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Abstract: Scene-level geographic image classification has been a very challenging problem and has
become a research focus in recent years. This paper develops a supervised collaborative kernel coding
method based on a covariance descriptor (covd) for scene-level geographic image classification. First,
covd is introduced in the feature extraction process and, then, is transformed to a Euclidean feature by
a supervised collaborative kernel coding model. Furthermore, we develop an iterative optimization
framework to solve this model. Comprehensive evaluations on public high-resolution aerial image
dataset and comparisons with state-of-the-art methods show the superiority and effectiveness of
our approach.

Keywords: scene-level geographic image classification; covariance descriptor; collaborative
kernel coding

1. Introduction

Nowadays, high spatial resolution remote sensing images are easily acquired thanks to the rapid
development of satellite and remote sensing technology, which has endowed us with the opportunity
to interpret, analyze and understand the image. As a fundamental research area of remote sensing
image analysis, scene-level geographic image classification is of great importance for land use and
land cover (LULC) image classification [1-3], semantic interpretations of images [4], geographic
image retrieval [5-7] and forest type mapping [8], which has drawn increasing attention and scholars’
study [1-3,5,9-13]. Figure 1 shows geographic images whose spatial resolution is 30 m, 1 m and
0.3 m, respectively.

However, finding an efficient representation of the scene-level image is a challenging problem.
The bag of visual words (BOVW) model [14] is one of the most successful models. The works
in [2,5] detailed the application of BOVW on the scene-level image classification task. As is
illustrated in [2,5], BOVW can represent the image by compact representation through a visual
word counts histogram and provides further invariance to the image transformations. However, the
tradeoff between invariance and discriminability is controlled by the visual dictionary size. What
is more, BOVW disregards the information about the spatial layout of the features, which is of
great importance to scene-level image classification [2,15,16]. In order to overcome this shortcoming,
one successful extension of BOVW is spatial pyramid matching (SPM) [16], which partitions the image
into increasing finer sub-images and computes histograms of local features from each sub-image.
Although SPM is a computationally-efficient extension of BOVW and shows superior performance,
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it does not consider the relative spatial arrangement and only characterizes the absolute location of
the visual words in an image. From this point of view, SPM also limits the descriptive ability of the
scene-level geographic image representation. Hence, two new image representation models, which are
termed spatial co-occurrence kernel (SCK) [1] and spatial pyramid co-occurrence kernel (SPCK) [2],
are proposed by Yang and Newsam. What is more, in order to capture the absolute and relative spatial
relationships of BOVW, a pyramid of spatial relations (PSR) model is developed by Chen and Tian.
The work in [17] points out that the computational complexities of SCK and SPCK are high because
of the need to use nonlinear Mercer kernels and developed a linear form of the SCK. Besides, [10]
proposed an unsupervised feature learning method, in which the new sparse representations of the
feature descriptors are generated by the low-level feature descriptors.

Figure 1. Images with a resolution of: (a) 30 m; (b) 1 m; (c) 0.3 m.

On the other hand, the covariance descriptor (covd) proposed by by Tuzel [18] can be used for
feature representation of the image, which has been extensively adopted in vast computer vision
tasks, e.g., texture discrimination [18], visual saliency estimation [19], object detection [18,20] and
object tracking [21]. Covd is a covariance matrix of different features, e.g., color, gradient and
spatial location, and it holds certain rotation and scale invariance. However, how to model and
compute covd still remains a key problem. We all know that covd lies in the Riemannian manifold,
which is a non-Euclidean space. As a result, traditional mathematical modeling and computation in
Euclidean space cannot be directly utilized, which results in a great challenge. In [22], a discriminative
learning method is developed to formulate the classification problem on Riemannian space by covd,
which presents a kernel function and a log-Euclidean distance metric to solve Riemannian-Euclidean
transformation. In [23], a coding strategy is introduced, and the descriptor can be transformed into
a new feature; and then, extreme learning machine (ELM) can be used for dynamic texture video
classification. However, such a method separately optimizes the reconstruction error of the coding and
the classification error of ELM, and the design stage of coding and the classifier are totally independent.
In order to solve this problem, a supervised collaborative kernel coding approach incorporating the
linear classifier supervised term that can optimize both the reconstruction error and the linear classifier
simultaneously is developed. There are three contributions as follows:

1. A supervised collaborative kernel coding model, illustrated in Figure 2, is proposed. This model
can not only transform the covd to a discriminative feature representation, but also can obtain the
corresponding linear classifier.

