
foreach prelD € eventList do
if detFlag="SSEE" and SS[prelD] and oriEnd[prelD] # null then
send SUCCESS(prelD, eventID, clock, “SSEE") to parent
end
endfch

end

When the messages START and END are received via forwarding by consumers, the shop records

the initiator of the message and the event ID (Lines 32,33,44,45). Since the consumers are moving
all of the time, we build a routing tree based on fixed shops for message exchange. The detection
results of a causality relation are transmitted along the routing tree. This routing tree is built as
follows: when a relay message is received for the first time, the shop sets its parent in the routing
tree as the sending node (Lines 34,35,46,47). The depth of the node in the tree is also updated
(Lines 36,48). In order to achieve a routing tree of small depth, we design a depth-adaptive routing tree.
When the depth of the routing tree exceeds a threshold depthThreshold, the current shop automatically
becomes the root, and a reverse message is sent to its previous ancestors (Lines 37-39, 49-51). When
the reverse information is received by a shop, it updates its parent to the sender of the message and
further forwards the message to its antecessors (Lines 54-57). The clock operations when receiving the
messages START and END are similar to those in Lines 10,11 of Algorithm 1 and are omitted here.
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Algorithm 3: Asynchronous Distributed Data Collection Approach (shop) (cont.).

30 When START (initiator, sender, eventID, depth,clock) is received do
31 if oriStart[eventID]=null then

32 | oriStart[eventID| = initiator

33 | eventList = eventList|J{eventID}

34 if parent=null then

35 parent = sender

36 depthleventID] = depth+1

37 if depthleventID] > depthThreshold then
38 ‘ send REVERSE(ID) to sender

39 end

40 end

41 end

42 When END(initiator, sender, eventID, depth, clock) is received do
43 if oriEnd[eventID]=null then

44 | oriEnd|eventID] = initiator

45 | eventList = eventList|J{eventID}

46 if parent=null then

47 parent = sender

48 depthleventID] = depth+1

49 if depthleventID] > depthThreshold then
50 | send REVERSE(ID) to sender

51 end

52 end

53 end

54 When REVERSE(sender) is received do
55 previousParent = parent

56 parent = sender

57 send REVERSE(ID) to previousParent

Finally, Algorithm 4 illustrates the coordination of the processing of the users” detection
requirements by sub-regions. Usually, a user’s detection requirement involves several sub-regions.
We first calculate such sub-regions and include them in a set S (Line 2). The event to be detected
and the calculated sub-regions are sent to the children nodes of the requesting node in the routing
tree (Line 3). The message is forwarded in the tree, and each forwarding node waits for the results
of its children (Lines 8-10). When a node belonging to a needed sub-region is detected for the first
time, the node changes its flag coordinator (with regards to the current event) to true, which marks it
the coordinator of its sub-region (Lines 5-7). If a leaf node in the routing tree is detected to belong
to S, related events and the node ID are recorded (Lines 12,13) and sent to the leaf node’s parent
(Line 14). Once the results of all children have been received, the node forwards the results to its parent
(Line 23), after collecting local events and the node ID if it is determined as being in S (Lines 18-21).
If the node is a coordinator (coordinator[ E]=true), it compares the accumulated area to S. When more
detection is needed, the coordinator forwards the result to its neighboring sub-regions to generate the
final results (Lines 24-26).
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Algorithm 4: Multiple sub-Region Coordination Algorithm for Causality Analysis.

1 When event specification E is received from the user do
2 calculate the related sub-regions and include them in S
send (E,S) to children

