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Abstract: The present paper describes a vision-based simultaneous localization and mapping system
to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose
a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse
the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and
(iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and
orientation and their first derivatives, as well as the location of the landmarks observed by the camera.
The position sensor will be used only during the initialization period in order to recover the metric
scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully
vision-based navigation when the position sensor is not available. Experimental results obtained with
simulations and real data show the benefits of the inclusion of camera measurements into the system.
In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with
the estimates obtained using only the measurements from the position sensor, which are commonly
low-rated and highly noisy.
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1. Introduction

In recent years, many researchers have addressed the issue of making Unmanned Aerial Vehicles
(UAVs) more autonomous. In this context, the state estimation of the six degrees of freedom
(6-DoF) of a vehicle (i.e., its attitude and position) is a fundamental necessity for any application
involving autonomy.

Outdoors, this problem is seemingly solved with on-board Global Positioning System (GPS) and
Inertial Measurements Units (IMU) with their integrated version, the Inertial Navigation Systems
(INS). In fact, unknown, cluttered, and GPS-denied environments still pose a considerable challenge.
While attitude estimation is well-handled with available systems [1], GPS-based position estimation
has some drawbacks. Specifically GPS is not a reliable service as its availability can be limited in urban
canyons and is completely unavailable in indoor environments.

Moreover, even when GPS signal is available, the problem of position estimation could not be
solved in different scenarios. For instance, aerial inspection of industrial plants is an application
that requires performing precision manoeuvres in a complex environment. In this case, and due
to the several sources of error, the position obtained with a GPS can vary with an error of several
meters in just a few seconds for a static location [2]. In such a scenario, the use of GPS readings,
smoothed or not, as the feedback signal of a control system can be unreliable because the control
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system cannot distinguish between sensor noise and actual small movements of the vehicle. Therefore,
some additional sensory information (e.g., visual information) should be integrated into the system in
order to improve accuracy.

The aforementioned issues have motivated the move of recent works towards the use of cameras to
perform visual-based navigation in periods or circumstances when the position sensor is not available,
when it is partially available, or when a local navigation application requires high precision. Cameras
are well adapted for embedded systems because they are cheap, lightweight, and power-saving. In
this way, a combination of vision and inertial measurements is often chosen as means to estimate the
vehicle attitude and position. This combination can be performed with different approaches, as in [3],
where the vision measurement is provided by an external trajectometry system, directly yielding the
position and orientation of the robot. In [4], an external CCD camera provides the measurements.
Other on-board techniques were proposed by [5,6], where an embedded camera uses different markers
to provide a good estimation of position and orientation as well. This estimation was obtained using
the specific geometry of different markers and assuming that the marker’s position was known. The
same idea was exploited by [7], implemented with the low-cost Wii remote visual sensor. Finally,
visual sensing is sometimes provided by optical flow sensors to estimate the attitude, the position, and
the velocity, as in [8]. In these different approaches, position estimation is obtained by computer vision
and the attitude is either obtained by vision (see [3,6]) or by IMU sensors. In [9], even a single angular
measurement could significantly improve attitude and position estimation.

Another family of approaches (for instance [10,11]) relies on visual SLAM (Simultaneous
Localization and Mapping) methods. In this case, the mobile robot operates in a priori unknown
environment using only on-board sensors to simultaneously build a map of its surroundings and
locate itself inside this map.

Robot sensors have a large impact on the algorithm used in SLAM. Early SLAM approaches
focused on the use of range sensors, such as sonar rings and lasers, see [12–15]. Nevertheless, some
disadvantages appear when using range sensors in SLAM: correspondence or data association becomes
difficult, the sensors are expensive and have a limited working range, and some of them are limited
to 2D maps. For small unmanned aerial vehicles, there exist several limitations regarding the design
of the platform, mobility, and payload capacity that impose considerable restrictions. Once again,
cameras appear as a good option to be used in SLAM systems applied to UAVs.

In this work, the authors propose the use of a monocular camera looking downwards, integrated
into the aerial vehicle, in order to provide visual information of the ground. With such information,
the proposed visual-based SLAM system will be using visual information, attitude, and position
measurements in order to accurately estimate the full state of the vehicle as well as the position of the
landmarks observed by the camera.

