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Abstract: The leaf chlorophyll content is one of the most important factors for the growth of winter
wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the
estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf
chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the
sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or
the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of
wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and
the reflectance spectra was developed using the partial least squares (PLS) and the back propagation
neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the
experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of
450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that
the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate
estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus,
the proposed approach can be widely used for winter wheat chlorophyll content analysis.

Keywords: winter wheat; leaf chlorophyll content; visible and near infrared sensors; agricultural
information acquisition; partial least squares

1. Introduction

Winter wheat is one of the most important crops in the north of China, and it is usually cultivated
with the right amount of nitrogen to achieve a high output. Therefore, nitrogen content is an important
indicator of the level of plant nutrition for winter wheat [1]. Studies showed that plant chlorophyll
content was positively correlated with nitrogen content [2]. Thus, the value of leaf chlorophyll
content can help to understand nutritional status of the plant, and scientifically guide the fertilization
management to ensure a good crop quality and yield [3,4]. This practice has an important significance
for the modern precision agriculture.

Generally, there are two methods to measure the leaf chlorophyll concentration: destructive testing
and nondestructive testing (NDT) [5]. Spectrophotometric method, a traditional destructive method
used in the laboratory, is based on the technique that measures leaf chlorophyll concentration by organic
extraction and spectrophotometric analysis. This destructive approach is accurate and is considered as
a benchmark for the estimation of chlorophyll content. However, it requires special equipment, which is
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expensive and time consuming [6]. Therefore, it could not meet the needs of rapid and non-destructive
testing. Spectroscopy technique based on the visible and near-infrared spectroscopy could be applied
to estimate the chlorophyll content as a rapid and non-destructive method [7], Ulissi et al. [8] proved
that the chlorophyll spectra range of the 496-694 nm was highly correlated with the analyzed leaf
N concentration, and reported a portable spectrophotometer of N concentration of tomato leaves based
on visible and near-infrared spectroscopy (VIS-NIR). The use of spectrometry sensors for crop nutrition
measure has been extensively studied [8-11]. Holer et al. [12] studied the relationship between the
value of the spectrum and the chlorophyll concentrations, and proposed the role of red edge position
for the vegetation chlorophyll concentration estimation. Fang et al. [13] used samples of rape leaves,
proposed a model to predict the relative leaf chlorophyll content using two parameters of red edge
position and the peak position of the green spectral band, and demonstrated that it was feasible to
predict the relative leaf chlorophyll content by spectral analysis.

However, various practical operational factors, as well as physical and natural properties
(for example, the surface scattering and optical path change because of the size of the solid particle
on the wheat leaf), affect the reflection spectra, and thus obscure the extraction of the quantitative
information. By using mathematical correction methods or preprocessing methods, a considerable
amount of such unwanted changes may be removed from the spectral data [14]. Both the standard
normal variable transformation (SNV) and the multiplicative scatter correction (MSC) are often used
in the simultaneous correction of additive and multiplicative effects on spectra [15]. Preprocessing is
very important to obtain the robust and accurate quantitative information for spectroscopy sensors.

Partial least squares (PLS) and BP neural network (BPNN) algorithm have been used in spectral
data analysis modeling for prediction in various systems. PLS is a linear and multivariate analysis
method widely used in spectral data analysis [7], while BPNN is a powerful method to solve the
nonlinear problems of classification and regression analysis [16,17]. Jamshidi ef al. [18] used MSC
and SNV to process spectral data, and applied the PLS modeling method to the non-destructive
estimation model for Valencia oranges taste characteristics based on the visible and near-infrared
spectroscopy. Chu et al. [19] used visible and near-infrared sensor image to estimate the soluble
protein content of oilseed rape leaves, where genetic algorithm—partial least square (GAPLS) was used
for sensitive wavelength selection. Yao et al. [20] studied the relationship between rice chlorophyll
content and spectral data, compared the effects of PLS, SMLR, PCR and BPNN modeling methods,
and proved that the rice leaf pigment PLS model of near infrared spectroscopy could achieve
better performance. Because PLS algorithm and BPNN algorithm have contributed to the modeling
application for spectral analysis of agricultural products, this paper takes these two algorithms to
study the relationship between the relative chlorophyll content and the spectral data of winter wheat
leaf, and modeling analysis.