W

When (E,S) is received from other nodes do

if node € S and parent.coordinator[E] = null then
‘ coordinator[E] = true

end

if children # null then

send (E,S) to children

10 wait for the results from children

© 0 N U e

11 else if node € S then

12 collect events for E and include them in events
13 area=ID

14 send (events, area) to parent

15 end

16 When (events, area) are received from all the children do
17 if coordinator[E] = false then
18 if node € S then

19 collect events for E and include them in levents
20 area=area U {ID}

21 events=events U levents

22 end

23 send (events, area) to parent

24 else if area < S then

25 ‘ forward the result to neighboring sub-regions
26 end

4.3. Complexity of the Algorithms

Let us discuss the complexity of the algorithms. Suppose a shop broadcasts promotion
information, and several persons are attracted to the shop. Each such person needs to send a
MSG_ENTER message and a MSG_EXIT message to the shop. During the promotion, each person
forwards one or more START and END messages to others. The number of messages forwarded
depends on the relative location of the person to others. When the person moves to other shops,
he or she may forward the START and END messages to those shops. Considering that there are
multiple shops in a shopping mall (so multiple events), each person may forward more START and
END messages received from other shops, where the number of messages depends on the frequency of
these shops’ promotions and the relative locations of the persons to these shops. During the promotion,
the shop broadcasts a START message and an END message to the people within or around it. When a
shop receives the START or END message from others, it builds a routing tree first and detects causality
relations. The time complexity of routing tree building and causality detection is O(r1), where 1 is the
number of shops. Several REVERSE messages may also be sent to optimize the routing tree. Each
REVERSE message affects all of the shops from the current shop to the root. This needs O(d) messages,
where d is the depth of the routing tree. Besides the process above, we also need to transmit the event
specification from the root to specific shops and to forward the results to neighboring sub-regions. The
former needs O(d) messages, and the number of messages of the latter depends on the events to be
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detected. The energy consumption of shops in this problem is not a concern, and that of consumers
can be calculated based on the number of messages sent out.

It is noted that the exact computational complexity of the algorithms depends on many factors,
including the frequency of shops’ promotions, the number and layout of shops in the shopping mall,
the number of people and their groups, the motion of people and the relations of people in a group. It
is difficult to analyze this in a general case. The improvement for the complexity of the algorithms
with multiple events and groups is left as future work.

4.4, Discussion

In this section, we discuss several issues related to asynchronous distributed data collection.

First, Algorithm 2 works under a moderate speed of message passing. We use an example
to explain this. Suppose that Gathering Event A of Shop X happens before Gathering Event B of
Shop Y in the real world, and we want to detect their causality relation based on asynchronous
communications. The START message of A needs to reach Y before B happens, if the detection
is based on SS, then the causality relation can be detected. Since the message passing among
shops and consumers is uncertain under asynchronous communications, this assumption cannot
be guaranteed in some cases. This means that Y may receive the START message of A (say M) after
the START message of B (say N), in spite of M happening before N. We addressed this problem by
revising the algorithm to invoke the detection logic (Lines 9-15, 25-27) once each message is received.
The event order is determined based on the vector clocks of preID and the current event, besides
oriStart[prelD] # null.

The second concern is complex temporal relations based on asynchronous communications.
ADDC detects causality relations according to the temporal relations based on time points. More
complex temporal relations can be based on time intervals. There are 29 kinds of relations between
two time intervals under the dense time mode and 40 kinds of relations under the non-dense time
mode [8,12]. Moreover, the temporal relations under asynchronous communications often cannot be
determined with certainty. This problem can be overcome by using occurrence probability [13] to
specify the probability that a relation holds.

Finally, it is noted that the causality analysis in this paper is based on logical temporal relations
under asynchronous communications. This is a little different from the temporal relations based
on physical time that can specify a time duration between two gathering events. Such a quantity
measurement is difficult to perform in the logical time, because a synchronized clock is not available. If
the exchange of messages among devices is sufficiently frequent, we can use the number of messages
from one event to another event to estimate the time duration between them. However, the effectiveness
of such a solution would vary depending on the message passing scenario.

5. Performance Evaluation

We conducted simulations to validate the effectiveness of our proposed ADDC approach
by comparing the results obtained with ADDC with those measured using the physical clock.
The detection of causality relations among two/three gathering events is used as the comparison
example. The number of event patterns satisfying the causality relation among two and three gathering
events is denoted by E% and EJ, respectively. For detection under the physical clock, we specify
the duration between two gathering events T to be 500 s. For detection using ADDC, we need
two gathering events to have the “happen before” relation (T is of no use in this detection). The time
duration of E% is measured from the start time of the first gathering event to the start time of the
second gathering event, and that of E3. is measured from the end time of the first gathering event to
the start time of the second gathering event.
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5.1. Simulation Setup

In the following several sub-sections, we simulate a shopping mall of 10 m x 10 m containing
12 shops and with several groups of people wandering around. In each second, each shop begins
a promotion with a probability p, = 0.00307 to attract people, and this lasts for a duration s. The
promotion can attract people from within a distance of d < 15 m. When there is a promotion, the
group can be attracted with a specified probability of p,;, = 0.49. We vary different parameters in the
simulations to check the performance of our approach. The simulation was repeated 30 times to obtain
each data point in Figures 6-14.

