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Abstract: Algorithms for skyline querying based on wireless sensor networks (WSNs) have been
widely used in the field of environmental monitoring. Because of the multi-dimensional nature of
the problem of monitoring spatial position, traditional skyline query strategies cause enormous
computational costs and energy consumption. To ensure the efficient use of sensor energy, a
geometry-based distributed spatial query strategy (GDSSky) is proposed in this paper. Firstly,
the paper presents a geometry-based region partition strategy. It uses the skyline area reduction
method based on the convex hull vertices, to quickly query the spatial skyline data related to a
specific query area, and proposes a regional partition strategy based on the triangulation method, to
implement distributed queries in each sub-region and reduce the comparison times between nodes.
Secondly, a sub-region clustering strategy is designed to group the data inside into clusters for parallel
queries that can save time. Finally, the paper presents a distributed query strategy based on the data
node tree to traverse all adjacent sensors’ monitoring locations. It conducts spatial skyline queries for
spatial skyline data that have been obtained and not found respectively, so as to realize the parallel
queries. A large number of simulation results shows that GDSSky can quickly return the places which
are nearer to query locations and have larger pollution capacity, and significantly reduce the WSN
energy consumption.

Keywords: wireless sensor network; environmental monitoring; distributed spatial skyline query;
convex hull; cutting node

1. Introduction

Nowadays applications using the sensor network monitoring strategy are being more and more
widely used, such as in forest fire monitoring systems, CitySee, real time CO2 monitoring systems,
real time shortest path for drivers [1], a complex embedded system-CPS [2], graph similarity issue [3],
digital library services [4], data security [5], the development of the Internet of Things [6,7], the
development of the Web of Things [8], Semantic Link Network (SLN) [9,10], different bird species’
behavior research, air quality inspection [11] and so on. Big data analytics for these applications has
become more and more essential [12,13]. In terms of the air quality inspection situation, in European
and American countries, monitoring stations are mostly set near big cities, and reflect the average
air quality level of a whole region. In China, the current information people get is from placing in
cities several monitoring sub-stations, which locations must be set in places which are widely apart
and not disturbed by people, rather than in places near to the pollution sources. This deployment
can also reflect the average air quality level of a city. The above traditional methods can’t monitor the
pollution around places with dense populations, and they are always set up to monitor a wide range
and will be limited in flexibility when an arbitrarily designated area is queried. Therefore, it is very
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necessary to apply the spatial skyline query method in wireless sensor networks used for air quality
monitoring [14–16].

As traditional monitoring strategies can only monitor the average situation of a large area and have
limited flexibility for any small range, this paper proposes a skyline query method for sensor networks.
Considering that environmental monitoring involves more spatial attributes, and often incurs a lot of
computational cost for general skyline queries, we propose the geometry-based distributed spatial
skyline query method in wireless sensor networks (GDSSky). The strategy can quickly find the
locations which are near to the query places and have higher pollution potential, and it also can reduce
the energy cost.

The paper is an extension of our previous work Geometry-Based Spatial Skyline Query in Wireless
Sensor Networks [17]. It adds a more detailed description, new experiments and a new distributed
parallel strategy and query strategy. The major contributions of this paper are as follows:

‚ We design the cut of skyline region based on convex hull vertices method, which can cut out a lot
of the non-skyline region by the rectangular B strategy and reduce the comparison times between
nodes and improve the efficiency.

‚ We propose a distributed query method based on the data node tree concept to traverse all the
neighbor sensor monitoring regions, and enter them into the queue according to the distance by
the monotone function, so it can implement the execution in parallel.

‚ We design a clustering strategy for the parallel execution of general skyline queries on the
non-spatial attributes of the spatial skyline, and conduct the spatial skyline query on the remaining
spatial skyline points which are still not found by the tree method at the same time, so we can
implement a distributed execution between different sub-regions.

‚ We propose the concepts of cuts among sub-regions and cuts in sub-regions for the collection.
This can reduce the data transmissions in the network and reduce the sensor energy cost.

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3
describes geometry-based spatial skyline queries. Section 4 describes the geometry-based distributed
spatial skyline query algorithm. Section 5 discusses the experiments and the performance analysis.
Finally, Section 6 concludes this paper with the future work.

2. Related Work

2.1. The Non-Spatial Skyline Query Method

For the skyline query in the sensor network, the most common method is the cut method based
on a filter [18–23]. Y Kwon et al. [18] set down the initial filter from the root node and updates each
node constantly; the strongest cut filter is produced in the leaf node and returned with the query
results. In [19], a multidimensional filter is acquired by calculation to improve the cut efficiency of
the overall wireless communication between sensor nodes. In another approach [20] a local or global
filter is set up at the sensor nodes to restrain unnecessary data transmissions, however, the global filter
has some limitations in a large-scale sensor network, as these methods will result in large amounts
of transmission consumption in the data recovery process, and cost a lot of storage and transmission
costs when calculating the filter. In [21], the authors use a global and local optimization strategy
to implement skyline queries for more dimensions, and it associates the sub-space skyline with the
parent spatial skyline, but it must merge the sub-space skyline queries into the existing expanded
parent spatial skyline query. Undoubtedly this has a computational cost. G Wang et al. [22] continuous
fragmented skylines over distributed streams which constitute a distributed skyline query method
based on streams are presented. A complex skyline monitoring function on the distributed fragmented
objects, and a model of the fragments of the object are proposed. B Chen et al. [23] face the problem of
curse of dimensionality and proposes to acquire truly controlled and characteristic results to select the
most interesting objects from among all the skyline objects.
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Therefore, in these kinds of strategies, the dominant compare counts and computational cost
will increase. The tuple is too long, so the transmission and energy consumption between data will
increase. The data nodes may be obtained from severely polluted areas but far from locations crowded
with people. However, these nodes are not the geographic locations people really care about.

2.2. Spatial Skyline Query Method

Unlike no-spatial skyline queries, the spatial skyline query strategy includes two concepts: the
spatial dominance relation and the spatial skyline.