Studies on the relative chlorophyll content of non-destructive testing mainly focus on chlorophyll
value (Soil and Plant Analysis Development, SPAD) measurement, which estimates the crop relative
chlorophyll content by averaging all the values of one point SPAD measured repeatedly. SPAD values
express the relative amounts of chlorophyll in crop leaves and have been demonstrated in several
studies [21-23].

In this paper, samples of winter wheat leaves were chosen from three different regions in
Shaanxi Province, China, the relationship between the relative chlorophyll content and the spectral
data of crop leaf in a selected area is studied. Then, the quantitative analysis model is developed and
its efficiency is verified. The rest of this paper is organized as follows, after representing the collection
of the large number of samples used for studies, this paper addresses the preprocessing methods of the
spectral data. The next section describes the quantitative analysis model for the relation between the
leaf relative chlorophyll content and the reflectance spectra. This paper then presents the experimental
results and analysis. The final section discusses the research conclusions, and presents the proposed
approach for winter wheat leaf chlorophyll content analysis.
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2. Materials and Methods

The experimental materials used in this paper are winter wheat leaves selected from three
different regions in Shaanxi, China. The flowchart of modeling and analyzing for leaf chlorophyll
content estimation of winter wheat based on visible and near-infrared spectroscopy is given in Figure 1,
which gives a new approach to the study of wheat spectrum NDT.

Sample Collection
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v

Spectral data acquisition
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r v
Modeling dataset (85%) Testing dataset (15%)

v
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v

Modeling

Output Model

Figure 1. Flowchart of modeling and analyzing for leaf chlorophyll content estimation of winter wheat
based on visible and near-infrared spectroscopy.

2.1. Sample Collections

The experimental winter wheat leaves are selected from three different areas surrounding
Yangling town of Shaanxi Province in China. The three areas are the Arid and Semi-arid Agriculture
Institute of China (ASAIC), Juliang Farm with 200 hectares of grain base (JLFarm) and Rougu Town
with about 135 hectares of grain base (RGTown). A number of 100 sample leaves in each region, totally
300 samples, was chosen. The diversity of samples, which covers different areas of arid and semi-arid
and various influencing factors for the growth of wheat, can well avoid the problem of single condition
farmland and single sample modeling. Samples were collected from 15 to 30 March 2014, which is
the wheat jointing duration. A certain area region of every sample was selected, circled and taken
the field measurement of the chlorophyll content. Then, each leaf was put into a sample storage bag
marked with a unique number. Finally, the fresh samples picked with standard correct agricultural
sample collection methods were taken back to the Spectroscopy Laboratory in College of Information
Engineering in Northwest A&F University, China for scanning hyperspectral images. The blades can
remain fresh within 24 h.

2.2. Data Acquisition

In the experimental fields, the chlorophyll value of a certain area size of 1.43 cm? was measured
by CM-1000 at the distance of 30.5 cm and marked the measurement position. The CM-1000, used to
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measure the value of wheat chlorophyll in the fields, is a handheld chlorophyll meter produced by the
Spectrum Technologies, Inc., Aurora, IL, USA. At the distance of 30.5-183.0 cm, CM-1000 measures
the relative chlorophyll content of a certain area of the blade by the perception of 700 nm and 840 nm
reflection light. The size of the relative chlorophyll content is from 0 to 999 SPAD.

Then, the spectral data of the fresh samples was collected immediately using ImSpector N10E
high-spectrometer (SPECIM-Hyperspectral Imaging Solutions Company with Global Presence, Oulu,
Finland). Firstly, the lens was adjusted to focus on the object samples at the distance of 30.5 cm, the
translation stage and spin platform were set up, and the scan mode was chosen. Secondly, the black
and white were focused and corrected combining with the software. Finally, the leaves were placed on
the stage and scanned to obtain the hyperspectral image of the blades.

