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Abstract: In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored
diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are
also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored
diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the
anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz
and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the
in- and anti-phase modes is inversely proportional to the output induced by the vibration from the
sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the
anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration
output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can
structurally increase the stiffness difference ratio to improve the mode ordering and considerably
reduce the vibration sensitivity without sacrificing the scale factor.

Keywords: vibration sensitivity; tuning fork gyroscopes; anchored diamond coupling mechanism;
stiffness difference ratio; coordinate transformation method

1. Introduction

The operational principle of MEMS vibrating gyroscopes actually relies on the Coriolis effect
with an energy transfer between two vibration modes [1]. Typically, a micromachined gyroscope
is a resonator with a drive-mode and a sense-mode. With the improvement in the performance
specifications of MEMS gyroscopes such as the resolution, sensitivity, and bandwidth [2–6], external
vibrations can significantly influence the gyroscope’s sensitivity due to the high quality factor which
ranges from a hundred or so at atmospheric pressure to hundreds of thousands under vacuum.

A dual-mass tuning fork gyro is a very common type of vibrating gyroscope used to cancel
linear vibrations by using two identical tines, which operate in anti-phase mode [7–10]. The linear
vibration is a common-mode vibration caused by random environment vibrations. Due to the inevitable
structural imbalance, the linear vibration will cause output errors. To decrease the vibration output
caused by fabrication defects, a large frequency separation between the in- and anti-phase modes is
needed [11–13]. However, these methods reduce the scale factor of TFGs. To resist the linear vibration
without sacrificing the sensitivity and eliminate the lower frequency mode, an improved mode ordering
by using different coupling mechanisms between two tines is necessary [14–16]. Therefore, shifting the
in-phase mode frequency above the anti-phase and increasing the frequency separation are important.

In our previous work [16], we designed a dual-mass TFG with an anchored ring coupling
mechanism and only numerically studied the linear vibration sensitivity of proposed TFGs due
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to the stiffness imbalance induced by the practical process imperfections. It was observed that linear
vibration would induce output errors in the in- and anti-phase mode frequencies.

This paper proposes a new micromachined TFG with an anchored diamond coupling beam to
analyze the mode ordering and the vibration sensitivity. For comparison with this novel structure,
a traditional one with a direct diamond coupling beam was designed at the same time. Section 2
describes the two kinds of structures in more detail. An analytical analysis on the response of the
non-ideal TFG with anchored coupling is given in Section 3. FEM simulations on the stiffness of
different coupling styles and the comparisons with simulations and analytical solutions are presented
in Section 4. In Section 5, possible methods to decrease the vibration sensitivity and their principles
are discussed. Section 6 gives our conclusions.

2. Architecture Design

Two kinds of TFGs are designed in this paper according to the previous work [16]. The type A
architecture is a dual-mass structure where the left mass and right mass are symmetrical, as depicted in
Figure 1a, which shows two identical masses, a lever beam and an anchored diamond coupling spring.
The architecture of type B is the same with as that of type A, except for the fact that the coupling type,
which is direct coupling via a diamond spring, is different, as depicted in Figure 1b.
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Every tine includes a Coriolis mass and two frames, supported by symmetrical springs. The
springs, except the supporting lever springs and the anchored coupling ones, are the same to increase
the robustness of the mode-match between drive and sense modes and to resist any temperature shifts
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of the resonance frequencies. The electrodes are variable-area capacitances to guarantee the linearity of
the capacitance change with the displacement in the motion direction parallel to the plates. The mode
analysis of two types in the in- and anti-phase modes in the sense direction is carried out and shown
in Figures 2a,b and 3a,b, respectively. It is demonstrated that the Type A architecture can optimize the
modal order. Specifically, the in-phase mode frequency is improved by nearly 110% compared with
the anti-phase. Therefore, the Type A structure offers a new architecture to truly reject the external
shock and vibration by making the in-phase modal frequency larger than the anti-phase.
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First, the non-ideal TFG model is shown in Figure 4. The dynamics are governed by:

Sensors 2016, 16, 468 4 of 15 

 

 
(a)

 
(b)

Figure 3. Modal analysis of the in-phase mode (a) and anti-phase mode (b) of Type B. 