Compared with another kind of visual configurations (e.g., stereo vision), the use of monocular
vision has some advantages in terms of weight, space, power consumption, and scalability. For example,
in stereo rigs, the fixed base-line between cameras can limit the operation range. On the other hand,
the use of monocular vision introduces some technical challenges. First, depth information cannot be
retrieved in a single frame, and hence, robust techniques to recover features depth are required. In this
work, a novel method is developed following the research initiated in [16]. The proposed approach is
based on a stochastic technique of triangulation to estimate features depth.

In this novel research, a new difficulty appears: the metric scale of the world cannot be retrieved
if monocular vision is used as the unique sensory input to the system. For example, in the experiments
presented in [17], the first ten measurements are aligned with the ground-truth in order to obtain the
scale of the environment. In [18], the monocular scale factor is retrieved from a feature pattern with
known dimensions. On the other hand, in many real scenarios GPS signal is available, at least for some
periods. For this reason, in this work it is assumed that the GPS signal is known during a short period
(for some seconds) at the beginning of the trajectory. Those GPS readings will be integrated into the
system in order to recover the metric scale of the world. This period of time is what authors consider
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the initialization period. After this period, the system can rely only on visual information to estimate
the position of the aerial vehicle.

The integration of GPS readings with visual information is not new in the literature, see [19].
In this sense, one of the contributions of this work is to demonstrate that the integration of very noisy
GPS measurements into the system for an initial short period is enough to recover the metric scale of
the world. Furthermore, the experiments demonstrate that for flight trajectories performed near the
origin of the navigation reference frame, it is better to avoid the integration of such GPS measurements
after the initialization period.

This paper is organized as follows: Section 2 states the problem description and assumptions.
Section 3 describes the proposed method in detail. Section 4 shows the experimental results, and finally
in Section 5, the conclusions of this work are presented.

2. System Specification

2.1. Assumptions

The platform that the authors consider in this work is a quadrotor freely moving in any direction
in R3 × SO(3), as shown in Figure 1. The quadrotor is equipped with a monocular camera, an attitude
and heading reference system (AHRS) and a position sensor (GPS). It is important to remark that the
proposed visual-based SLAM approach can be applied to another kind of platforms.

Figure 1. Coordinate systems: the local tangent frame is used as the navigation reference frame N .
AHRS: Attitude and Heading Reference System.

The proposed system is mainly intended for local autonomous vehicle navigation. Hence, the
local tangent frame is used as the navigation reference frame. The initial position of the vehicle defines
the origin of the navigation coordinates frame. The navigation system follows the NED (North, East,
Down) convention. In this work, the magnitudes expressed in the navigation, vehicle (robot), and
camera frame are denoted respectively by the superscripts N , R, and C. All the coordinate systems are
right-handed defined.

In this research, the sensors that have been taken into account are described and modelled in the
following subsections.
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2.2. Monocular Camera

As a vision system, a standard monocular camera has been considered. In this case, a
central-projection camera model is assumed. The image plane is located in front of the camera’s
origin where a non-inverted image is formed. The camera frame C is right-handed with the z-axis
pointing to the field of view.

The R3 ⇒ R2 projection of a 3D point located at pN = (x, y, z)T to the image plane (u, v) is
defined by:

u =
x′

z′
v =

y′

z′
(1)

where u and v are the coordinates of the image point p expressed in pixel units, and: x′

y′

z′

 =

 f 0 u0

0 f v0

0 0 1

 pC (2)

being pC the same 3D point pN , but expressed in the camera frame C by pC = RNC(pN − tN
c ). In this

case, it is assumed that the intrinsic parameters of the camera are already known: (i) focal length f ;
(ii) principal point u0, v0; and (iii) radial lens distortion k1, ..., kn.

Let RNC = (RRN RCR)T be the rotation matrix that transforms the navigation frame N to the
camera frame C. Let RCR be a known value, and RRN is computed from the current robot quaternion
qNR. Let tN

c = rN + RRNtR
c be the position of the camera’s optical center position expressed in the

navigation frame.
Inversely, a directional vector hC = [hC

x , hC
y , hC

z ]
T can be computed from the image point

coordinates u and v.

hC(u, v) =
[

u0 − u
f

,
v0 − v

f
, 1
]T

(3)

The vector hC points from the camera optical center position to the 3D point location. hC can be
expressed in the navigation frame by hN = RCNhC, where RCN = RRN RCR is the camera-to-navigation
rotation matrix. Note that for the R2 ⇒ R3 mapping case, defined in Equation (3), depth information
is lost.