An example of the marked part selected from the hyperspectral image is given in Figure 2, which
shows a juxtaposition of four winter wheat leaves. For chlorophyll content measurement, a rectangular
area was selected and divided into two parts to avoid the veins, and the average spectral reflectance
image of the region was obtained [24]. In this research work, a range of 450-900 nm wavelength
reflectance spectral data was selected for data analysis and model. The raw reflectance spectra of
samples are shown in Figure 3, where the abscissa is the spectral wavelength and the vertical axis is the
spectral reflection coefficient. The reflection peak of about 550 nm is the green light reflection region.
The bandlength of 690-720 nm is the red edge region, which shows a negative correlation between its
peak sizes and the chlorophyll content [22].

Figure 2. Hyperspectral image of a juxtaposition of four winter wheat leaves and an interest region
marked in red.

0.8

0.8

0.4

Reflectivity

0.2 -

"o sd0sto 7po Bb0ath

Wavelength,/nm
Figure 3. Raw reflectance spectra of samples. The first reflectance spectrum is one sample of Juliang
Farm, the second is one sample of Rougu Town, and the third is one sample of the Arid and Semi-arid
Agriculture Institute of China. The peak at about 550 nm (a) represents the green light reflection region.
The band at 690-720 nm; (b) represents the near-infrared to red edge region.

2.3. Preprocessing of Reflectance Spectra

In the spectral analysis, it is an important step to use an appropriate method to carry on the data
preprocess. The main purpose of the preprocessing to the winter wheat leaf spectrum is to eliminate the
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influence of the prediction models, and various types of preprocessing are used to compare different
preprocessing methods for obtaining knowledge of the performance and the suitability of different
preprocessing methods when applied to the reflection spectra.

Some preprocessing methods more commonly used for spectrum are Smoothing, SNV, MSC,
and other derivatives [15,18]. SWS (Sliding Window Smoothing) is a weighted average method to
reduce noise of the spectral images, thereby improving the signal to noise ratio. MSC has a good
effect in solving the problem of non-uniform particle size on the surface of the samples. SNV is an
effective solution for measuring the change of light [18]. In this research, the spectral images were
preprocessed by SWS, MSC, SNV, SWS in combination with MSC (SWS-MSC) and SWS in combination
with SNV (SWS-SNV). Figure 4a—d shows the raw reflectance spectrum (a) preprocessed by the sliding
window smoothing; (b), the sliding window smoothing and multiplicative scatter correction; (c), the
sliding window smoothing and standard normal variable transformation; (d), where the samples
were from the Arid and Semi-arid Agriculture Institute, Yangling, China. It can be seen that the
absorbance difference between samples is significantly reduced. This difference can be approximately
considered as limitation only by the content of the difference caused by the material composition
and are the results of interactions with the near-infrared absorption of all components of the samples.
The influence of particle size has been eliminated and the scattering effect has been correspondingly
reduced. To quantify the preprocessing effect, the reflectance spectra were applied to predict the
chlorophyll content using PLS model. The best preprocessing method was chosen by the prediction.
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Figure 4. Raw reflectance spectrum (a) preprocessed by the sliding window smoothing; (b), the sliding
window smoothing and multiplicative scatter correction; (c), and the sliding window smoothing
and standard normal variable transformation; (d) The samples were from the Arid and Semi-arid

Agriculture Institute, Yangling, China.
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2.4. Prediction Model Using PLS

PLS regression is a principal component regression statistical method. It is a mathematical
optimization technology to find a linear model to represent the forecasting variables and observed
variables into a new space. Today, PLS regression is most widely used in the field of the spectral
data analysis. In order to obtain the best modeling effect, PLS simultaneously analyze the spectral
matrix and the concentration of the matrix decomposition, and the relationship between them is
also considered.