3. Theoretical Analysis 

First, the non-ideal TFG model is shown in Figure 4. The dynamics are governed by: 

 
Figure 4. The model of the non-ideal TFG. 

  

Figure 4. The model of the non-ideal TFG.



Sensors 2016, 16, 468 5 of 15

Left mass:
m

..
x1 ` c

.
x1 ` k1x1 ` k1px1 ´ x2q “ ma sin wt (1)

Right mass:
m

..
x2 ` c

.
x2 ` k2x2 ` k1px2 ´ x1q “ ma sin wt (2)

Subtracting Equation (2) from Equation (1), one obtains:

m
..
x1 ` c

.
x1 ` k1x1 ` k1px1 ´ x2q ´m

..
x2 ´ c

.
x2 ´ k2x2 ´ k1px2 ´ x1q “ 0 (3)

Adding Equations (1) and (2), one obtains:

m
..
x1 ` c

.
x1 ` k1x1 `m

..
x2 ` c

.
x2 ` k2x2 “ 2ma sin wt (4)

Here, m and c are the mass and damping of each tine respectively, k1 and k2 denote the stiffness
and k’ is the coupling stiffness in the anti-phase mode, x1 and x2 are the displacement, asinwt is
the external acceleration acting on the whole TFG, in which a denotes the amplitude and w is the
angular frequency.

Since the vibration output of in- and anti-phase modes needs to be analyzed, a coordinate
transformation is made as follows:

xan “ x1 ´ x2, xin “ x1 ` x2 (5)

Substituting Equation (5) into Equations (3) and (4), one obtains:

..
xan `

wan

Qan

.
xan `w2

anxan “ ´
∆k
2m

xin

..
xin `

win
Qin

.
xin `w2

inxin “ ´
∆k
2m

xan ` 2a sin wt
(6)

where wan “

c

k1 ` k2 ` 4k1

2m
, Qan “

mwan

c
, win “

c

k1 ` k2

2m
, Qin “

mwin
c

, k1´ k2 “ ∆k. In which, wan

and win are the defined resonant frequencies in the anti- and in-phase modes, Qan and Qin are quality
factors of the ideal anti- and in-phase motions and ∆k is the stiffness imbalance.

The Equation (6) can be expressed as a matrix representation:

M
..
x` C

.
x` Kx “ F sin wt (7)

where: M “

«

1 0
0 1

ff

, C “

»

—

–

wan

Qan
0

0
win
Qin

fi

ffi

fl

, K “

»

—

–

w2
an

∆k
2m

∆k
2m

w2
in

fi

ffi

fl

, F “

«

0
2a

ff

, x “

«

xan

xin

ff

The natural frequency can be obtained by using the characteristic equation:

w2
1 “

`

w2
in `w2

an
˘

´

d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2

2

w2
2 “

`

w2
in `w2

an
˘

`

d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2

2

(8)

where w1 is the first-order resonant frequency and w2 is the second-order resonant frequency.
The modal superposition technique is used to acquire the steady-state response through solving

Equation (7):
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xptq “
2β1a
w2

1
¨

1

1`

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
`
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2 ¨

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
`
`

w2
in ´w2

an
˘

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
`
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

2β2a
w2

2
¨

1

1`

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
´
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2 ¨

»

—

—

—

—

—

—

—

—

—

—

—

—

–

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
´
`

w2
in ´w2

an
˘

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
´
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(9)

where, the magnification factor of amplitudes βi “
1

c

´

1´ λ2
i

¯2
` p2ξiλiq

2
, the phase angle ψi “

arctan
2ξiλi

1´ λ2
i

, the frequency ratio λi “
w
wi

, and the damping ratio ξi “
c

2wim
.