2. Aniterative optimization framework is introduced to solve the supervised collaborative kernel
coding model.

3. Experiments on public high-resolution aerial image dataset validate that the proposed supervised
collaborative kernel coding model derives a satisfying performance on the scene-level geographic
image classification.
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The paper is organized as follows: After a review of our proposed methodology in Section 2,
Section 3 shows the iterative optimization approach. In Sections 4 and 5, we give the experiments
and conclusions.

|
. Linear classifier
Coding > . .
CovD parameter update . Classification

Collaborative kernel coding

Figure 2. Illustration of the supervised collaborative kernel coding model.

2. Overview of the Methodology

Figure 3 shows the overview of the proposed method, which consists of 3 stages, the
pre-processing stage, coding stage and classification stage. In the pre-processing stage, covd is
extracted as the initial feature representation of the scene-level geographic image. Then, in the coding
stage, the supervised collaborative kernel coding strategy involving dictionary coefficients, the coding
representation phase and the linear classification phase is presented. Finally, in the classification stage,
based on the dictionary coefficients and learned linear classifier, a label vector can be simply derived
through the linear classifier, the index corresponding to the largest value of which is the label of
a testing scene-level geographic image.

Scene-level
geographic image

Classification

Linear classifier

Pre-processing Stage Coding Stage Classification Stage

Figure 3. The overview of the proposed method. covd, covariance descriptor.

2.1. Covariance Descriptor

Covd was first proposed by Tuzel et al. [18] as a compact descriptor. Formally, let {f;},_; .. ;bea
feature vector denoting the feature points of p-dimension as color, gradient filter response, etc. Then, a
covd C of s x s dimensions of an image can be described as:

1
C =

=71 (fe —v)(fe —v)" 1)

=~

k=1

where d and v denote the pixel number and the mean value, respectively.
The feature vector f is established using the image intensity of each channel, the norm of the
first and second derivatives of intensity in the x and y directions. As for a geographic image, a

feature vector f, , = [CITz,x,y' cax’y, Cg,x,y]T of 15 dimensions is computed at each pixel (x,y), and here,
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CCry = [Iny, 55, |a IC| |aIC| | azlc ||, where I and C € {R, G, B} denote the the C channel intensity
image and the channel of the color, respectively.

The work in [18] points out that covd has at least three characteristics: (1) it is enough to describe
the image of different poses and views; (2) multiple features can be fused in a natural way through covd,
the diagonal and non-diagonal elements of which describe the variance and correlations of different

features, respectively; (3) comparing to other descriptors, such as raw values and the histogram, covd
s +s

is low-dimensional, and it has only different values due to symmetry.

Nevertheless, covd is a symmetrlc positive definite matrix. The key issue for a symmetric positive
definite matrix is how to model and compute it. As is illustrated in Figure 4, covd lies in a Riemannian
manifold [24], which is not a Euclidean space.

Originaljimage d

Riemannian
manifold Original image ¢

Original image a

Original image b

Figure 4. Sample geographic images and corresponding covariance descriptor (covd) features.

Accordingly, the mathematical modeling of covd is not the same as what we usually do in the
Euclidean space. Here, we adopt the idea of Ruiping Wang [22] and compute the distance of two covds
C; and C; using log-Euclidean distance [25,26]:

d(Cy, C2) = |[logm(Cy) — logm(Cy)||F 2

where logm is the logarithm computation of the matrix and || - ||r denotes the Frobenius norm.

