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Abstract: Particle number concentration and particle size are the two key parameters used to
characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most
attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration
and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion
charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two
circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement
elements into one chip, the overall size of which is 98 ˆ 38 ˆ 25 mm3. The experiment results
demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number
concentrations from 300 to 2.5 ˆ 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor
has a simple structure and small size, which is favorable for use in handheld devices.
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1. Introduction

Airborne nanoparticles or ultrafine particles [1,2] distributed in the atmospheric, indoor and
industrial environments seriously threaten human health [3,4]. The number concentration and particle
size are the two key parameters used to describe exposure to airborne nanoparticles or ultrafine
particles. The toxicology research results show that aerosol particles can deposit in different parts of
the human respiratory organs [4–7] according to the sizes of the particles. The particles with sizes of
less than 10 µm can enter the nasal cavity, those smaller than 7 µm can enter the throat, and if less than
2.5 µm, they enter the lungs. Nanoparticles or ultrafine particles can enter into the human lungs and
alveolar area, and further enter into the human blood circulation system [8,9].

Measurements of the size and concentration of aerosol particles mainly involve two kinds of
methods based on optical and electrical mechanisms [1]. Optical measurements require a sensor
or a particle detector in the detection zone; three of the most widely used sensors are the optical
particle counter (OPC) [10], the laser particle counter (LPC) [11], and the condensation particle counter
(CPC) [12]. However particle size detection by light scattering loses sensitivity when the size is less
than the wavelength of the light or laser used, so OPCs or LPCs can only detect particle sizes larger
than 0.1 µm [1]. CPCs can detect particles with sizes less than 0.1 µm, but to date the limitations of
their compactness, portability and cost do not allow their application for personal monitoring. The
particles with sizes ranging from 1 nm to 300 nm can be detected by electrical measurement. Electrical
measurements can be classified into two groups, according to their specific measurement principle.
One, exemplified by the Scanning Electrical Mobility Spectrometer (SEMS) [13] or Differential Mobility
Analyzer (DMA) [14] techniques, is based on the fact that the electric mobility of charged particles is
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inversely proportional to the particle size. However, these instruments cannot be handheld due to
their big volume and heavy weight. The other measurement methods are based on diffusion charging
whereby the average charge on particles corresponds roughly with their diameter in a certain size
range [1]. The aerosol particles are charged by gas ions which are ionized in a specific charger, and
then excess gas ions unattached to the aerosol particles are removed so as not to affect the subsequent
current measurement, and finally the number concentration and the particle size can be calculated
according to the charges measured on the particles. Some handheld instruments based on the charging
principle have been reported, such as the Nanomonitor [15,16], NanoCheck (Model 1.320, GSI), and
Discmini [17–19] devices. The Nanomonitor can measure number concentrations of ~106 /cm3 and
averaged particle sizes between 10–300 nm, the its configuration mainly consists of three sections, i.e.,
charging, precipitation and sensing. It measures the charge current using a block-shaped voltage that
varies between low and high voltages. At the low voltage, the excess ions are removed, while at the
high voltage, a part of the charged particles are removed as well. A current meter which is connected
via a Faraday cage records two different currents under low and high precipitating voltages. The
particle parameters of number concentration and size can be figured out from the detected currents.
The NanoCheck uses a variable ion trap voltage to obtain particle parameters which can measure
particles in the size range of 25–300 nm and number concentrations of 500–5 ˆ 105 /cm3 based on the
same operating principle as the Nanomonitor. The Discmini [19] can measure averaged particle sizes
between 15–400 nm and number concentrations from 700 to 8.4 ˆ 105 /cm3. The aerosol particles are
electrically charged in a corona discharger and detected in two stages. Small particles are deposited
in the diffusion stage with a stack of stainless steel screens, while larger particles pass through the
diffusion stage and are detected in the filter stage which contains a HEPA filter. The Nanomonitor, the
NanoCheck and the Discmini all use Faraday cages, ion-traps and/or a stack of stainless steel screens
to detect the charge currents which have elaborate structures, hindering further miniaturization.

Another kind of particle detector is based on a resonant cantilever [20–22]. Wasisto et al.
designed an airborne nanoparticle detector based on a microelectromechanical (MEMS) silicon resonant
cantilever which can only detect the aerosol mass concentration [20]. The cantilevers were fabricated
by using silicon bulk MEMS processes. Some new chargers fabricated by using nanomaterials have
emerged as well. Hwang et al. designed a ZnO nanowire charger [23] for aerosol particle charging.