When w “ w1, we can obtain that:

xanptq “
2Q1a

w2
1
¨

´∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
`
`

w2
in ´w2

an
˘

1`

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
`
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2 “
2Q1a

w2
1
¨

´∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 `

ˆ

kin ´ kan

2

˙

1`

¨

˚

˚

˚

˚

˝

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 `

ˆ

kin ´ kan

2

˙

˛

‹

‹

‹

‹

‚

2 (10)

where the anti-phase stiffness is kan “ k1 ` k2 ` 4k1, and the in-phase stiffness is kin “ k1 ` k2.
Considering the actual fabrication defects, kan ´ kin ąą ∆ k and using the Taylor series expansion:

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 `

ˆ

kin ´ kan

2

˙

“
kan ´ kin

∆k

so Equation (10) can be rewritten as:

xp1qan ptq “
2Q1a

w2
1
¨

∆k
kin ´ kan

cos w1 t “
2Q1a

w2
1
¨

∆k
k
¨

k
kan ´ kin

cos w1 t (11)

where Q1 is the first-order mode Q-factor.
When w “ w2, we can obtain that:

xanptq “
2Q2a

w2
2
¨

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
´
`

w2
in ´w2

an
˘

1`

¨

˚

˚

˚

˚

˝

∆k{m
d

`

w2
in ´w2

an
˘2
`

ˆ

∆k
m

˙2
´
`

w2
in ´w2

an
˘

˛

‹

‹

‹

‹

‚

2 “
2Q2a

w2
2
¨

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 ´

ˆ

kin ´ kan

2

˙

1`

¨

˚

˚

˚

˚

˝

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 ´

ˆ

kin ´ kan

2

˙

˛

‹

‹

‹

‹

‚

2 (12)

where Q2 is the second-order mode Q-factor.
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Considering that kan ´ kin ąą ∆ k and by the Taylor series expansion:

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 ´

ˆ

kin ´ kan

2

˙

“
∆k

kan ´ kin

so, Equation (12) can be rewritten as:

xp2qan ptq “
2Q2a

w2
2
¨

∆k
kin ´ kan

cos w2 t “
2Q2a

w2
2
¨

∆k
k
¨

k
kan ´ kin

cos w2 t (13)

The traditional direct coupling beam has no deformation in the in-phase mode, so kin is k1 ` k2

and win is

c

k1 ` k2

2m
. However, the deformation styles of the anchored coupling beam are different in

the in- and anti-phase modes. In the anti-phase, the beam is bent under a lateral load while the beam
is tensile (compressed) under an axial load in the in-phase. So, the stiffness of the anchored coupling
beam in the in-phase mode is added to the in-phase stiffness, and kin is k1 ` k2 ` 2k2 , and k2 is the

coupling stiffness in the in-phase mode and win is

c

k1 ` k2 ` 2k2

2m
.

Since the in-phase stiffness is different between the direct coupling and anchored coupling TFGs,
the vibration output in the anchored coupling structure should be recalculated. Considering the actual
fabrication defects, kin ´ kan ąą ∆ k and using the Taylor series expansion:

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 `

ˆ

kin ´ kan

2

˙

“
∆k

kin ´ kan

∆k
d

ˆ

kin ´ kan

2

˙2
` p∆kq2 ´

ˆ

kin ´ kan

2

˙

“
kin ´ kan

∆k

so, Equation (10) can be rewritten as:

xp1qan ptq “
2Q1a

w2
1
¨

∆k
kin ´ kan

cos w1 t “
2Q1a

w2
1
¨

∆k
k
¨

k
kin ´ kan

cos w1 t (14)

Equation (12) can be rewritten as:

xp2qan ptq “
2Q2a

w2
2
¨

∆k
kin ´ kan

cos w2 t “
2Q2a

w2
2
¨

∆k
k
¨

k
kin ´ kan

cos w2 t (15)

Here, the dimensionless parameters ε and η are defined. ε denotes the stiffness imbalance, and
η denotes the ratio of the stiffness difference between in- and anti-phase modes to the stiffness k in
the sense direction, which is defined as the stiffness difference ratio (SDR). The two parameters are
given by:

ε “
∆k
k

, η “
|kan ´ kin|

k
Then, Equations (11) and (14) can be expressed as:

xp1qan ptq “
2Q1a

w2
1
¨
ε

η
¨ cos w1 t (16)
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Equations (13) and (15) can be expressed as:

xp2qan ptq “
2Q2a

w2
2
¨
ε

η
¨ cos w2 t (17)

From Equations (16) and (17), it is figured out that the anti-phase vibration output is proportional
to ε and inversely proportional to the stiffness difference ratio η.