After the spectral data were preprocessed, the 300 samples were classified into three groups
according to the region sources. For the 100 samples in each group, 85 samples and 15 samples were
randomly chosen as the calibration sets and the prediction sets, respectively. The quantitative analysis
model between chlorophyll values and spectral data was established in the band length range of
450-900 nm based on PLS, and the SPAD values of the prediction dataset then were predicted. The
number of the principal components was selected by interactive testing. The prediction residual error
sum of square (Prpss) was used as the evaluation criteria [23]. Prgss was modeled by a certain number
of the principal components, the samples were predicted, and the differences between the predicted
values and the measured values were calculated. Pgrgsg is defined as

n d
Press = 2. > (pij = 1ij)° @

i=1j=1

where 7 is the number of the calibration dataset samples; d is the number of the principal components
for the model; p;; is the sample predictive value; and 7;; is the measured value of the sample. The model
has better predictive ability with smaller Prgss value. Figure 5 shows the relationship between
PRESS and the different principal components of ASAIC samples, where the horizontal axis is the
principal components and the vertical axis is PRESS value. It can be seen that the number of principal
components is 11 when PRESS reaches the minimum value. Using the principal component number of
11, the cumulative contribution rate of PLS analysis is 96.52%.
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Figure 5. Effects of different principal components.

2.5. Prediction Model by BPNN

Neural network is a statistical learning mechanism neurologically inspired. It has a strong pattern
recognition capability, which enables it to learn to represent a complex system with multivariable
inputs and outputs. BPNN is a popular neural network, which has the advantages of nonlinearity;,
parallel processing, fault-tolerance, self-adaptation, and self-learning. Therefore, the BPNN is the
incomparably superior in a variety of applications including prediction, data fitting, classification, and
system modeling.
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A typical BPNN has an input layer, one or more hidden layer(s), and an output layer. The input
layer is a layer which is connected with the external environment, and the condition of training
the neural network should be represented. The output layer is actually a model for the external
environment, and the number of the output neurons is directly related to the type of the task. The
hidden layer is a group of neurons that have an activation function, and provide an intermediate
layer between the input and the output layer. BPNN algorithm is designed to minimize the root mean
square error of a multi-layered feed forward perception of the actual output and the desired output.

In the hidden layer, the number of node has a great influence on the performance of the BPNN. If
the number of neurons are less to the complexity of the work, it cannot fully reflect the relationship
between the input and output variables. If more unnecessary neurons are to be set in the network,
over-fitting may occur. Usually, the number of neurons in the hidden layer is determined by the
empirical Equation (2), and the influence of different neuron numbers on the prediction of the model:

nl:\/m+a (2)

where 77 is the number of neurons in the hidden layer; n is the number of input neurons; m is the
number of output neurons; and 4 is a constant between 1 to 10.

The proposed neural network shown in Figure 6 which has one hidden layer, is to predict using
11 spectral variables (V;_spec,i=1, ... 11,) as the input vector and measuring the chlorophyll content
of wheat leaf as the output variable. The 11 spectral variables as the input vector were the reflectivity
of the wavelength at 501.2 nm, 535.0 nm, 550.5 nm, 575.0 nm, 711.4 nm, 728.2 nm, 749.8 nm, 769.0 nm,
788.2 nm, 841.0 nm and 886.6 nm. The intermediate hidden layer, which has the number of 12 nodes,
uses the tansig as the activation function, and the output layer uses the purelin function.

chlorophyll content
(SPAD)

Input layer ~ Hidden layer =~ Output layer

Figure 6. Structure of the proposed neural network for prediction of the chlorophyll content of
wheat leaf.

3. Experiments

In this study, 300 spectral images of winter wheat leaves total were selected to develop the model
of the leaf chlorophyll content. The prediction performance was evaluated by the root mean squared
error (Rysg) and correlation coefficient (R?).

3.1. PLS

After the sample spectral data were processed by SWS-MSC, the predictive model using PLS was
applied to predict the chlorophyll content of each 15 testing samples according to the different region
source respectively. The measured and predicted values of 15 testing samples of ASAIC samples are
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shown in Figure 7, where the horizontal axis is the number of the samples and the vertical axis is the
relative content of chlorophyll, in which the R? of the model is 0.8429 and the Rysg is 1.7369.
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Figure 7. Measurement and prediction values of testing dataset using PLS.

3.2. BPNN

The BPNN model is trained using the trainlm function. The training requirement accuracy is 0.001,
the maximum number of iterations is 1000, and the learning rate is 0.01. The predicted results for the
samples using the BPNN predicted model are shown in Figure 8, in which the R? is 0.8482 and the
RMSE is 1.7940.
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Figure 8. Measurement and prediction values of testing dataset using BPNN.