In this study, we developed a micro aerosol sensor, which can detect monodisperse aerosol particle
number concentrations in the range of 300–2.5 ˆ 104 /cm3 and particle sizes in the range of 50–253 nm
based on the diffusion charging principle. The aerosol sensor consists of three essential sections, the
charging, precipitation and measurement sections. The three sections are integrated into one chip,
composed of a couple of planar electrodes printed on two parallel-assembled circuit boards rather
than elaborate structures, such as ion traps and Faraday cages, so as to make the sensor simple and
amenable to miniaturization.

2. Theory of Operation

The aerosol sensor is based on the fact that the average charge q per particle and the particle size
dp have a certain exponential relationship [24] which can be expressed as follows:

q
`

dp
˘

“ c ¨ dp
x (1)

where c is a constant determined through sensor calibration, x is a coefficient determined by the value
of Ni¨tr (Fuchs theory). Ni is the number concentration of ions in the charging section, tr is the exposure
time of particles exposed to ions in the charging section. In general, the coefficient x is close to 1, which
indicates a substantially linear relationship between the average charge and the particle size [1,25].

A schematic overview of the aerosol sensor is given in Figure 1. The aerosol sensor consists of
three sections: charging section, precipitation section and measurement section, in each of which a pair
of parallel electrodes are located and distributed along the flow channel. Firstly the aerosol particles
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and gas ion are electrically charged via diffusion charging in the charging section, where the charges
are generated by a corona discharger with a tungsten needle-tip electrode loaded with a sufficiently
high voltage (named corona discharge voltage) to ionize the surrounding air. Then the charged aerosol
particles enter into the precipitation section, where a square signal with low and high voltages of V1

and V2 is imposed onto two opposite planar electrodes with a frequency of 0.1 Hz. At the V1 stage all
gas ions are deposited on the planar electrodes in the precipitation section, and all charged aerosol
particles pass through the precipitation section, deposit on the planar electrodes in the measurement
section and export a total electrical current I1. At the V2 stage all gas ions and a part of the charged
aerosol particles are deposited in the precipitation section, and the rest of the charged aerosol particles
pass through the precipitation section, arrive at the measurement section and produce a total electrical
current I2. The number concentration and the particle size can be figured out from the measurement
currents I1 and I2 as follows [16]:

N “ SN ¨ pI1 ´ I2q (2)

dp “ Sd ¨
I1

I1 ´ I2
(3)

where N refers to the number concentration, dp refers to the particle size, I1 and I2 are the sensor output
currents that correspond with the precipitating voltages V1 and V2, respectively. SN and Sd are the
constants dependent on the sensor geometry and working conditions.
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Figure 1. (a) The principle structure of the proposed aerosol sensor; and (b) Three-dimensional 
structure model diagram of the proposed aerosol sensor. 

3. Experimental Setup 

Figure 2 shows the schematic diagram of the experimental setup for testing the developed 
aerosol sensor assessed with monodisperse airborne ultrafine particles. The experimental system 
involves an aerosol generator (ATM-220, TOPAS, Frankfurt, Germany), diffusion dryer (DDU-570, 
TOPAS), DMA (Model 3085, TSI, St. Paul, MN, USA), neutralizer (Model 3087, TSI), CPC (Model 
3772, TSI), electrometer (Model 6430, Keithley, Cleveland, OH, USA) and the developed aerosol 

Figure 1. (a) The principle structure of the proposed aerosol sensor; and (b) Three-dimensional
structure model diagram of the proposed aerosol sensor.