4. FEM Simulations

4.1. SDR Analysis

First, the SDR of Type A and Type B TFGs, which are represented by ηa,ηb, respectively, are
analyzed. According to the definition of the stiffness difference ratio η:

ηa “
|kin ´ kan|

k
“

2k2 ´ 4k1

k
, ηb “

|kin ´ kan|

k
“

4k1

k
(18)

From Equation (18), the stiffness difference is dependent on the in- and anti-phase coupling
stiffness, so simulations are carried out on the stiffness of the coupling spring by applying a 1 µN
force in the sense direction, shown in Figure 5. The length of the linear beam is 500 µm and the width
is 10 µm while the length of the diamond beam is 1000 µm and the width is 20 µm. The anti- and
in-phase coupling stiffness of the anchored diamond coupling structure are shown in Figures 5a and 5b,
respectively. By the formula k = F/x, the stiffness k can be obtained:

2k1a “
1µN

0.002895µm
“ 345.42 N{m, k2

a “
1µN

0.21ˆ 10´3µm
“ 4761.90 N{m (19)

Substituting Equation (19) into Equation (18), we can obtain:

ηa “
2k2

a ´ 4k1a
k

“ 11.80 (20)

The anti-phase coupling stiffness of the direct diamond coupling structure is shown in Figure 6.
The stiffness k can be obtained from:

k1b “
1µN

0.00728µm
“ 137.36 N{m (21)

Substituting Equation (21) into Equation (18), we can obtain:

ηb “
4k1b
k
“ 0.73 (22)

Therefore, the ratio of SDR of the anchored and direct diamond coupling structures can be
computed from Equations (20) and (22):

ηa
ηb
“

2k2

a ´ 4k1a
4k1b

“ 16.08 (23)

Similarly, the SDR of the anchored ring coupling structure in our previous study [16] is studied
and it is 2.16. Therefore, the ratio of SDR of the anchored diamond and ring coupling structures is 5.46.
From the above numerical analysis, it is concluded that the stiffness difference ratio of the anchored
coupling style is much larger than the direct coupling style. For the anchored diamond coupling TFG,
the SDR is 16.08 times larger than the direct coupling one and is 5.46 times larger than the anchored
ring coupling one.
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To analyze the vibration output, three architectures are designed. One is the completely
symmetrical structure, and the stiffness imbalance of another two are 0.97% and 1.83%, respectively,
which can be achieved by intentionally increasing the spring width of the left tine in the sense direction.

In this simulation, the simulation software, the element type and the mesh division are the
same as in our previous study [13]. The total number of the mesh is 266,280, which is determined
by the accuracy and efficiency of the calculation. In order to guarantee the efficiency and accuracy
of the calculation, the frequency of the type A and type B designs is swept from 4000 Hz to 11,000
Hz and from 3000 Hz to 5000 Hz, respectively. The frequency step is 4 Hz, which is determined by
the bandwidth. The material used in every model is single-crystal silicon and the corresponding
Young’s modulus is 169 GPa. The thickness of structure is 60 µm and the external acceleration is 1 g
(9.8 m/s2) and Q-factor of 100 which is just an assumption. This assumption is within a reasonable
range from a hundred or so at atmospheric pressure to hundreds of thousands under vacuum. The
model parameters and the modal frequencies are listed in Tables 1 and 2 respectively.

Table 1. Model parameters used in the simulation models.

Parameters Value Parameters Value

Sense-mode mass 1.3738 ˆ 10´6 Kg Structural thickness 60 µm
Structure type Type A/Type B Sense-mode Q 100

Stiffness imbalance 0.97%/1.83% Common acceleration 9.8 m/s2

Springs stiffness k 748.5 N/m Stiffness difference ratio ηa/ηb 11.80/0.73

Table 2. In-phase and anti-phase modal frequencies of all designed models.