3.3. Results

The accuracy of the predicted value was evaluated by the correlation coefficient R?, and the root
mean square error Ryisg [25]. Rysk is calculated by:

®)

where y; is the measured value of sample i; §; is the predicted value; and 7 is the number of samples.

Tables 1-3 illustrate the predictive capabilities of the model for three group sample datasets,
respectively. It can be seen that the predictive performances achieved by using SWS-MSC and
SWS-SNV are better than those achieved by using MSC and SNV individually. The best result, the R? is
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larger than 0.8492 and the Rysg, is smaller than 1.7216, can be reached by using SWS-SNV. Experimental
results indicate that spectroscopy analysis can be applied to predict the chlorophyll content of a certain
area crop leaf and that both the model and methods have the advantage of universality.

Table 1. Predictive capabilities of testing dataset from the Arid and Semi-arid Agriculture Institute of
China (ASAIC) preprocessing by different method and modeling using the Partial least squares (PLS)
or BP neural network (BPNN): correlation coefficient (R?), and root mean square error (Rysg)-

Preprocessing Method Model R? Rmse
MSC BPNN 0.8256 1.9785

SNV BPNN 0.8141 1.8945

MSC PLS 0.8127 1.7269

SNV PLS 0.8116 1.7996
SWS-MSC BPNN 0.8482 1.7940
SWS-SNV BPNN 0.8454 1.7970
SWS-MSC PLS 0.8429 1.7369
SWS-SNV PLS 0.8492 1.7216

Table 2. Predictive capabilities of testing dataset from Juliang Farm.

Preprocessing Method Model R? Rmse
MSC BPNN 0.9287 1.4984

SNV BPNN 0.9294 1.6215

MSC PLS 0.9258 1.5487

SNV PLS 0.9125 1.4956
SWS-MSC BPNN 0.9548 1.5959
SWS-SNV BPNN 0.9521 1.7532
SWS-MSC PLS 0.9518 1.3535
SWS-SNV PLS 0.9597 1.3281

Table 3. Predictive capabilities of testing dataset from Rougu Town.

Preprocessing Method Model R? Rmse
MSC BPNN 0.9027 1.9210

SNV BPNN 0.8994 1.8561

MSC PLS 0.9026 1.6894

SNV PLS 0.9158 1.5962
SWS-MSC BPNN 0.9171 1.7760
SWS-SNV BPNN 0.9137 1.7184
SWS-MSC PLS 0.9269 1.5972
SWS-SNV PLS 0.9279 1.5948

4. Conclusions

Comparing the predictive efficiency based on PLS and BPNN model, and the preprocessing
using MSC, SNV, SWS-MSC, and SWS-SNYV, it can be seen that the preprocessing using SWS-MSC
or SWS-SNV is better than only using MSC or SNV regardless whether the different parts of the
sample datasets or the model. The experimental and comparison results indicate that the combination
of multiple preprocessing for spectral data is an effective way to improve the accuracy, and the
preprocessing using SWS-SNV and then modeling using PLS can achieve the most accurate estimation
with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. The predictive model
performances are good, and it can well meet the actual demand of the crop leaf relative chlorophyll
content NDT instead of averaging a certain number of single point values. The experimental results
show that the proposed approach using the PLS model with SWS-SNV preprocessing is feasible to
predict the relative chlorophyll content of a certain area of winter wheat leaf leaf area based on the
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visible and near-infrared spectroscopy sensors, and can achieve a better precision and accuracy. For the
further study, the proposed method could be applied to an available hand-held chlorophyll instrument
or an on-line field application.

Acknowledgments: This work was supported in part by the National Science and Technology Projects in
Rural Areas (2014BAD04B05), Natural Science Foundations of China (Grant No0.41371349), and the National High
Technology Research and Development Program of China (Grant No. 2013AA102302).