‚ The spatial dominance relation

A data node set P = {p1, p2,..., pn} representing the sensor nodes includes some points in
2-dimensional space. Among them, the function of the sensor node is sensing data, transforming data
and participating in the skyline query. The query node set Q = {q1,...,qn} shown as the residential areas
in Figure 1 includes some points in 2-dimensional space. D(pi, qj) is the distance in 2-dimensional
space. The node dominance relation is shown in Figure 1. Among them, rectangle B is the minimum
rectangle boundary MBR. In the query process, B updates constantly, B_ {new} = BXMBR (SR (p, Q)).
The interior of B contains all the candidate nodes. Nodes outside B are the dominated ones, so there is
no judgment of dominance relation to those.
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Figure 1. The dominance relation between nodes.

As shown in the figure, given a 2-dimensional query node set Q = {q1, ..., qn} and two sensor
nodes p, p’, the space dominance relation is defined as follows:

Definition 1: A point p spatially dominates a point p’ with respect to Q if and only if D (p, qi) ď D
(p’, qi) for every qi P Q, and D (p, qj) < D(p’, qj) for some qj P Q.

‚ The spatial skyline

By the comparison between the above dominance relations, we can find the data nodes that
are part of the spatial skyline. Given the data node set P = {p1, p2, ..., pn} and the query node set
Q = {q1,..., qn}, the definition is as follows:

Definition 2: A point p P P is a spatial skyline point with respect to Q if and only if p is not spatially
dominated by any other point of P. The node p is a spatial skyline with respect to Q, denoted as
p P S(Q). This way we get the formal description of Equation (1) shown as follows:

p P S(Q)ô@p’ PP, p’‰p and p’ R S(Q), Dqi PQ,
so that D(p, qi)ďD(p’, qi)

(1)

In [24–28], the authors describe the existing spatial skyline query methods. These methods are
always applied in skyline queries with respect to the query nodes. In [24,25], the authors propose an
algorithm for transmitting all the other data node information to one node in which the dominance
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relations with the existing skyline nodes is judged. This method will affect the correctness of the overall
result once the local networks experience problems, and bring about high transmission costs and low
efficiency. S Yoon et al. [26] propose dividing the query space into several triangle regions by using a
triangulation method and conducting the skyline query in each sub-region. However, the arbitrary
triangle area must to wait for the local skyline result from the clockwise neighbor triangle area and
cannot query in parallel, so it has low efficiency. In [27], there is a range-based skyline query which
uses the I-SKY and N-SKY index methods to consider the spatial and non-spatial attributes of the
objects at the same time. W Son et al. [28] solve the problem of computing the top-k Manhattan spatial
skyline query by using the monotonic function. It computes the top-k skyline points in near linear
time. The above spatial skyline query methods can only find the regions which have more influence to
the query region on the spatial position, but can't find the environmental pollution overview of the
query region.

3. Geometry-Based Spatial Skyline Queries

In order to reduce the time for comparing between data, a region partition strategy based on
geometry according to the sensor nodes deployed at different locations is proposed in this paper. The
attributes detected by the sensors include the spatial attributes (i.e., the distance to each query node)
and non-spatial attributes (such as PM2.5 or SO2 concentration in the air), thus, the paper presents a
geometry-based spatial skyline query method to quickly query a part of the geographical positions
with greater domination ability in spatial distance, then calculate the maximum query boundary
formed by query nodes. It proposes a method of cutting the skyline area based on the convex hull
vertices, which can quickly find these data node sets near to crowded places in the spatial attribute.

3.1. Regional Division Based on Sensor Deployment

As shown in Figure 2, users do not prefer to select one attribute and judge synthetically according
to the multiple attribute values. To query the sensor nodes which are closer to the residential areas
and where the air pollution level is higher are the skylines we are looking for, so this paper firstly
proposes a method for cutting of skyline region based on convex hull vertices to find the data node set
closer to the query nodes. The method can quickly return the spatial locations of the above problem
which are near to all the crowded regions in the special query range, that is, the nodes having more
crowd influence. Then, we further propose a distributed query method based on the data node tree
to directly query the non-spatial attributes, such as the values of CO2, SO2, PM2.5 to get the places
which are seriously polluted. Above all, we can obtain a source pollution overview which is near to
the crowed places by the method of geometry-based distributed spatial skyline queries in wireless
sensor networks we propose.
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3.1.1. Voronoi Diagram

This paper uses the Voronoi diagram method to divide the spatial region. This method is
an efficient geometric partitioning method. Among each sub-region we can judge the dominance
relationships between them. As shown in Figure 3, the Voronoi diagram of set P in two-dimensional
space divides the space into several regions. For all the points x (where x is a 2-dimensional point)
contained in the corresponding region to p (p P P) V (p), we can get the formal description given in
Equation (2) as follows:

@p1 PP and p1‰PñDpx, pqďDpx, p1q (2)
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3.1.3. The Region Division Method 

Figure 5 is the local map, which contains eight data nodes in the local query region. For 
example, as a node p1 and its Voronoi cell V (p1), we respectively connect the point p1 with its 
adjacent nodes in the graph, which are p2, p3 and p4, p5 and p6. For the above five lines, we draw 
the corresponding perpendicular bisectors, to constitute a polygon made up of these perpendicular 
bisectors (that is, the bold line polygon in the figure). This polygon is the Voronoi cell V (p1) of the 
node p1, and any location is represented by the p1, that is to say P1 can represent all of geographic 
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3.1.2. Delaunay Graph

The Delaunay graph is the Voronoi diagram of a dual graph, used to traverse the adjacent Voronoi
cell. Figure 4 shows the Delaunay graph corresponding to Figure 3. In a graph G (V, E), V refers to the
vertices, E refers to the set of edges. We set V = P, for any two points p, p’ of V, if and only if p is the
Voronoi neighbor of p’ in the Voronoi diagram of P, there will be a connection edge of the two points in
G. We say graph G is P’s Delaunay graph [29]. Any Delaunay graph of a point set is a planar graph,
and it is connected.
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3.1.3. The Region Division Method