ε (%)
In-Phase Modal Frequency (Hz) Anti-Phase Modal Frequency (Hz)

Type A Type B Type A Type B

0 9799.6 4007.1 4705.3 4578.1
0.97 9803.0 4015.7 4712.7 4585.9
1.83 9806.0 4023.2 4719.3 4592.9
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However, a vibrational output would be produced by the linear vibration because the stiffness
is imbalanced due to the practical process imperfections. Then, the harmonic responses of these two
types are analyzed, in which ε is 0.97% and 1.83%.

As depicted in Figure 7, the two tines’ displacement difference can be acquired through the
calculation of the simulation data. It can be observed that the modal frequency of two types is
approximately equal in the anti-phase mode. For the displacement difference of Type A, it is much less
than Type B and has a drastic reduction in the in-phase. Therefore, the Type A architecture is able to
resist the linear vibration output much better than the Type B.
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4.3. Numerical and Theoretical Comparisons

The displacement difference between two masses is computed through the analytical expressions
Equations (10) and (13). The theoretical and numerical values of Type A and Type B are then compared
and the error rates are obtained, as indicated in Table 3.
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Table 3. Comparisons with theoretical and numerical values of Type A and Type B.

ε

Type Type A Type B

Theoretical Simulation Error Theoretical Simulation Error
Value Value Rate Value Value Rate

In-phase displacement
difference (µm)

0.97% 0.000425 0.000456 7.33% 0.0410 0.0444 8.20%
1.83% 0.000802 0.000853 6.40% 0.0773 0.0832 7.62%

Anti-phase displacement
difference (µm)

0.97% 0.00184 0.00199 7.89% 0.0314 0.0340 8.17%
1.83% 0.00347 0.00372 7.08% 0.0592 0.0636 7.35%

From Table 3, one may figure out that theoretical results are consistent with simulations under
small stiffness imbalances, which verifies the theoretical model we propose. To verify the theoretical
modeling with a simplified spring, an analytical analysis is conducted on the previous study [16]. The
comparisons with theoretical and numerical values are shown in Table 4. The type C denotes the
anchored ring coupling structure while the type D denotes the direct ring coupling one. Therefore,
the theoretical model can be very effective for anchored coupling structures. It is concluded that
the displacement difference is inversely proportional to SDR and proportional to ε. Meanwhile, the
theoretical values of displacement difference of type A and type B are also compared as depicted in
Table 5, as well as type A and type C shown in Table 6.

Table 5 shows that the displacement difference of type A is much less than for type B. Specifically,
it is decreased by 94.1% and 99.0% compared to type B and is reduced by 82.6% and 93.2% compared
to type C, in the anti- and in-phase modes, respectively. Additionally, the vibration output becomes
larger as ε increases. Consequently, it is figured out the output of the anchored diamond coupling
structure is much smaller than the direct coupling style due to the much larger stiffness difference
ratio. To depict this conclusion better, the curve of the displacement difference of Type A and Type B
and ε is drawn, as represented in Figure 9.

Table 4. Comparisons with theoretical and numerical values of Type C and Type D.

ε

Type Type C Type D

Theoretical Simulation Error Theoretical Simulation Error
Value Value Rate Value Value Rate

In-phase displacement
difference (µm)

0.97% 0.00627 0.0068 6.14% 0.0525 0.0561 6.42%
1.83% 0.0118 0.0125 5.60% 0.0986 0.105 6.10%

Anti-phase displacement
difference (µm)

0.97% 0.0106 0.0114 7.02% 0.0423 0.0453 6.62%
1.83% 0.0200 0.0212 5.66% 0.0795 0.0844 5.81%

Table 5. Comparisons of displacement difference in analytical values of Type A and Type B.