5.2. The Number of Event Patterns Detected

We first vary the number of groups in the shopping mall to check the detected event pattern of E
and E3. The result is shown in Figure 6. It shows that the number of EZ and E3 increases when the
number of groups increases. When the number of groups is 75, the number of E2 and E3. detected by
both ADDC and the physical clock is small, less than seven. The number of E2 detected by ADDC is
increased to around 40 when the number of groups reaches 225. The number of E3. detected by ADDC
is also increased when the number of groups increases, but at a higher rate. Its number is smaller
than that of E2 when there are fewer than 150 groups. This is because the constraint of E3 is more
strict than that of E2. Moreover, its number becomes larger than that of E%; the number of groups
exceeds 150. This is because the combination of E3. is larger than E2 when the number of gathering
events is large. The trend of the results obtained using ADDC is similar to that under the physical
clock. However, the values obtained with ADDC are larger than those obtained under the physical
clock, since we only specify the “happen before” constraint, whereas detection under the physical
clock needs a gap of 500 s. When the gap is decreased, the difference between the two approaches
becomes progressively smaller.

50 T T
2
45| —p— ADDC ET
3
40} | —&—ADDC EZ

35} | =—B— physical clock E?

: 3
30} | —@— physical clock E;

25F

20r
15¢
101

the number of event patterns

50 100 150 200 250
the number of groups

Figure 6. The number of event patterns vs. the number of groups.

We then change the duration of a promotion from 500 to 1100 s, and the result is shown in Figure 7.
The number of E% and E3 detected by ADDC is quite similar in this case, since we only use the start
time of each event to determine the “happen before” relation; such a relation is not sensitive to the
duration of promotion activities. In contrast, the results obtained under the physical clock are more
related to the duration of the promotion activity with regard to E3, which is determined by the end
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time of the first event to the start time of the following event. The results of ADDC are larger than
those under the physical clock, since its constraint is less strict.

35

—p— ADDC EZ
30| —e—ADDC E?

VvV

25| —B— physical clock Ei

- 3
—O— physical clock E;

20

15

the number of event patterns

5 600 700 800 900 1000 1100
the duration of a promotion (second)

Figure 7. The number of event patterns vs. the duration of a promotion.

We subsequently change the affecting distance of marking activity from eight to 22, and the result
is shown in Figure 8. It is shown that the increase in distance leads to an increase in the number of E2
and E3. The number of E3. increases faster than that of EZ. The result of ADDC is similar to that under
the physical clock, but with larger values. The result is consistent with those obtained for different
numbers of groups and different durations of activities.
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- 3
—&— physical clock E

40}

301

201

10F

the number of event patterns

12 14 16 18 20 22
the affecting distance (m)

Figure 8. The number of event patterns vs. affecting distance.

Finally, as shown in Figure 9, we change the interval between two promotions to check the number
of event patterns. It can be seen that when this interval increases, the number of event patterns detected
by both ADDC and the physical clock decreases. This is because the increased interval reduces the
number of gathering events; hence, the number of event patterns decreases. The number of event
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patterns detected by ADDC is larger than that detected by the physical clock, which is consistent with
previous results.

60 T T T T T T

—p— ADDC EZ
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the number of event patterns

0 1 1 1 1
50 60 70 80 90 100 110 120
the interval between two promotions (second)

Figure 9. The number of event patterns vs. the interval between two promotions.

5.3. The Comparison under Different Causality Definitions

We then compare the causality relations detected by ADDC and the physical clock based on
different definitions. In each simulation, we consider multiple definitions, including E% (start — start),
E%(end — start) and E3 (start — start & end — end). By default, T is set to 500 for the physical clock and
is not used in ADDC. The detailed descriptions of these definitions are presented in Section 4.2 and
Figure 5. The result of the comparison can be seen in Figures 10-12.

As shown in Figure 10, the number of event patterns detected under different definitions all
increase with the number of groups, but show different features. The number of event patterns
under E2(start — start) is larger than that under EZ(end — start). This is because the constraint of
EZ(end — start) is stricter than EZ (start — start). If an event pattern satisfies EZ(end — start), it also
satisfies EZ (start — start). However, it does not always hold in the reverseway. Similarly, the number of
event patterns under E2(end — start) is larger than that under EZ (start — start & end — end). Although
the constraint of E2(end — start) does not seem to be related to E(start — start & end — end), the latter
has more constraint sub-expressions; hence, it is generally more strict. According to the figure, the
results with the above constraints have a similar value when the number of groups is 75, and the gap
between them is increased when the number of groups is increased.

It can also be seen that the event patterns detected by ADDC are larger than those obtained
under the physical clock, using the same definition. This is because the specification of T increases the
strictness of the detection under the physical clock, whereas the detection by ADDC does not have
such a restriction.