Figure 5 is the local map, which contains eight data nodes in the local query region. For example,
as a node p1 and its Voronoi cell V (p1), we respectively connect the point p1 with its adjacent nodes in
the graph, which are p2, p3 and p4, p5 and p6. For the above five lines, we draw the corresponding
perpendicular bisectors, to constitute a polygon made up of these perpendicular bisectors (that is,
the bold line polygon in the figure). This polygon is the Voronoi cell V (p1) of the node p1, and any
location is represented by the p1, that is to say P1 can represent all of geographic information in the V
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(p1). In this way data nodes that users want to query and are close to all query nodes, can be judged by
the dominance relationship of these data nodes like p1 to gain. This is also an important factor behind
why we use the spatial skyline query method based on the geometry in this paper. With this method
we can quickly and accurately cut dominated data nodes and query those required data nodes that are
the query points close to all query nodes. As shown in the figure, V (p3) of the point p3 has the same
formation process as V (p1) of p3, similarly, all other data nodes in this figure can construct their own
Voronoi cells this way, so this will form all data nodes’ Voronoi diagram in the whole query region.
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Figure 6 is the abstract graph of Figure 5 after regional division based on the Voronoi diagram.
The solid dots represent the sensors in the figure, we call the data nodes, and hollow points represent
residential areas, called the query nodes. Through the regional division strategy based on the Voronoi
diagram, we can quickly judge the positional relationship between a Voronoi cell and the query point,
and thus to obtain the spatial skyline fast.
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3.2. Cutting of Skyline Regions Based on Convex Hull Vertices

In order to improve the spatial skyline query process and accelerate the cutting process of the
non-spatial skyline, we propose a reduction method which based on the convex hull vertices of the
contour region in this paper. It uses the geometry knowledge, by judging whether the data nodes
and the convex hull vertices form the largest location relationship between the convex polygons, to
complete partial data queries of the spatial skyline, and thus query the partial spatial skyline data
which meets the demand of users.

3.2.1. Convex Hull

The query node set on the left side of Figure 6 is denoted as Q and we extract all the hollow points,
as shown in Figure 7. The convex hull (denoted as CH) of set Q in 2-dimensional space is the sole
smallest convex polyhedron (it is a convex polygon when in the 2-dimensional space), the convex hull
contains all points in Q. Each point of the non-convex points does not affect the shape of CH(Q). The
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symbols used are as follows: the query node set is Q, the query node is denoted as q, the data node set
is denoted as P, the data node is denoted as p. If a data point is the closest node from a convex hull
query vertex, then it is denoted as p = NN(q) [22], and if a data point is inside the convex hull, then it
is denoted as p P CH(Q), the convex hull query vertex in Q is denoted as CHv(Q), the perpendicular
bisector line of the line segment pp’ is donated as l K (pp’). So if p P P and p P S(Q), then S(Q) does not
depend on q PQ and q R CHv(Q), we can find that it can greatly improve the efficiency of the algorithm
when it is not necessary to calculate the distance to the non-vertex query points in the skyline query.
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3.2.2. Cut Method for Skyline Region

In order to query the partial skyline data quickly, we propose a cutting strategy based on the
contour region of convex hull vertices in this paper. It can cut out data nodes which are outside the
rectangular frame. For determining whether the data node is within the CH (Q), this paper uses a point
location query algorithm, which can easily locate a data point whether is inside the query convex hull
or not. To reduce the comparison time between data, it proposes an ordering strategy of the monotone
function in this paper, to reduce the energy consumption of sensor nodes.

‚ The point location query

In this phase of the skyline query, in order to determine whether data node and its Voronoi cell
are located in the interior of the convex hull, we need a point location query. The point location
query is known as a region divided into multiple sub-regions and a query point q appointed by the
coordinates, where we need to find the subdomain in which the point q is located. The required output
of a point location query usually stays in the sub-region partition containing a given query and the the
serial number of the unit. Such as in d dimensional space, what is called the point positioning for a
convex polyhedron, there are only two possible search results: one is the query point located inside a
polyhedron, the other is located outside the polyhedron. Therefore, the algorithm can be used to easily
locate a data point whether it is within the query convex hull or not.

‚ Cutting method for the skyline region

Each data node’s Voronoi neighbors are known, in other words, the Delaunay graph adjacency list
of the point of set P is stored in the neighbor nodes table. Using the point location queries mechanism
it will be located in or has crossed the corresponding data at the convex hull of the Voronoi unit node
that is the outline of the node.

Figure 8 shows that the algorithm begins with V(p) including some query node to traverse the
dual diagram of the Voronoi diagram which is called the Delaunay graph [30]. It can determine the
spatial skyline quickly located in CH(Q) or intersecting with CH(Q) according to Theorem 1 and
Theorem 3, and issue the current skyline data to those. The algorithm runs recursively until the initial
query node. The process is conducted in a centralized way in the monitor center. Then, the monitor
center calculates the rectangle B by the existing SCH, and then cuts the data nodes outside B, lastly, all
the accessed data are stored in the data access table Visited, and the center transmits the necessary
data to the corresponding sensor nodes in the table SCH for further querying.



Sensors 2016, 16, 454 8 of 22
Sensors 2016, 16, 454 8 of 21 

 

 
Figure 8. Cut of skyline region based on the convex hull vertices. 