ε (%) Type A Type B Reduced Rate

In-phase displacement difference (µm) 0.97 0.000425 0.0410
99.0%1.83 0.000802 0.0773

Anti-phase displacement difference (µm) 0.97 0.00184 0.0314
94.1%1.83 0.00347 0.0592

Table 6. Comparisons of displacement difference in analytical values of Type A and Type C.

ε (%) Type A Type C Reduced Rate

In-phase displacement difference (µm) 0.97 0.000425 0.00627
93.2%1.83 0.000802 0.0118

Anti-phase displacement difference (µm) 0.97 0.00184 0.0106
82.6%1.83 0.00347 0.0200
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5. Discussion

From the theoretical analysis of the anchored coupling tuning fork gyroscopes, it is concluded that
the anti-phase vibration output is proportional to ε and inversely proportional to η. To reduce ε, one
way is to increase the beam widths and another one is to design a control circuit to suppress the stiffness
imbalance. However, increasing the beam widths will reduce the scale factor and a stiffness-match
circuit induces more complexity. Therefore, it is a more practical approach to increase the stiffness
difference ratio only by changing the style of the coupling beam without sacrificing the sensitivity.

Actually, the deformation styles of the anchored coupling beam are different in the in- and
anti-phase modes. In the anti-phase mode, the beam is bent under a lateral load while the beam
is tensile (compressed) under an axial load in the in-phase described in Figure 5, which causes the
stiffness in the in-phase mode is an order of magnitude larger than the anti-phase, so it can be believed
that the vibration output of the anchored coupling style will be lower than the direct coupling style
because of a larger stiffness difference ratio.

The analytical model we propose can be used for both anchored coupling TFGs and direct
coupling TFGs. In our previous study [13], the analytical solutions of the vibration output of the
direct coupling TFGs are calculated by using the matrix perturbation technique, which has been
verified through our FEM simulations and experimental tests by other researchers [12]. The analytical
expressions are in accordance with Equations (16) and (17), which proves the proposed analytical
model in this paper. The analytical model is also valid to evaluate the vibration output of anchored
coupling TFGs and only some of the parameters are different. The primary difference between the two
types of TFGs is the coupling stiffness in the in-phase mode. The coupling stiffness in the in-phase is
zero in the direct coupling one and the anchored coupling one is larger, which causes that the in-phase
mode frequency is much higher than the anti-phase (improved mode ordering) and that the stiffness
difference ratio is larger than the direct coupling one (reduced vibration sensitivity). In future studies,
the anchored coupling TFGs we proposed will be fabricated and verified experimentally.

If someone proposes a cross structure, or anything similar, our modeling as presented in this
paper will also be effective. Perhaps, some new structures will be designed to provide a higher stiffness
difference ratio in the future. We believe that our theoretical model can be valid still.

6. Conclusions

In this paper, a new micromachined TFG with an anchored diamond coupling is proposed
to investigate the corresponding mode ordering and the vibration sensitivity. The proposed TFG
optimizes the sense-mode through use of an anchored diamond coupling beam, enabling the in-phase
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mode frequency to be 108.3% larger than the anti-phase one. A new theoretical model is established to
investigate the vibration sensitivity of micromachied TFGs with anchored coupling. The coordinate
transformation method is used to compute the dynamic response caused by the common-mode
vibration, which coincides with the FEM simulations. The analytical solutions show that the anti-phase
vibration output is inversely proportional to the stiffness difference ratio and proportional to the
stiffness imbalance. Additionally, the stiffness difference ratio of the two types of TFGs is obtained by
the FEM simulations. The simulations demonstrate that the stiffness difference ratio of the anchored
diamond coupling structure is much larger than the direct coupling one and the SDR of the anchored
diamond coupling structure is 16.08 times larger than the direct coupling one while the vibration
output is reduced by 94.1% in the anti-phase sense mode frequency. In comparison with the anchored
ring coupling structure, the SDR of the anchored diamond coupling one is 5.46 times larger than
the anchored ring coupling one, while the vibration output is reduced by 82.6%. Consequently,
the anchored diamond coupling TFG is able to structurally offer a higher stiffness difference ratio
to improve the mode ordering and tremendously reject the vibration output without sacrificing
any sensitivity.
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