Moreover, there is a tricky problem regarding how to use covd in the geographic image
classification. It is a fact that covd lies in a non-Euclidean space; thus, the traditional linear classifier
based on Euclidean space cannot be directly utilized. Therefore, in the following, how to solve this
problem is the theme.
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2.2. Supervised Collaborative Kernel Coding Model

As is shown in Figure 5, here, we propose a supervised collaborative kernel coding model, which
consists of two jointly working components: (1) the dictionary learning and feature representation
phase; and (2) the linear classification phase. First, the linear classifier is incorporated into the
dictionary learning and feature representation phase, making the resulting coding vector A more
discriminative. Then, based on the coding vector A, the linear classifier W is derived. In this way, the
objectives function in each phase are combined into a unified optimization framework, through which
a collaborative coding vector and the corresponding linear classifier can be simultaneously obtained.
At last, based on the dictionary coefficients V, testing signal s; is transformed into a feature vector,
which is used for linear classification directly.

r————pF—-—-—-

Training samples
X

|

, R
Linear classifier | |
|

|

Dictionary learning and
feature representation phase

Classification phase
Figure 5. The illustration of the proposed model.

Denote {xi}fi 1 € H as the training samples, where H is a Riemannian manifold. Through
the proper mapping function, {xi}fil are mapped into a higher dimensional space. Namely, let
®(-) : H — P be the nonlinear mapping process from the original space H into a high or infinite
dimensional space P. For convenience, the dimension of P is denoted as 7. The mapping function here
is associated with a kernel x(x;, x;) =< o7 (x;), ®(x;) >, where x;,x; € H. As for covd computation,
the Gaussian kernel is chosen as the mapping function for its superior performance in vast computer
vision tasks [27]:

k(xi, ;) = exp(—Bl[logm(x;) — logm(x;)||) ®)

where the decay parameter B is empirically set as 0.02 and x(x;, x;) is the Gaussian kernel between
two samples x; and x;.

The aim of dictionary learning is to empirically learn a dictionary adapted to the training sample
set; therefore, we need to determine some atoms dy, - - - ,dg € P to represent the training samples,
where K is the dictionary size and K < N. Let ®(X) = [®(x)1,- -, ®(x)n] € R™*K, and the kernel
dictionary learning process can be formulated as:

min||®(X) — D(D)A]; + Al|A[3 )

where A € RN is the coding matrix and A is the penalty parameter.

Thanks to the kernel trick [28,29], through the mapping function ®(-), the problem on the
Riemannian manifold can be transformed to a collaborative coding problem in the Euclidean space.
Nevertheless, since the number of dictionary atoms d; may be infinite, there exists a new challenge to
the dictionary learning process in such a formulation. Fortunately, [30,31] prove that the dictionary D
can be represented as D = ®(X)V, where V € RVN*K is a coefficient matrix. This indicates that the
training samples can linearly represent the dictionary in the feature space. As a result, Equation (4)
can be reformulated as:
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min |9 (X) - P(X)VA[3 + Al All3 ®)
Such a formulation provides two significant advantages: (1) the dictionary learning process
becomes searching the matrix V; (2) for any kernel function, this formulation reduces the dictionary
learning process to linear problems.
Now, we propose a novel objective function combining both the collaborative kernel coding phase
and classification phase as:

auin [[9(X) = ®(X)VAI -+ A[ A + 1L — WA+ ][ W] 3 ©
where ||®(X) — ®(X)VA||5 and ||[L — WA|[3 denotes the reconstruction error and the linear
classification error, respectively, and W represents the classifier parameters. 7, A and p are all
penalty parameters.

The derived dictionary through this formulation can generate more discriminative codes A, which
is of great importance to the performance of the classifier and also adaptive to the underlying structure
of training samples. The resulting codes A are then directly used for classification.

For a testing sample s;, through Equation (7), the feature representation code z; is firstly computed
with dictionary coefficients V. Then, in order to derive the label vector, we can use 1; = Wz;. The index
corresponding to the largest value of 1; is the label of s;.

min [|®(s) — ®(X)Vzi|[3 + Allz|[3 )

zj

3. Optimization Algorithm

There are three variables as V, A and W in the objective function Equation (6). Here, an iterative
optimization algorithm for each variable by fixing the other two is introduced. (Equation (6) is denoted
as F(V,A, W), and the obtained variables from the k-th and (k + 1)-th iteration are denoted as the
subscripts (k) and (k + 1), respectively,and k =0,--- , N —1).