Algorithm 1: Cutting of the skyline region based on the convex hull vertices
Input: data node set P, query node set Q
Output: the skyline set S 
1: initialize the skyline data table SCH and data access table Visited 
2: calculates the CH(Q) by the monitor center 
3: for begin with V(p) including some query node q(q2CHv(Q)) and put p into table SCH 
4: do traverse Delaunay graph along each edge of CH(Q) 
5: if V(p’)(p’2P) is adjacent to V(p) and intersecting with CH(Q) or in CH(Q) 
6: then by Theorem 1 and Theorem 3, insert node p into table SCH and table Visited. Issues the 
current skyline data to those 
7: else if V(p’) is adjacent to V(p) and not intersecting with CH(Q) or not in CH(Q) 
8: then insert node p’ into table Visited 
9: back to the initial data node p 
10: end for 

Figure 9 shows the query results for this phase. The big solid points represent the phase which 
can query the part of skyline data in the figure, however, small solid points on the outside of the 
convex hull still have some data not found in the skyline data, so the skyline data query method is 
put forward in the next section of this article. 

 
Figure 9. Cutting result for the skyline region. 

 Monotonic function sorting 

In order to avoid large comparison times between data and reduce the computing cost, this 
paper proposes a monotonic function [31] strategy by sorting the data in table SCH. Thus we 
maintain a list L in which all the skyline data distanced attributes of table SCH are kept. The data in 
list L are sorted by the sum of the distance between a skyline node and each convex hull vertex in 
ascending order. When a new node is inserted into L, we only need to conduct the dominated 
judgement assessment with the node whose distance attribute is less than that of the new one 
because if the distance attribute of the newly inserted node is less than that of some node in L, it 
means there is at least a lesser distance than that of the nodes following the new one. Thus, the new 
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Algorithm 1: Cutting of the skyline region based on the convex hull vertices

Input: data node set P, query node set Q
Output: the skyline set S
1: initialize the skyline data table SCH and data access table Visited
2: calculates the CH(Q) by the monitor center
3: for begin with V(p) including some query node q(q2CHv(Q)) and put p into table SCH
4: do traverse Delaunay graph along each edge of CH(Q)
5: if V(p’)(p’2P) is adjacent to V(p) and intersecting with CH(Q) or in CH(Q)
6: then by Theorem 1 and Theorem 3, insert node p into table SCH and table Visited. Issues the
current skyline data to those
7: else if V(p’) is adjacent to V(p) and not intersecting with CH(Q) or not in CH(Q)
8: then insert node p’ into table Visited
9: back to the initial data node p
10: end for

Figure 9 shows the query results for this phase. The big solid points represent the phase which
can query the part of skyline data in the figure, however, small solid points on the outside of the
convex hull still have some data not found in the skyline data, so the skyline data query method is put
forward in the next section of this article.
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‚ Monotonic function sorting

In order to avoid large comparison times between data and reduce the computing cost, this paper
proposes a monotonic function [31] strategy by sorting the data in table SCH. Thus we maintain a list L
in which all the skyline data distanced attributes of table SCH are kept. The data in list L are sorted by
the sum of the distance between a skyline node and each convex hull vertex in ascending order. When
a new node is inserted into L, we only need to conduct the dominated judgement assessment with the
node whose distance attribute is less than that of the new one because if the distance attribute of the
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newly inserted node is less than that of some node in L, it means there is at least a lesser distance than
that of the nodes following the new one. Thus, the new node is not dominated by the following nodes
and it is not necessary to judge the dominated relation between the other nodes. Via the monotonic
function strategy, we can reduce the nodes’ comparison times with lower computing cost and the
energy consumption of sensor nodes, meanwhile, we can improve the accuracy and efficiency of
the query.

As shown in Figure 10, we insert in ascending order into list L all the nodes whose sum of distance
to each convex hull vertices is calculated. We can judge if node p1 is located before node p2 via this list.
Thus, we can only conduct dominated relationship judgements between node p6 with all the skyline
nodes before it in list L. If node p6 is not dominated by the nodes before it, then we insert it into L,
then it is the new skyline data. Accordingly, by the monotonic function, we can avoid the dominated
relationship judgement between p6 and the nodes following p6. This further reduces the comparison
times for data dominance.
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Figure 10. The geography information in sensor node.

4. Geometry-Based Distributed Skyline Query

In order to find the sensor nodes which are closer to neighborhoods and have larger air pollution
indexes, which are the skyline data we are looking for, research about the remaining spatial skyline
queries, parallel queries [32] and distributed queries of general skyline queries of non-spatial attributes
in spatial skyline data has been conducted on the basis of the above study. The regional division
strategy based on triangulation [33] and sub-region clustering strategy [34] are proposed to provide
a basis for spatial skyline queries based on data node trees [35] and parallel queries of non-spatial
skyline data.

4.1. Regional Division

In order to realize the accuracy and completeness of the query, this paper proposes a regional
division strategy based on the triangulation method. In Section 3, after querying partial spatial skyline
data via the method of cutting the skyline area based on the convex hull vertices, there are still some
spatial skyline nodes outside the convex hull vertices, so we divide the spatial region into several
sub-regions, then conduct distributed queries on the remaining spatial skyline data, as well as general
queries of these data, so as to realize distributed queries between different sub-regions, and parallel
queries in sub-regions. The method can greatly improve the accuracy and efficiency of the queries.

4.1.1. Regional Division Based on Triangulation Method

In order to find the nodes which still exist outside the convex hull, we propose the method of
the distributed queries based on the data node tree [22] to find the remaining spatial skyline. Aiming
at each closest node, the algorithm builds a data node tree by region and a local queue so that it can
traverse all the neighbor nodes which are unvisited and in or intersecting with B of the sub-regions [30].
Finally, the algorithm judges the dominance relationship between nodes by the distributed query to
get all the spatial skyline with the distributed query.
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The monitor center computes the central location R of the CH(Q), and then divides the region into
several sub-regions shown in Figure 11 by the triangulation [36] method. We define the data nodes
closest to each of the convex hull vertices as the closest nodes. Accordingly, we find each closest node
belonging to each triangle area. Here, we define the closest node is the special sensor node which
possesses high energy and stronger computing ability.
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4.1.2. Clustering in the Sub-Region