3. Experimental Setup

Figure 2 shows the schematic diagram of the experimental setup for testing the developed
aerosol sensor assessed with monodisperse airborne ultrafine particles. The experimental system
involves an aerosol generator (ATM-220, TOPAS, Frankfurt, Germany), diffusion dryer (DDU-570,
TOPAS), DMA (Model 3085, TSI, St. Paul, MN, USA), neutralizer (Model 3087, TSI), CPC (Model
3772, TSI), electrometer (Model 6430, Keithley, Cleveland, OH, USA) and the developed aerosol
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sensor. Polydisperse sodium chloride (NaCl) aerosol particles were generated by the aerosol generator,
then the diffusion dryer absorbed excess water in the polydisperse aerosol. The DMA was used to
select mono-sized aerosol particles according to their electrical mobility, and the charges existing
in the aerosol particles were neutralized by the neutralizer to ensure all charged particles had been
neutralized before entering into the aerosol sensor. The subsequent CPC accurately counted the
number concentration. The selected monodisperse aerosol particles successively entered into the
charging, precipitation and measurement sections of the aerosol sensor. The measurement currents
were detected in real time by using the Keithley 6430 electrometer which has a peak-to-peak noise
of 0.4 fA. The output frequency of the sensor was 0.1 Hz. The flow rate of the aerosol flow was set
as 0.4 LPM.
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voltage until the charge current achieved saturation while the precipitation electrodes were floating, 
which ensured all charged aerosol particles to be detected could be collected by the measurement 
section. The square voltages applied on the precipitation electrodes was determined by the criteria 
that the low voltage was used for depositing the excess gas ions except the charged aerosol particles 
onto the precipitation section and the high voltage was for depositing a part of the charged aerosol 
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Figure 2. Schematic diagram of the experimental setup for testing the aerosol sensor.

4. Preliminary Experiments

In order to determine the number concentration and particle size of monodisperse aerosol particles,
a series of preliminary experiments needed to be conducted. The first preliminary experiments were
conducted to determine the optimal working conditions for the aerosol sensor. The corona discharge
voltage, the square voltages applied on the precipitation electrodes, and the voltage imposed on
the measurement electrodes for collecting the charge current were tested and optimized. Firstly the
corona discharge voltage of the aerosol sensor was determined by gradually increasing the voltage
on the charging section until the corona discharge occurred and self-sustained. Then, the discharge
voltage was maintained. The measurement voltage imposed on the measurement electrodes was
determined by increasing the magnitude of the measurement voltage until the charge current achieved
saturation while the precipitation electrodes were floating, which ensured all charged aerosol particles
to be detected could be collected by the measurement section. The square voltages applied on the
precipitation electrodes was determined by the criteria that the low voltage was used for depositing
the excess gas ions except the charged aerosol particles onto the precipitation section and the high
voltage was for depositing a part of the charged aerosol particles onto the precipitation section. For
our developed sensor, the corona voltage was finally set as 1400 V, the low and high voltages of the
precipitation square signal were set as 0.9 V and 3 V, respectively, while the voltage imposed on the
measurement electrodes was ´5 V.
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The second experiments were conducted to determine the initial parameters for the aerosol sensor.
Two conditions with and without diffusion charging were tested, respectively. In the experiments,
pure air without an aerosol was used as the gas medium and the precipitation section was switched off.
The experimental results are shown in Table 1, where the currents were collected at the measurement
section when the charging section was turned off and on, respectively. The initial parameters were
used to test the initial condition of the sensor, for example the average current under air without
charging indicates the leakage current of the sensor.

Table 1. The initial parameters for the aerosol sensor.

Conditions Average Current (fA) Standard Deviation (fA)

Air without charging ´41.4 ´1.4
Air with diffusion charging ´83.7 ´7.6

5. Results and Discussion

Monodisperse NaCl aerosol particles with particle sizes in the range of 50–253 nm and number
concentrations in the range of 300–2.5 ˆ 104 /cm3 were measured by using the developed aerosol
sensor. Figure 3 shows the results of the tested current I1 as a function of the particles’ value of N¨dp.
Figure 3 indicates a linear relationship between I1 and N¨dp with a correlation coefficient of R2 = 0.9579.
The results are in good agreement with a previous report [17].
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Figure 3. The relationship between N¨dp and I1 for the measurement of monodisperse aerosols with
particle sizes in the range of 50–253 nm and number concentrations in the range of 300–2.5 ˆ 104 /cm3.

Figures 4 and 5 show the relationship between the particle number concentration N and
the measured I1 ´ I2, and the relationship between the aerosol particle size dp and the measured
I1/(I1 ´ I2), respectively. The results indicate that the size domain displayed a turning point at
dp = 150 nm. The number concentration N exhibited different linear relationships with the measured
I1 ´ I2 in two regions of 50 < dp < 150 nm and 150 < dp < 253 nm, respectively. The relationship between
the particle size dp and the measured I1/(I1 ´ I2) was similar. Linear fits were conducted for the results
and the relationships could be expressed as follows:

For 50 < dp < 150 nm:
N “ 229.49 ¨ pI1 ´ I2q ´ 118484 (4)

dp “ 150.81 ¨
I1

I1 ´ I2
´ 259.31 (5)

For 150 < dp < 253 nm:
N “ 7.4064 ¨ pI1 ´ I2q ´ 2300 (6)
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dp “ 246.2 ¨
I1

I1 ´ I2
´ 247.63 (7)
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Figure 5. The relationship between dp and I1/(I1 ´ I2) for testing monodisperse aerosols with number
concentrations in the range of 300–2.5 ˆ 104 /cm3.