Step 1: Initialization. We randomly set coefficient matrix Vo € RN*K. Next, we compute the
corresponding coding coefficient A by taking the derivative of A of Equation (6):

Ao = (VIK(X, X)V + A1) 'VIKT (X, X)) ®)

where K(X, X) is an N x N square matrix of which the (i, j)-th element is x(x;, x;).
Step 2: Fixing A, taking the derivative of V:

BF(V, A(k)/ W(k) )
oV =0 ©)
Additionally, the corresponding solution is:
Vi) = A(Tk) (A(k)A&))fl (10)

Step 3: Fixing V and A, taking the derivative of W, we can derive the optimal solution of W.

OF(V(11), Aky1), W)
IW

=0 (11)

Wiy = (1AG Al +oD) 1A (12)



Sensors 2016, 16, 392 7 of 14

Step 4: Fixing V and W, and taking the derivative of A:

IF (V1) A W)
A =0 (13)
Then, the optimal solution of A is:
Afrr) = (Vi KOO X) V() + AL+ g WL W) T (VT KO X) + W 1) (14)

Step 5: Iteration from Step 2 to Step 4 until convergence.

A whole algorithm summary, which includes the above optimization procedures, is given in
Algorithm 1, and the representative reconstruction error of the objective function is shown in Figure 6.
In case of the optimal A, we can derive the optimal solution of z based on Equation (7) as:

z; = (VIK(X,X)V + AI) 'VTK(s;, X) (15)

where K(s;, X) = [«(s;, x;), -+ ,x(s;, xn)].

Algorithm 1. The Iteration Optimization Procedure.

Input:

K(Y,Y) € RNXN

Output:

Ve RNXK,A c RKXN,W c RLXm

1. Initialization: Randomly set V ) with appropriate dimensions
and obtain initial A according to Equation (8).

2. while Not convergent

do

3. Fixing A ), update Vi, 1) according to Equation (10)

4. Fixing V ;1) and Ay, update Wy, 1) according to Equation (12)
5. Fixing Vi, 1) and W 1), update A ;1) according to Equation (14)
6. end while

35

30+ \ E
25 \\ 1

20+ | .

reconstruction error
e

10} \ .

O 1 | | | | | | 1 1
0 2 4 6 8 10 12 14 16 18 20

ieration number

Figure 6. The representative reconstruction error of the objective function.
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4. Experiments

4.1. Dataset and Experiment Setup

In this section we demonstrate the application of our method in the classification experiments
using a publicly available dataset [1], which includes twenty one scene categories with one hundred
images of each class. This dataset corresponds to various land LULC types, which is shown in Figure 7.

bascball diamond beach

parking lot

R
INEN

runway

Rl ol
§ VY ===
storage tanks

(ennis course

Figure 7. Samples from UCMERCED. Example geographic images associated with 21 categories are
shown here.
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For each category, it is randomly partitioned into five subsets, and each subset contains twenty
samples. During the experiments, one subset is used for testing, and the remaining four subsets are
used for training. Finally, we report the average classification accuracy.

4.2. Parameter Analysis

Equation (6) has four parameters, A, 1, p and dictionary size K, which need to be tuned. In order
to determine their values, n-fold cross-validation is adopted. Each parameter is investigated by fixing
the other parameters. It is noted that the initialization of K is 210.

Figure 8 shows the classification accuracy of each tuned parameter. It is easy to find that our
approach obtains the best performance (83.81%) when A = 0.001,7 =1, p = 0.1 (or 1).

0.84 0.84 0.85
83.33%

83.819% 83.81%
0.83

0.82

0.81

0.80

. 7 v : ) ; . : ; ;
10 10 10 10 10 0 107 10 10 w0 10 10 0 10* 102 10! 100 100 10
(a) (b) ©)

Figure 8. Evaluation of the effect on the classification accuracy for parameters: (a) A; (b) #7; and (c) p.

4.3. Experiment Results and Comparison

The following three baseline methods are designed for comparison:

1.  This method isolates the feature representation and classification process, which means that Ay is
used as the feature representation and that Wy is used as the linear classifier.