In order to make the skyline query in parallel, this paper has designed a clustering strategy,
regarding the closest point as the cluster head node, and the partial spatial skyline obtained from the
cutting strategy of the skyline region in each triangle region is classified as one cluster called major
cluster, that can return all the spatial skyline ST out of the convex hull by the distributed query method
based on the data node tree, and then divide the ST data into an assisted cluster which is shown in
Figure 12.
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To improve the efficiency of the query, this paper has designed a clustering strategy which divides
the triangle region nodes obtained by the triangulation method into a major cluster and an assisted
cluster so as to realize the parallel queries. According to the choice of the camera position in the
triangulation method, this paper regarded the closest point as the cluster head node, and the partial
spatial skyline which was obtained by the cutting strategy of the skyline region in each triangle region
is classified as one cluster called major cluster, which can return all the spatial skyline ST out of the
convex hull by the distributed query method based on the data node tree, and then divide the ST data
into assisted clusters, which is shown in Figure 12. The major cluster and assisted clusters share a
common cluster head node in each sub-region. As shown in Figure 12, each little region drawn with a
thin line indicates a major cluster and vice versa. Data from different sub-regions is transmitted via the
respective cluster head nodes.

4.2. Distributed Regional Queries

This paper proposes the strategy of distributed regional queries based on the division of the
query region. We can query in parallel in each sub-region. Using the spatial skyline query method
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based on data node trees we can conduct queries in the remaining spatial skyline, meanwhile, it also
conducts non-spatial skyline queries on the non-spatial attributes of the spatial skyline, and distributed
queries among each sub-region. This paper also proposes a method which can combine the results
of each sub-regional skyline query. Firstly, we delete all the dominated results in the sub-region
via the cutting method between sub-regions. Then we continue to delete some dominated query
results within the sub-region via the cut method. Via the combination of the query results, we can
further cut the dominated nodes, improve the accuracy of the queries and reduce the cost of data
communication. This paper presents the strategy of distributed regional queries which can quickly
return the multi-dimensional attribute skyline results of interest to the user.

4.2.1. Queries in Parallel within Sub-Regions

In Section 3, after cutting the skyline area based on the convex hull vertices, we assign the partial
spatial skyline data to the major cluster so as to conduct skyline queries on the non-spatial attributes.
However there are some spatial skyline data outsides the convex hull. In order to find these nodes, we
propose a spatial skyline query method based on the data node tree to guarantee the completeness and
accuracy of the query results, and thus attribute these results to the assisted cluster. The sub-region
parallel query method this paper proposes is to conduct skyline queries on non-spatial attributes in
the major cluster and to conduct skyline queries on the remaining spatial skyline data. The use of
the clustering parallel queries can improve the execution efficiency of the algorithm. Meanwhile this
method conducts general skyline queries on the non-attribute data on the basis of the spatial skyline
data. It furtherly reduce the time needed for comparing data and reducing the energy consumption of
sensor nodes.

(1) Spatial skyline queries based on a data node tree

In order to find the nodes which still exist outside the convex hull, we propose the method of
distributed queries based on the data node tree [37] to find the remaining spatial skyline. Aiming at
each closest node, the algorithm builds a data node tree by region and a local queue so that it can
traverse all the neighbor nodes which are unvisited and in or intersecting with B of the sub-regions [38].
Finally, the algorithm judges the dominance relationship between nodes by distributed queries to get
all the spatial skyline data with these distributed queries.

‚ The generation of the data node tree

Each closest point receives a skyline data table SCH from the monitoring center and the data node
visited table Visited and regards the two tables as the local tables, and maintains a local data node tree
T whose root is the closest point and other nodes of the tree correspond to all the data nodes out of the
Visited table and in or intersecting with B, as shown in Figure 13.
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This paper maintains a local queue L located at each node who possesses neighbors, which is
used for the storage of <p, mindist(p, CHv(Q)) > tuple, mindist() is a monotonic function, mindist(p,
CHv(Q)) represents the sum of the distances from a data point p to CHv(Q). The specific algorithm is
shown as generation data node tree [34] algorithm. The time complexity of the algorithm is O(n).

‚ skyline queries based on data node trees

At this stage, the algorithm regards the root node of tree T as the parent node, and starts from it
to traverse this tree. If the parent node has a local queue L, then the neighbor nodes will be traversed
by it, and the dominance relations will be judged with the local skyline data SCH. In this process T
will be traversed in depth until the leaf nodes, and then it recursively returns to the next data node
of the queue pointer pointing in the upper layer. The process is repeated. The specific algorithm is
shown as Algorithm 2. The time complexity of the algorithm is O(n).

Algorithm 2: Skyline query based on the data node tree algorithm

Input: table SCH, table Visited, data node tree T, local queue L, query node set Q
Output: the spatial skyline data ST based on T
1: regard the root node of data node tree T as the father node
2: for each of the father node do
3: if the father node has the local queue L
4: then the pointer point to the first record of the father node local queue L, determine dominance
relation of the data point p corresponding to the record with the data node in the local table SCH
5: if P is dominated by the node in table SCH
6: then regard p as the new father node, then conduct step 2
7: if p is not dominated by the node in table SCH and do not dominate any node in SCH
8: then insert p to ST, and regard p as new father node, then conduct step 2
9: if p is not dominated by the node in table SCH and dominate the node in table SCH
9: if p is not dominated by the node in table SCH and dominate the node in table SCH
10: then insert p to ST, delete the dominated node in SCH, and regard p as new father node, then
conduct step 2
11: if the father node do not has the local queue L
12: then return to the local queue of the father node of p, move the pointer to the next one and
regard it as the new father node, then conduct step 2
13: end for

(2) Non-spatial skyline queries

The algorithm queries the spatial skyline in an assisted cluster, meanwhile, it also conducts the
general skyline queries on the non-spatial attributes of the data in the major cluster to get the skyline
data Smaj. After the query, the algorithm transmits all the skyline data in the major cluster to the
cluster head node. After receiving the remaining spatial skyline found in the assisted cluster, the
cluster head node makes the dominance relation judgment between the non-spatial attributes of the
spatial skyline in the assisted cluster and the existing skyline data Smaj in the major cluster. Finally,
we can find all the skyline data S of the sub-region in the cluster head node of the sub-region. At the
same time, each triangle area conducts the above distributed process as shown in Figure 14.
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The specific algorithm of the above process is shown as Algorithm 3. The time cost of the algorithm
is related with the number of nodes in the assisted cluster and the number of general skylines. We
suppose P as the number of nodes, S as the number of general skylines, the time complexity of the
algorithm is O(|P|(|S|log|CH(Q)| + log|P|)). After the query algorithm, as shown in Figure 15 for
the query results, the solid black points in the figure is the skyline query results in each area.