The change at the turning point of dp = 150 nm might be attributed to the variation of the particle
flow behavior. The Knudsen number Kn “ 2λ{dp, referring to the ratio of the gas’ molecular mean
free path to the particle dimension, determines the type of particle flow. At normal temperature and
pressure (NTP), the gas molecular mean free path is λ “ 66.4 nm [1]. It is presumed that at dp < 150 nm
the aerosol particle flow presents a slip flow regime, but a continuum regime flow at dp > 150 nm.
The transformation of the flow behavior affects the particle diffusion charging and thus changes the
relationships between the measurement currents and the particle parameters [19].

Based on the abovementioned analysis, the aerosol sensor figures out the measured aerosol
number concentration from the relationship between N and I1 ´ I2 shown in Figure 4, and then
derives the measured particle size from the relationship between N¨dp and I1 shown in Figure 3. The
comparison between the measured results by the aerosol sensor and the reference data are shown in
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Figure 6, where the reference data of the number concentration and the particle size were detected by
CPC and DMA, respectively.
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number concentration and particle size, which were 6.7% and 3.8%, respectively. The experimental 
results proved the effectiveness of the aerosol sensor for detecting the number concentration and the 
particle size of monodisperse ultrafine aerosols. Actually the developed aerosol sensor can detect 
not only monodisperse aerosol particles but also polydisperse aerosol particles with normal 
distribution based on the same diffusion charging theory. The detected particle size is the 
number-averaged particle diameter of the polydisperse aerosol. For measuring polydisperse aerosol 
particles, a calibration experiment using standard polydisperse particles with a normal distribution 
is required prior to the particle detection. Compared with existing instruments [26,27] using 
different particle types (e.g., NaCl, PSL, DOP) and other on-field micro-aerosol sensors, some 
features of the performance of the sensor still needs to be improved on, such as measurement 
accuracy, miniaturization, and applications with polydisperse particles.  
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Number concentration 6.7% 21% 0.03% 

Aerosol particle size 3.8% 13.8% 0.1% 
  

Figure 6. (a) Comparison of results measured by the aerosol sensor and reference data determined
by CPC for number concentration; and (b) comparison of results measured by the aerosol sensor and
reference data determined by DMA for particle size.

Table 2 lists the mean square deviations of the sensor results from the reference data for the
number concentration and particle size, which were 6.7% and 3.8%, respectively. The experimental
results proved the effectiveness of the aerosol sensor for detecting the number concentration and the
particle size of monodisperse ultrafine aerosols. Actually the developed aerosol sensor can detect not
only monodisperse aerosol particles but also polydisperse aerosol particles with normal distribution
based on the same diffusion charging theory. The detected particle size is the number-averaged particle
diameter of the polydisperse aerosol. For measuring polydisperse aerosol particles, a calibration
experiment using standard polydisperse particles with a normal distribution is required prior to the
particle detection. Compared with existing instruments [26,27] using different particle types (e.g.,
NaCl, PSL, DOP) and other on-field micro-aerosol sensors, some features of the performance of the
sensor still needs to be improved on, such as measurement accuracy, miniaturization, and applications
with polydisperse particles.
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Table 2. The deviations of the measured results by aerosol sensor from reference data.

Parameter Mean Square Deviation Maximum Deviation Minimum Deviation

Number concentration 6.7% 21% 0.03%
Aerosol particle size 3.8% 13.8% 0.1%

6. Conclusions

This paper has presented a micro-aerosol sensor based on diffusion charging and electrical
detection to measure number concentrations of 300–2.5 ˆ 104 /cm3 and particle sizes of 50–253 nm.
The aerosol sensor is composed of planar electrodes printed on two circuit boards assembled in parallel,
which integrate charging, precipitating and measurement elements into one chip. The device is simple
and practical for handheld instruments. The comparison between the results of the proposed aerosol
sensor and the reference data of the measured number concentration and particle size of monodisperse
aerosol presented a satisfactory result and proved the effectiveness of the aerosol sensor for detecting
ultrafine aerosol particles. In the future, we will further improve the performances of the sensor on
such as measurement accuracy, miniaturization, and applications to polydisperse particles.
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