Author Contributions: The work presented here was carried out in collaboration between all authors.
Jianfeng Zhang contributed to the experiment conduction, data handling, and paper writing; Wenting Han
gave some good suggestions to the paper structure and revised it; Lvwen Huang edited the English language and
grammar; Zhiyong Zhang has gathered the experimental data and processed the spectrum data with Yimian Ma
and Yamin Hu. The authors are grateful to Jifeng Ning and Ming Gao for their assistance in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Huang, W,; Yang, Q.; Pu, R,; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy
Reflectance in Winter Wheat. Sensors 2014, 14, 20347-20359. [CrossRef] [PubMed]

2. Filella, I; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices
and discriminant analysis. Crop Sci. 1995, 35, 1400-1405. [CrossRef]

3. Menesatti, P.; Antonucci, F; Pallottino, F.; Roccuzzo, G.; Allegra, M.; Stagno, F.; Intrigliolo, F. Estimation of
plant nutritional status by VIS-NIR spectrophotometric analysis on orange leaves. Biosyst. Eng. 2010, 105,
448-454. [CrossRef]

4. Grattan, S.R.; Grieve, C.M. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78,
127-157. [CrossRef]

5. Mahdi, M.A.; Ahmed, A.A,; Derek, E.; Daniel, K.Y.T. A new image processing based technique to determine
chlorophyll in plants. American-Eurasian J. Agric. Agric. Sci. 2012, 12, 1323-1328.

6. Moberg, L.; Robertsson, G.; Karlberg, B. Spectrofluorimetric determination of chlorophylls and pheopigments
using parallel factor analysis. Talanta 2001, 54, 161-170. [CrossRef]

7. Liu, B; Yue, YM,; Li, R.; Shen, W.J.; Wang, K.L. Plant leaf chlorophyll content retrieval based on a field
imaging spectroscopy system. Sensors 2014, 14, 19910-19925. [CrossRef] [PubMed]

8.  Ulissi, V.; Antonucci, F,; Benincasa, P.; Farneselli, M.; Tosti, G.; Guiducci, M.; Tei, F.; Costa, C.; Pallottino, E,;
Pari, L.; et al. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy.
Sensors 2011, 11, 6411-6424. [CrossRef] [PubMed]

9. Peng, X.T.; Shi, T.Z.; Song, A.H.; Chen, Y.Y.; Gao, W.X. Estimating soil organic carbon using VIS/NIR
spectroscopy with SVMR and SPA methods. Remote Sens. 2014, 6, 2699-2717. [CrossRef]

10.  Yao, X.E; Yao, X,; Jia, W.Q.; Tian, Y.C.; Ni, J.; Cao, W.X,; Zhu, Y. Comparison and intercalibration of vegetation
indices from different sensors for monitoring above-ground plant nitrogen uptake in winter wheat. Sensors
2013, 13, 3109-3130. [CrossRef] [PubMed]

11.  Francisco, J.J.; Sergio, C.G.; Gregorio, L.B.R.; Juan, A.V,; Jesus, A.G. Non-destructive determination of impact
bruising on table olives using ViseNIR spectroscopy. Biosyst. Eng. 2012, 113, 371-378.

12.  Horler, D.N.H.; Dockray, M.; Barver, J.; Barringer, A.R. Red edge measurements for remotely sensing plant
chlorophyll content. Adv. Space Res. 1983, 3, 273-277. [CrossRef]

13. Fang, H.; Song, H.Y.; Cao, E; He, Y.; Qiu, Z.]. Studies of the relationship between the spectral characteristics
and rape leaf chlorophyll content. Spectrosc. Spectr. Anal. 2007, 27, 1731-1734.