Sensors 2016, 16, 454 13 of 21 

 

shown in Figure 15 for the query results, the solid black points in the figure is the skyline query 
results in each area. 

 
Figure 15. The skyline query results in each area. 

Algorithm 3: Syline parallel query algorithm
Input: table SCH, table Visited, the data node tree T, the local queue L, the query node set Q, the 
major cluster, the assisted cluster 
Output: the skyline data in sub-region Slocal 
1: divide the skyline in SCH into the major cluster, 
2: conduct the distributed query algorithm based on the data node tree algorithm 
3: divide the data in ST into the assisted cluster and transmit them to the cluster head node 
4: at the same time, conduct the general skyline query on the non-spatial attribute of the data in 
the major cluster to get the skyline Smaj 
5: transmit all the skyline data in the major cluster to the cluster head node 
6: the cluster head node makes the dominance relation judgment between the non-spatial 
attributes of the spatial skyline in the assisted cluster with the existing skyline data Smaj in the 
major cluster 
7: then the cluster head node regards the data that are not dominated by others as the local 
skyline data of the sub-region Slocal 

4.2.2. Query Result Merging in the Inter-Region 

This paper proposes a skyline query recovery mechanism which can effectively improve the cut 
efficiency of the skyline queriesa while reducing the data computation in the skyline queries and 
reducing traffic in the network of the skyline query results and saving the network energy. This 
paper proposes the method of cutting among sub-regions and cutting inside sub-regions to conduct 
domination relation judgments on the skyline data in each region which can quickly cut the 
non-skyline data, and reduce the volume of data transmission across the network. 

(1) Cuts among sub-regions 

Each cluster head node establishes a local cluster head node table Sdata when its triangle area 
finishes calculating all the skyline data, the table includes the tuples of the whole skyline data 
which is shown in Table 1. 

Table 1. Format of the data tuples. 

Node ID 
Attribute 1 

Value 
Attribute 2 

Value 
Maximum 

Value 
Minimum

Value 
Multiplication of Each 

Attribute 
ID Attribute 1 Attribute 2 max min D-space 

The cluster head node computes maximum and minimum values of each tuple, respectively, 
and computes the minimum value of the max MIN-max and the minimum value of min MIN-min 
of the whole tuples in the cluster head node table Sdata, and is supposed to get the interested 
attribute values which are the smaller the better. If the MIN-max of the cluster head node is smaller 

Figure 15. The skyline query results in each area.

Algorithm 3: Syline parallel query algorithm

Input: table SCH, table Visited, the data node tree T, the local queue L, the query node set Q, the
major cluster, the assisted cluster
Output: the skyline data in sub-region Slocal
1: divide the skyline in SCH into the major cluster,
2: conduct the distributed query algorithm based on the data node tree algorithm
3: divide the data in ST into the assisted cluster and transmit them to the cluster head node
4: at the same time, conduct the general skyline query on the non-spatial attribute of the data in the
major cluster to get the skyline Smaj
5: transmit all the skyline data in the major cluster to the cluster head node
6: the cluster head node makes the dominance relation judgment between the non-spatial attributes
of the spatial skyline in the assisted cluster with the existing skyline data Smaj in the major cluster
7: then the cluster head node regards the data that are not dominated by others as the local skyline
data of the sub-region Slocal

4.2.2. Query Result Merging in the Inter-Region

This paper proposes a skyline query recovery mechanism which can effectively improve the cut
efficiency of the skyline queriesa while reducing the data computation in the skyline queries and
reducing traffic in the network of the skyline query results and saving the network energy. This
paper proposes the method of cutting among sub-regions and cutting inside sub-regions to conduct
domination relation judgments on the skyline data in each region which can quickly cut the non-skyline
data, and reduce the volume of data transmission across the network.
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(1) Cuts among sub-regions

Each cluster head node establishes a local cluster head node table Sdata when its triangle area
finishes calculating all the skyline data, the table includes the tuples of the whole skyline data which is
shown in Table 1.

Table 1. Format of the data tuples.

Node ID Attribute 1
Value

Attribute 2
Value

Maximum
Value

Minimum
Value

Multiplication of
Each Attribute

ID Attribute 1 Attribute 2 max min D-space

The cluster head node computes maximum and minimum values of each tuple, respectively, and
computes the minimum value of the max MIN-max and the minimum value of min MIN-min of the
whole tuples in the cluster head node table Sdata, and is supposed to get the interested attribute values
which are the smaller the better. If the MIN-max of the cluster head node is smaller than the MIN-min
of the other cluster head node, then the sub-regions of the latter are cut totally, as shown in Figure 16,
where ˆ represents the sub-regions which are cut.
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(2) Cuts inside sub-regions

In order to improve the skyline query efficiency and reduce the number of data comparisons and
the quantity of data transmitted, this paper sets a value of the D-space attribute which is calculated by
the multiplication of each attribute in the tuple to represent the dominance ability of a tuple [39]. The
calculated value is used to select a tuple possessing the biggest dominance ability as the cut tuple. As
the data inside each sub-region does not dominate each other, we only need to judge the dominance
relationships between the data in different sub-regions. As shown in Tables 2 and 3 for two cluster
head node Sdata tables, we calculate the D-space value of each tuple value in the table, and if the
D-space value of any tuple in one cluster head node table is greater than the D-space value of any tuple
in the other cluster head node data table, then we need to further judge the dominance relationship
between tuples. For example, If d2’ < d1’ < d2 < d1, then we need to judge the dominance relationship
between S2’ with S2 and S1, and still need to judge the dominance relationship between S1’ with S1
and S2 to avoid any non-skyline transmission in the network, and then cut the dominated tuples, and
the nodes which are not dominated will be transmitted to the monitor center. As shown in Figure 17,
this is the final result of the skyline query. The big solid point represents sensor nodes which are close
to residential areas and have higher pollution ability. By this query, we can quickly return the results
which meet the demand of users.
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Table 2. Data table S1 of cluster nodes.