The distortion caused by the camera lens is considered through the model described in [20].
Using this model (and its inverse form), undistorted pixel coordinates (u, v) can be obtained from the
distorted pixel (ud, vd), and conversely.

2.3. Attitude and Heading Reference System

An attitude and heading reference system (AHRS) is a combination of instruments
capable of maintaining an accurate estimation of the vehicle attitude while it is manoeuvring.
Recent manufacturing of solid-state or MEMS gyroscopes, accelerometers, magnetometers, and
powerful microcontrollers as well, have made possible the development of small, low-cost, and
reliable AHRS devices (e.g., [1,21,22]). For these reasons, in this work a loosely-coupled approach
is considered. In this case, the information of orientation provided by the AHRS is explicitly fused
into the system. Hence, the availability of high-rated (typically 50–100 Hz) attitude measurements
provided by a decoupled AHRS device are assumed.

Attitude measurements yN
a are modelled by:

yN
a = aN + va (4)

where aN = [φv, θv, ψv]T , being φv, θv, and ψv Euler angles denoting respectively the roll, pitch, and
yaw of the vehicle. Let va be a Gaussian white noise with power spectral density (PSD) σ2

a .
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2.4. GPS

The Global Positioning System (GPS) is a satellite-based navigation system that provides 3D
position information for objects on or near the Earth’s surface. The GPS system and global navigation
satellite systems have been described in detail in numerous studies (e.g., [2,23]). Several sources of
error affect the accuracy of GPS position measurements. The cumulative effect of each of these error
sources is called the user-equivalent range error (UERE). In [2], these errors are characterized as a
combination of slowly varying biases and random noise. In [24] it is stated that the total UERE is
approximately 4.0 m (σ), from which 0.4 m (σ) correspond to random noise. In Figure 2, a comparison
between the trajectory obtained with GPS and the actual one, flying in a small area, is shown.
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Figure 2. Example of GPS position measurements obtained for a flight performed by the aerial vehicle.
Top view (left plot) and lateral view (right plot) are shown for clarity. Flight trajectory has been
computed using the perspective on 4-point (P4P) method described in Section 4. Error drift in GPS
readings is noticeable. NED: North, East, Down.

In this work, it is assumed that position measurements yr can be obtained from the GPS unit, at
least at the beginning of the trajectory, and they are modelled by:

yr = rN + vr (5)

where vr is a Gaussian white noise with PSD σ2
r , and rN is the position of the vehicle.

Commonly, position measurements are obtained from GPS devices in geodetic coordinates
(latitude, longitude, and height). Therefore, in Equation (5) it is assumed that GPS position measurements
have been previously transformed to their corresponding local tangent frame coordinates. It is also
assumed that the offset between the GPS antenna and the vehicle frame has been taken into account in
the previous transformation.

2.5. Sensor Fusion Approach

The estimator proposed in this work is designed in order to estimate the full state of the vehicle,
which will contain the position and orientation of the vehicle and their first derivatives, as well as the
location of the landmarks observed by the camera.

Attitude estimation can be well-handled by the available systems in the vehicle, as has been
mentioned in the above subsections. Typically, the output of the AHRS is directly used as a feedback to
the control system for stabilizing the flying vehicle. On the other hand, the proposed method requires
the camera–vehicle to know its orientation in order to estimate its position, as will be discussed later in
the paper. In order to account for the uncertainties associated with the estimation provided by the
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AHRS, the orientation is included into the state vector (see Section 3.1) and is explicitly fused into the
system (see Section 3.4).

Regarding the problem of position estimation, it cannot be solved for applications that require
performing precise manoeuvres, even when GPS signal is available, as it can be inferred from the
example presented in Section 2.4. Therefore, some additional sensory information (e.g., monocular
vision) should be integrated into the system in order to improve its accuracy. On the other hand, one
of the most challenging aspects of working with monocular sensors has to do with the impossibility of
directly recovering the metric scale of the world. If no additional information is used, and a single
camera is used as the sole source of data to the system, the map and trajectory can only be recovered
without metric information [25].

Monocular vision and GPS are not suitable to be used separately for navigation purposes in some
scenarios. For this reason, the noisy data obtained from the GPS is added during the initialization
period in order to incorporate metric information into the system. Hence, after an initial period of
convergence, where the system is considered to be in the initialization mode, the system can operate
relying only on visual information to estimate the vehicle position.