2. This method is the same as the proposed method, except that the covd is established
based on image intensities and the magnitude of the first and second gradients. Namely,

] ] 921, 921,
fx,y = [C};,x,y’ Cg,x,y' Cg,x,y]T and CCxy = [IC,x,yr (8735)2 + (Tyc)z’ (an)z + (aTyC)z]

3. This method is the same as baseline Method 1, except that the covd is a 9 x 9 matrix, which is the
same as baseline Method 2.

Figure 9 shows the classification accuracy versus dictionary size K. From this figure, we can find
some interesting results:

1. Our approach is always better than the three baseline methods, and when K = 357, our approach
obtains the best performance (87.14%).

2. Comparing to baseline Method 1, our proposed method obtains a higher classification accuracy,
which indicates the effectiveness of the optimization algorithm.

3.  Comparing the proposed method to baseline Method 2, the only difference is the covd. The
former uses a 15 x 15 matrix, which is a covariance format of intensity of each channel and
the norms of the first and second gradients of intensities, while the covd of the latterisa 9 x 9
covariance format of the intensity of each channel and the magnitude of the first and second
gradients. It is clear that both covds are not rotationally invariant, especially that the former covd
is not direction invariant. However, the proposed method obtains a higher classification accuracy.
This may indicate that the covariance format offsets the rotations to some extent.
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Figure 10. The average confusion matrices of: (a) baseline Method 1; (b) baseline Method 2; (c) baseline
Method 3; and (d) the proposed method.
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Figure 10 shows the confusion matrices of the baseline methods and our approach, respectively.
The classification accuracy of fifteen categories is more than 80%, and eleven categories are more
than 90%. Nevertheless, the classification accuracy of three categories, buildings, dense residential and
intersection, is less than 70%.

In order to analyze the proposed method, Figure 11 lists some representative misclassification
samples of the proposed method. Some misclassification couples, such as intersection/overpass,
overpass/runway and river/forest, shown in Figure 11 are hard to identify, even with our own eyes.

intersection
—>parking lot

intersection medium dense residential
overpass —>mobile home park >runway

storage tank

river sparse residential
—>mobile home park

>forest - golf course

Figure 11. The representative misclassification samples.

Besides, we report the classification accuracies of both baseline methods and our method over
groups rotated five times in Table 1. Then, the comparison with the classical approaches [1,2],
BOVW, SPM, SCK, BOVW + SCK, color histogram, such as RGB, HLS and CIE Lab, texture, SPCK,
BOVW + SPCK and SPCK + SPM, is shown in Figure 12.
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Table 1. classification accuracies over all five groups of our method.

Subset Number 1 2 3 4 5 Average

baseline Method 1  78.10%  79.29% 76.90% 78.81% 71.90%  77.00%
baseline Method 2 78.33%  75.48% 74.29% 75.71% 74.29%  75.62%
baseline Method 3  73.10% 71.43% 70.00% 73.33% 69.05%  71.38%
proposed Method  87.14%  84.52% 88.10% 87.14% 84.52%  86.28%

768% 753% 725% 77.7% 76.7% 812% 66.4% 76.9% 73.1% 761% 77.4% 86.28%
90% T T T T T T T T T

80% - -

70% -

60% |- —

50% - -

accuracy

40% |- 4

30% |

20%

10% —

o q. BOVW Color Color Color | " “BOVW SPCK =
BOVW  SPM SCK 44K RGB _HLS _Lab ™€ SFER gpek +gpyy Omrmethe

Figure 12. The comparison of our method with the state-of-the-art performance reported in
the literature on the dataset UCMERCED. BOVW, bag of visual words; SPM, spatial pyramid matching;
SCK, spatial co-occurrence kernel; SPCK, spatial pyramid co-occurrence kernel.

5. Conclusions

This paper proposes a novel supervised collaborative kernel coding model based on covd for
scene-level geographic image classification. Since covd lies in non-Euclidean space, the linear classifier,
which is based on Euclidean distance, cannot be utilized. Additionally, our main contribution is
explicitly integrating the discriminative feature coding and a linear classifier into the objective function.
Moreover, the solution to the new objective function is efficiently achieved by simply employing the
optimization algorithm. Experiments implemented on the UCMERCED dataset show the effectiveness
of our approach.
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