ID Attribute 1 Attribute 2 Max Min D-Space

S1 v1 v11 m1 m11 d1
S2 v2 v22 m2 m22 d2

Table 3. Data table S1’ of cluster nodes.

ID Attribute 1 Attribute 2 Max Min D-Space

S1’ v1’ v11’ m1’ m11’ d1’
S2’ v2’ v22’ m2’ m22’ d2’

4.3. The Geometry-Based Distributed Skyline Query Algorithm

The algorithm conducts the general skyline queries on the non-spatial attributes of the data in the
major cluster to get the skyline Smaj, transmits all the skyline data in the major cluster to the cluster
head nodes, the cluster head nodes perform the dominance relation judgment between the non-spatial
attributes of the spatial skyline in assisted clusters with existing skyline data Smaj in the major cluster,
and the cluster head nodes regard the data that are not dominated by others as the local skyline data
of the sub-region. The collection process can cut all the local skyline of the dominated sub-region with
the cuts among sub-regions, then cut all dominated local skyline by the cuts inside sub-regions to get
the final skyline data and transmit them to the monitor center. The specific algorithm is shown as
Algorithm 4.

Algorithm 4: Geometry-based distributed spatial skyline query algorithm

Input: data node set P, query node set Q
Output: the skyline set S
1: divide the spatial region by Voronoi diagram
2: conduct cut of skyline region based on convex hull vertices, acquire part of the spatial skyline
data SCH, and transmit them to each nodes, and divide them into the major cluster
3: divide the space region into several triangle sub-region by the triangulation
4: for each closest node, conduct generation data node tree algorithm, conduct the general skyline
query on the data in major cluster, and return the result to the cluster head node
5: conduct distributed query algorithm.
6: conduct skyline parallel query algorithm
7: conduct the process of cut among sub-region, use the threshold to cut the dominated sub-region
8: conduct the process of cut inside sub-region, transmit the nodes which are not dominated to the
monitor center

The time cost of the division of space region using the Voronoi diagram is O(nlogn + 2n ´ 5),
then the cost of the triangulation on the division area is O(nlogn), and the cost of the execution of the
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skyline query is associated with the number of the data node P in the triangle area, and the time cost is
O(|P|(|S|log|CH(Q)| + log|P|)), so the whole time complexity is O(nlogn + n).

5. Experimental Performance Analysis

This paper proposes the method of geometry-based distributed spatial skyline query, it solves
the issue whereby existing methods cannot adapt to provide efficient specific queries on the spatial
distance of any region. The algorithm can reduce communication overhead in the network and
improve the network life of monitoring systems by using geometry-based distributed spatial skyline
queries. This paper discusses six aspects concerning the number of dominance comparisons between
nodes, the number of query nodes with dominance comparisons, the sensor energy consumption, the
response time of the query nodes, the execution efficiency percentage and the collection efficiency of
the skyline. This paper compares them with the methods used in wireless sensor networks. At present,
spatial and non-spatial skyline methods can be applied to query specific environmental monitoring
regions. Non-spatial skyline queries also shows high response time and node recovery time efficiency.
Therefore, we designed some corresponding comparative experiments for them. Voronoi-based Spatial
Skyline (VS2) [19] and Enhanced Spatial Skyline (ES) [20] are the spatial skyline query methods, the
Top-down filtering method of FIST (TF) [40] and Energy-Efficient Evaluation of Multiple Skyline
Queries over a Wireless Sensor Network (EMSE) [41] are the non-spatial skyline query methods. We
simulate a data set consisting of 1000 uniform distributed random locations in three-dimensional space.
The experiment uses synthetic data as a standard test data set [32–34,42–46]. The value in spatial
attributes of the nodes is in the range of [0, 1]. The hardware parameters used in the experiment are
shown in Table 4.

Table 4. Hardware parameters.

Hardware Parameter

CPU Pentium 4 (3.2 GHz)
Memory 4 GB

Disk 1 TB

The parameters used in the experiment are shown in Table 5.

Table 5. Experimental Parameters.

Parameter Setting

Dimensionality 3
Dataset cardinality 50, 100, 200, 500, 1000

Distribution of data points Independent
The number of points in a query 5, 10, 15, 20, 40

5.1. Number of Data Nodes with Dominance Comparisons

As shown in Figure 18, all the VS2 skylines will undoubtedly increase the dominance comparisons.
The monotone function used in GDSSky sorts the space distance, which only needs to compare the
dominance relation with the partial skyline, while the second stage of ES starts from a point to
recursively traverse the neighbor nodes and judges dominance relations with all existing skyline nodes.
The TF strategy sets local or global filters in the sensor node, and the filter computation brings a lot of
overhead, though the data detected by the sensor node is not beyond the range of super-cube, however,
it cannot judge whether the node is the skyline or not because of the change of the detected data of the
other nodes, however, it needs to acquire the detected data of this node, which will result in the more
domination relationship comparisons. The EMSE algorithm uses the global and local two processes,
allocates a signature for each tuple in the process of local optimization to indicate the query where
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the tuple belongs to, all tuples can only participate in a query, when the data in the network changes,
dominance relation the tuple is likely to be falsely judged. However, the paper uses the point location
queries mechanism without dominance comparisons between nodes to get most local skyline data.
The rectangular B can reduce the dominance comparisons between nodes at the later stage. The more
the number of sensor nodes is, the more obvious the effect.
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Figure 18. Number of data nodes and dominance comparisons.