We then fix the number of groups at 150 and change Tto check the result. The result can be
seen in Figure 11. The number of event patterns detected by ADDC under all of the definitions is
constant. This is in line with the fact that ADDC is based on message passing rather than on the
physical clock; hence, the results are not related to T. The number of of event patterns detected under
the physical clock increases when Tincreases. This is because a larger value of T relaxes the constraints
of a causality relation. When T increases, the gap between the values obtained by ADDC and the
physical clock is reduced, because the constraint is relaxed. The difference between the event patterns
detected by E2(start — start) and those detected by EZ (end — start) is stable under ADDC or physical
time. This also holds for other definitions of causality relations.
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After that, we further check the result for different affecting distances. The result can be seen
in Figure 12. According to the figure, the number of event patterns detected by both ADDC and
under the physical clock increases when the affecting distance increases. This is because a larger
affecting distance enables more consumers to receive promotion information and to engage in more
gathering events. The number of event patterns detected by ADDC is larger than that under the
physical clock using the same definition of the causality relation. The differences among definitions
of causality relations are similar to those of previous results. The number of event patterns based
on E2(start — start) has the largest value, whereas that based on E2 (start — start & end — end) has the

smallest value.
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Figure 12. The number of event patterns vs. affecting distance.

5.4. Common Event Patterns and the Number of Messages Passed

We further investigate the number of common event patterns detected by ADDC and the physical
clock. The result is shown in Figures 13 and 14. As shown in Figure 13, the number of event patterns
common to the two approaches increases when the number of groups increases. There are several
reasons for the difference. First, the gap between two events under the physical time cannot be
described accurately using message passing; hence, some event patterns can be detected by ADDC,
but not under the physical clock. Second, the delay resulting from message passing prevents some
event patterns from being detected by ADDC, but not under the physical clock.

9 T : , .
—P— The number of common event patterns
8| —©— The max number of messages between two events

!

the number of event patterns/
messages between two events

o

0 100 150 200 250
the number of groups

Figure 13. The number of common event patterns/the max number of messages between two events
vs. the number of groups.
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Figure 14. The number of common event patterns/the max number of messages between two events
vs. the affecting distance.

Figure 13 also shows the maximum number of messages when detecting EZ, which increases at a
constant rate when there are fewer than 175 groups, but stabilizes beyond 175. This shows that in the
latter case, the number of groups is sufficiently large and has little effect on the detection.

Figure 14 shows the common events and the maximum number of messages between two
events when adjusting the affecting distance. The results are similar to those in Figure 13. When
the affecting distance increases, the number of common events increases, and the maximum
number of messages between two events also increases. This is consistent with the uncertainty of
asynchronous communications.

6. Related Work

To the best of our knowledge, we are the first to investigate group characteristics in relation
to consumption and to use the term group consumption. However, related research pertaining to
mobile commerce (or mobile purchases) in different fields, including business management, marketing,
psychology and computer science, has been reported.

The work from fields other than computer science focuses on finding out the relations between
marketing strategies and purchases based on mobile devices. In [14], Molitor ef al. found that
geographical distance is an important factor affecting the behavior of consumers when they use mobile
devices. After receiving coupons via mobile devices in a pull way, consumers are more likely to
choose a coupon from neighboring shops. In [15], Luo et al. investigated how both the promotion
time and geographical distance affect the purchase. They found that: for consumers located near
the promotion venue, it is more effective to send the promotion information on the promotion day
rather than in advance, whereas for consumers far from the promotion venue, it is more effective
to send the promotion information on the day before the promotion rather than on the same day
or two days in advance. In [16], Andrews et al. investigated how crowdedness in a space affects
advertising via mobile devices. They found that a crowded environment (e.g., the subway during
rush hours) led to more successful advertisements, which they explained in terms of the constraint
of physical places increasing people’s interest in advertisements. In [17], Molitor et al. investigated
how the weather affects people’s tendency to accept coupons sent from mobile applications. In [18],
Harmon ef al. studied the privacy issues of marketing activities based on mobile devices. None of
these researchers considered how the relations in a group affect the purchases. In [19], Fisher pointed
out that individuals may perform group-derived behavior that is mandated because they are part of a
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social role the individual has accepted and not necessarily because they are intrinsically satisfying.
For example, as one of the fans of a sports team, they may buy gate ticketsand team-licensed products.
The behavior can be affected by the attractiveness of the group and the similarity between group
members. However, this research is not specific to mobile group consumption.