3. Method Description

3.1. Problem Description

The main goal of the proposed method is to estimate the following system state x:

x = [xv, yN
1 , yN

2 , ..., yN
n ]T (6)

where xv represents the state of the unmanned aerial vehicle, and yN
i represents the location of the i-th

feature point in the environment. At the same time, xv is composed of:

xv = [qNR, ωR, rN , vN ]T (7)

where qNR = [q1, q2, q3, q4] represents the orientation of the vehicle respect to the world (navigation)
frame by a unit quaternion. Let ωR = [ωx, ωy, ωz] be the angular velocity of the robot expressed in the
same frame of reference. Let rN = [px, py, pz] represent the position of the vehicle (robot) expressed
in the navigation frame. Let vN = [vx, vy, vz] denote the linear velocity of the robot expressed in the
navigation frame. The location of a feature yN

i is parametrized in its euclidean form:

yN
i = [pxi , pyi , pzi ]

T (8)

In the remainder of the paper, the superscript N will be dropped from yN
i to avoid confusion.

The architecture of the system is defined by the a classical loop of prediction-update steps in the
Extended Kalman Filter (EKF) in its direct configuration. In this case, the vehicle state as well as the
feature estimates are propagated by the filter, see Figure 3.
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Figure 3. Block diagram showing the architecture of the system. EKF-SLAM: Extended Kalman Filter
Simultaneous Localization and Mapping.

3.2. Prediction

At the same frequency of the AHRS operation, the vehicle system state xv takes a step forward
through the following unconstrained constant-acceleration (discrete) model:

qNC
k+1 =

(
cos ‖w‖I4×4 +

sin ‖w‖
‖w‖ W

)
qNC

k

ωC
k+1 = ωC

k + ΩC

rN
k+1 = rN

k + vN
k ∆t

vN
k+1 = vN

k + VN

(9)

In the model represented by Equation (9), a closed form solution of q̇ = 1/2(W)q is used to
integrate the current velocity rotation ωC over the quaternion qNC. In this case w = [ωC

k+1∆t/2]T and:

W =


0 −w1 −w2 −w3

w1 0 −w3 w2

w2 w3 0 −w1

w3 −w2 w1 0

 (10)

At every step, it is assumed that there is an unknown linear and angular velocity with acceleration
zero-mean and known-covariance Gaussian processes σv and σω , producing an impulse of linear and
angular velocity: VN = σ2

v ∆t and ΩC = σ2
ω∆t.

It is assumed that the map features yi remain static (rigid scene assumption) so
xk+1 = [xv(k+1), y1(k), y2(k), ..., yn(k)]

T .
The state covariance matrix P takes a step forward by:

Pk+1 = ∇FxPk∇FT
x +∇FuQ∇FT

u (11)

where Q and the Jacobians ∇Fx, ∇Fu are defined as:

∇Fx =

[
∂ fv
∂x̂v

013×n

0n×13 In×n

]
,∇Fu =

[
∂ fv
∂u 013×n

0n×6 0n×n

]
, Q =

[
U 06×n

0n×6 0n×n

]
(12)
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Let ∂ fv
∂xv

be the derivatives of the equations of the nonlinear prediction model (Equation (9)) with respect

to the robot state xv. Let ∂ fv
∂u be the derivatives of the nonlinear prediction model with respect to the

unknown linear and angular velocity. The Jacobian calculation is a complicated but tractable matter of
differentiation, hence, no results are presented here. Uncertainties are incorporated into the system
by means of the process noise covariance matrix U = diag[σ2

a I3×3, σ2
ω I3×3], through parameters σ2

a
and σ2

ω.

3.3. Visual Aid

Depth information cannot be obtained in a single measurement when bearing sensors (e.g., a
projective camera) are used. To infer the depth of a feature, the sensor must observe this feature
repeatedly as the sensor freely moves through its environment, estimating the angle from the
feature to the sensor center. The difference between those angle measurements is the parallax angle.
Actually, parallax is the key that allows the estimation of features depth. In the case of indoor sequences,
a displacement of centimeters could be enough to produce parallax; on the other hand, the more
distant the feature, the more the sensor has to travel to produce parallax.