5.2. Number of Query Nodes with Dominance Comparisons

Figure 19 shows the relationship between the number of query nodes with the dominance
comparisons. Figures 18 and 19 are similar, with the increase of the number of query nodes, the number
of nodes dominating comparisons increases relatively steadily, because all the above three spatial-based
algorithms—VS2, ES, GDSSky—use CH(Q) instead of Q, and the size of CH(Q) grows slower than the
size of Q. In the two algorithms based on the non-spatial—TF, EMSE—all sensor nodes are required
to participate in the query, that is, each dimension of all sensors including multi-dimensional spatial
attributes must be involved in the judgment of domination relations, which will no doubt greatly
increase the dominance relation comparisons. The VS2 algorithm starts from a data node to judge the
relationship with other nodes. This also increases the comparisons between the nodes. The GDSSky
algorithm we have proposed in this paper, firstly, finds all the interesting spatial skyline by the spatial
skyline query method, and cuts off amounts of non-skyline data, then it uses the non-spatial attributes
of the spatial skyline to conduct the general skyline queries among the sub-regions and inside the
sub-regions to cut respectively, and also reduces the number of dominance comparisons.
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5.3. Sensor Energy Consumption

As shown in Figure 20, the energy consumption in GDSSky is less than that of the other four
methods, because the VS2 algorithm transmits information to one node and calculates the dominance
relation in the overall recursion query phase and the ES algorithm in the second phase transmits to
the same node information to determine the dominance relation, and both consume energy. All the
sensor nodes and all the attributes of the algorithms of TF and EMSE are required to participate in the
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filter and the dominance relation judgment, and the multi-dimensional spatial attributes produces an
energy consumption which increases as the number of data nodes increases. Our strategy proposes a
method to acquire the skyline on the spatial attributes so that it can cut a large part of the non-skyline,
which can reduce the energy cost in the network. This paper cuts part of the non-spatial skyline first,
then based on it we conduct a general skyline query to reduce the dominance comparisons between
nodes and the data transmission, which reduces the energy consumption.
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Figure 20. Sensor energy consumption.

5.4. Effect of the Number of Query Nodes on the Response Time

Figure 21 shows the effect of the number of query nodes on the response time. The GDSSky
outperform the VS2 algorithm, TF algorithm and EMSE algorithm. Because they all reduce the
dominance relation judgment between nodes which are in or intersecting with CH(Q), they can reduce
lots of the dominance comparisons between nodes. As our algorithm is executed in a distributed
manner, compared with the ES algorithm is has a shorter response time. Our method uses the skyline
parallel query strategy in the sub-region to query the skyline in the major cluster. Meanwhile, it queries
the remaining spatial skyline data, which can improve the response time. In the TF algorithm, the base
station can determine the skyline result after obtaining relevant detected data of the sensor nodes, so
its query response time is long. In the EMSE strategy, with the increase of query nodes, as the distances
of each sensor node to each query nodes must be calculated, this greatly increases the response time.
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5.5. Execution Efficiency Percentage

Figure 22 shows that our method proposes the GDSSky method that acquires the remaining
skyline at sub-stations after receiving the partial skyline, so it can obtain all spatial skylines earlier than
the ES algorithm. The VS2 algorithm executes from one node recursively, so it gets a linear internal
skyline, and the arrival time of the external skyline is relatively slow. Meanwhile the TF and EMSE
algorithms calculate the skyline of all interested attributes together, due to the fact the dominance
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relationship comparisons are too many, so the data needs to be continuously transmitted within the
network, so the skyline data is obtained relatively slowly.
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5.6. Skyline Collection Efficiency

Figure 23 shows the effect of the number of sensor nodes on the skyline collection time, which
grows with the increase of the number of sensor nodes. However, the skyline collection time of our
method is the least, because our method will cut more non-spatial skyline with the increasing data
nodes by the spatial skyline query method. Based on it, the skyline query time will be short. Our
method conducts the queries and collection at the same time, querying the skyline on the non-spatial
attributes of the spatial skyline at the same time. Our method uses a clustering strategy to return all
the data back to the cluster head node so that it improves the efficiency. At the collection stage, it uses
the cuts among the sub-regions to cut the amount of non-skyline quickly, and then utilizes cuts inside
the sub-region to accurately cut the dominated nodes by judging the dominance relation through
the value of the D-space threshold, and at last transmits them to the monitor center, while the VS2
algorithm judges the dominance relationships one by one, then it uploads data to the monitor center
so the collection efficiency is low. Both ES and VS2 strategies completely query and collect the spatial
attributes, and then conduct the general skyline queries. These strategies have low efficiency. While
all the attributes of the TF and EMSE algorithms take part in the dominance relation judgment, the
growing number of comparisons increases the recovery time.
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6. Conclusions

To address environmental problems, this paper proposes a geometry-based distributed skyline
query strategy based on the characteristics of spatial data and aiming to solve the deficiencies of the
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existing skyline query strategies. We design a clustering strategy for the parallel execution of general
skyline queries on the non-spatial attributes of the spatial skyline, and conduct the spatial skyline
queries on the remaining spatial skyline data which are still not found by the method of the tree at the
same time, so it will be conducted in parallel. This paper proposes a distributed execution between
different sub-regions. Finally we propose the use of cuts among sub-regions and cuts in sub-regions
for the collection.

To solve the problem that the existing spatial and non-spatial skyline query strategies have large
energy consumption and poor real-time performance in querying the sensor network, this paper
used the concept of the geometry-based spatial skyline, which is based on the query problem of
environmental pollution monitoring systems, to reduce the network communication consumption,
and increase the network lifetime of the monitoring system.
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