The field of computer science has seen the publication of many papers concerning mining the
rules of mobile users and predicting a user’s location or path. Tseng and Tsui mined the associated
rules between the movement of people and the services they requested in different locations [20].
They took into account the multilevel properties of locations and services. In [21], Tseng and Lin
proposed an approach named SMAP-Mine to discover patterns in users’ mobile access that contain both
movement and service requests. SMAP-Tree was subsequently used to organize the data efficiently.
Yun and Chen mined sequential patterns in a mobile commerce environment [22]. They utilized
the relationship between the movement and the purchases made by users to detect patterns. The
evaluation showed that the results produced by using this approach were more accurate compared to
when using only movement or purchase data. In [23], Hadjiefthymiades and Merakos used a linear
reward-penalty reinforcement learning method for location prediction. This approach needs many
possible transitions of the user’s mobility patterns for training before prediction. In [24], Akoush
and Sameh used a hybrid Bayesian neural network model for prediction. Anagnostopoulos and
Hadjiefthymiades further eliminated the noise (typically manifested as small-random deviations
from previously-seen patterns) from movement patterns using the optimal stopping theory and
predicted the user’s k-step-ahead location [25]. The approach kept the knowledge base with the lowest
possible total spatial variance. The approach used a delay-tolerant decision-making mechanism,
such that it did not require a training phase, but can incrementally refine the knowledge base.
In [26], Jeung et al. proposed the trajectory pattern tree to organize a large number of discovered
trajectory patterns. The tree was used to index the trajectory patterns to enable predictive queries to
be answered efficiently. A hybrid model based on the trajectory patterns and mathematical motion
function was built to rapidly predict the movement of people in the near and distant future. In [5],
Lu et al. collected information about users” movements and purchase transactions via mobile commerce
for mining and prediction purposes. They proposed a framework named Mobile Commerce Explorer
(MCE), which improved upon previous results by (1) considering the similarity between shops and
between items in pattern mining and prediction; (2) mining the movement patterns of individuals and
(3) predicting the behavior of consumers in terms of both their movements and purchases. Although
these results are useful in terms of data analysis processes, they do not consider the relations in a group.

Some researchers also directly investigated ways to promote mobile consumption. In [4],
Namiot et al. localized consumers based on their wireless network access information and then
provided them with customized commercial information (e.g., deals, discounts and coupons).
Yang et al. collected websites browsed by users and their locations and then recommended new
retailers to them [6]. Kanda et al. collected users’ real-time trajectory based on a laser rangefinder
and particle filter and then predicted the time and venue in which a consumer probably performed
consumption [27]. After that, a robot was dispatched to provide various services. In [28], Guo et al.
investigated how to use RFID technology to promote mobile commerce. In [29], Komninos et al. built
the system “me-Commerce” and pointed out that various types of context information are important
for mobile consumption. These researchers did not consider the scenarios of group consumption.
In [30], Zhu et al. addressed the problem of discovering user groups based on their similar movement
behavior. They proposed a framework to identify such groups by firstly constructing trajectory profiles
of users, then deriving similarity between trajectory profiles and, finally, discovering the groups.
Anagnostopoulos et al. proposed an incremental way to form mobile user groups and to investigate
how to validate the groups using an optimally-scheduled and adaptive mechanism [31]. Although
these results are useful for mobile group consumption, more investigation is needed.

Moreover, all of this work is based on a centralized server and synchronized clocks, which
are prone to a performance bottleneck, single-point failure, synchronization overhead, etc. and
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are sometimes even infeasible because of hardware constraints or privacy concerns. In [32],
Anagnostopoulos described a distributed time-optimized forwarding way to collect contextual
information from a source node to a consumer node in mobile sensor networks. This work is based on
synchronized clocks.

The field of distributed computing has produced work relating to asynchronous distributed data
collection. The uncertainty of asynchronous distributed computing led to the introduction of definitely
and possibly modalities in [33] for detecting events. The lattice was invented as a tool for detecting
generic events, named relational predicates [33,34]. A special class of predicates, conjunctive predicates,
specified by a conjunctive expression of local states, was also investigated [9]. In [13], Zhu et al. used
occurrence probability to refine the possibly modality to provide more detailed information and can
support the detection of multiple occurrences of events. In this paper, we follow the basic idea of
asynchronous distributed computing and adjust it for mobile group consumption.

7. Conclusions

In this paper, we propose an asynchronous distributed approach to collect data relating to mobile
group consumption. Considering that many scenarios involve a great number of consumers who
constantly move, our approach is scalable and efficient, because it neither needs a central server nor a
synchronized clock. We first built a system model based on asynchronous distributed communications.
Then, we proposed a three-layer solution framework. Three kinds of processing, including the
processing in a local sub-region, in consecutive sub-regions and in several sub-regions, are considered.
Subsequently, we demonstrate how to detect the causality relation among two/three gathering events
happening in the system based on message exchange. Three definitions of the causality relation are
supported. We conduct extensive simulations to validate the proposed approach. The results show
that our approach is effective.
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