14. Afseth, N.K,; Segtnan, V.H.; Wold, J.P. Raman Spectra of Biological Samples: A Study of Preprocessing
Methods. Appl. Spectrosc. 2006, 60, 1358-1367. [CrossRef] [PubMed]

15. Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review.
Sensors 2015, 15, 11889-11927. [CrossRef] [PubMed]

16. Wu,J.; Yang, S.X; Tian, EC. A novel intelligent control system for flue-curing barns based on real-time image
features. Biosyst. Eng. 2014, 123, 77-90. [CrossRef]

17.  Martynenko, A.L; Yang, S.X. Biologically inspired neural computation for ginseng drying rate. Biosyst. Eng.
2006, 95, 385-396. [CrossRef]


http://dx.doi.org/10.3390/s141120347
http://www.ncbi.nlm.nih.gov/pubmed/25353983
http://dx.doi.org/10.2135/cropsci1995.0011183X003500050023x
http://dx.doi.org/10.1016/j.biosystemseng.2010.01.003
http://dx.doi.org/10.1016/S0304-4238(98)00192-7
http://dx.doi.org/10.1016/S0039-9140(00)00650-0
http://dx.doi.org/10.3390/s141019910
http://www.ncbi.nlm.nih.gov/pubmed/25341439
http://dx.doi.org/10.3390/s110606411
http://www.ncbi.nlm.nih.gov/pubmed/22163962
http://dx.doi.org/10.3390/rs6042699
http://dx.doi.org/10.3390/s130303109
http://www.ncbi.nlm.nih.gov/pubmed/23462622
http://dx.doi.org/10.1016/0273-1177(83)90130-8
http://dx.doi.org/10.1366/000370206779321454
http://www.ncbi.nlm.nih.gov/pubmed/17217584
http://dx.doi.org/10.3390/s150511889
http://www.ncbi.nlm.nih.gov/pubmed/26007736
http://dx.doi.org/10.1016/j.biosystemseng.2014.05.008
http://dx.doi.org/10.1016/j.biosystemseng.2006.07.009

Sensors 2016, 16, 437 11 of 11

18. Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Reflectance VIS/NIR spectroscopy for
nondestructive taste characterization of valencia oranges. Comput. Electron. Agric. 2012, 85, 64—69. [CrossRef]

19. Zhang, C,; Liu, F; Kong, W.; He, Y. Application of Visible and Near-Infrared Hyperspectral Imaging to
Determine Soluble Protein Content in Oilseed Rape Leaves. Sensors 2015, 15, 16576-16588. [CrossRef]
[PubMed]

20. Yao, X;; Tian, Y.C.; Jun, N.; Zhang, Y.S.; Cao, W.X.; Zhu, Y. Estimation of leaf pigment concentration in rice by
near infrared reflectance spectroscopy. Anal. Chem. 2012, 40, 589-595. [CrossRef]

21.  Shi, J.Y,; Zou, X.B.; Zhao, ].W.; Mao, H.P,; Wang, K.L.; Chen, Z.W. NIR spectral non-invasive measurement of
cucumber leaf chlorophyll content NDT near infrared spectroscopy. J. Agric. Mach. 2011, 42, 178-182.

22. Huang, H.; Wang, W.; Peng, YK.; Wu, ].H.; Gao, X.D.; Wang, X.; Zhang, J. Measurement of chlorophyll
content in wheat leaves using hyperspectral scanning. Spectrosc. Spectr. Anal. 2010, 30, 1811-1814.

23. Yang, H.Q.; Yao, ].S.; He, Y. SPAD prediction of leaf based on reflection spectroscopy. Spectrosc. Spectr. Anal.
2009, 29, 1607-1610.

24. Li, Q.B; Huang, Y.W,; Zhang, G.J.; Zhang, Q.X.; Li, X.; Wu, ]J.G. Chlorophyll content nondestructive
measurement method based on VIS/NIR spectroscopy. Spectrosc. Spectr Anal. 2009, 29, 3275-3278.

25. Chu, X.L.; Yuan, H.F,; Lu, W.Z. Progress and application of spectral data pretreatment and wavelength
selection method in NIR analytical technique. Process Chem. 2004, 16, 528-542.

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.compag.2012.03.008
http://dx.doi.org/10.3390/s150716576
http://www.ncbi.nlm.nih.gov/pubmed/26184198
http://dx.doi.org/10.3724/SP.J.1096.2012.10325
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Sample Collections 
	Data Acquisition 
	Preprocessing of Reflectance Spectra 
	Prediction Model Using PLS 
	Prediction Model by BPNN 

	Experiments 
	PLS 
	BPNN 
	Results 

	Conclusions 