In monocular-based systems, the treatment of the features in the stochastic map (initialization,
measurement, etc.) is an important problem to address with direct implications in the robustness of
the system. In this work, a novel method is proposed in order to incorporate new features into the
system. In this approach, a single hypothesis is computed for the initial depth of features by means of
a stochastic technique of triangulation. The method is based on previous authors’ work [16], and new
contributions have been introduced in this research.

3.3.1. Detection of Candidate Points

The proposed method states that a minimum number of features yi is considered to be predicted
appearing in the image, otherwise new features should be added to the map. In this latter case,
new points are detected in the image through a random search. For this purpose, Shi-Tomasi corner
detector [26] is applied, but other detectors could be also used. These points in the image, which are
not yet added to the map, are called candidate points, see Figure 4. Only image areas free of both
candidate points and mapped features are considered to detect new points with the saliency operator.

Figure 4. Candidate points are detected randomly in image regions without map features or candidate
points. In this frame, the black rectangle indicates the current search region. Three new candidate
points have been detected (green cross-marks). Candidate points being tracked are indicated by
blue cross-marks. Visual features already mapped are indicated by circles. Red marks indicate
unsuccessful matches.
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At the k frame, when a visual feature is detected for the first time, the following entry cl is stored
in a table:

cl =
[
(tN

c0
)T , θ0, φ0, Pyci

, zuv

]
(13)

where zuv = [u, v] is the location in the image of the candidate point. Let yci = [tN
c0

, θ0, φ0]
T = h(x̂, zuv)

be a variable that models a 3D semi-line, defined on one side by the vertex tN
c0

, corresponding to the
current optical center coordinates of the camera expressed in the navigation frame, and pointing to
infinity on the other side, with azimuth and elevation θ0 and φ0, respectively, and:

θ0 = atan2(hN
y , hN

x )

φ0 = acos

(
hN

z√
(hN

x )2+(hN
y )2+(hN

z )2

)
(14)

where hN = [hN
x , hN

y , hN
z ]T is computed as indicated in Section 2.2. Pyi is a 5× 5 covariance matrix

which models the uncertainty of yci in the form of Pyci
= ∇Yci P∇YT

ci
, where P is the system covariance

matrix and ∇Yci is the Jacobian matrix formed by the partial derivatives of the function yci = h(x̂, zuv)

with respect to [x̂, zuv]T .
Also, a p × p pixel window, centered in [u, v] is extracted and related to the corresponding

candidate point.

3.3.2. Tracking of Candidate Points

To infer the depth of a feature, the sensor must observe this feature repeatedly until a minimum
parallax is reached. For this reason, it is necessary to have a method to track the location in the image
of candidate points whose initial depth must be computed. For feature points that have already
been included into the system state, there is enough information (e.g., depth) to define probability
regions where these points must lie based on the statistical information available in the system state
(see [27]). On the other hand, for candidate points, there is not yet information about depth nor
statistical correlations with other elements of the system. In this sense, one alternative is to use a
general-purpose decoupled tracking method that works on the images and does not need assumptions
about the system dynamics (e.g., [26]). Due to the lack of information about system dynamics, these
kinds of methods usually define regions of search with symmetric geometry and fixed size. This factor
can add some extra computational cost.

In this work, a novel technique to track candidate points is proposed. The idea is to take advantage
of the knowledge about the direction of the movement of the camera in order to define regions of search
defined by very thin ellipses. The ellipses are aligned with the epipolar lines where the candidate
points must lie.

At every subsequent frame k + 1,k + 2...k + n, the location of candidate points is tracked. In this
case, a candidate point is predicted to be appearing inside an elliptical region Sc centered in the point
[u, v], taken from cl , see Figure 5. In order to optimize the speed of the search, the major axis of the
ellipse is aligned with the epipolar line defined by image points e1 and e2.

The epipole e1 is computed by projecting tN
c0

, which is stored in cl , to the current image plane by
Equations (1) and (2). Because there is not depth information of the candidate point, an hypothetical
depth equal to one (d = 1) is chosen in order to determine a virtual 3D point pN which lies in the
semi-ray defined by cl . The epipole e2 is then computed by projecting this virtual 3D point pN through
Equations (1) and (2).

In this case, pN will model a 3D point located at:

pN = tN
c0
+ m (θ0, φ0) d (15)

where m(θ0, φ0) is a directional unitary vector defined by: m(θ0, φ0) = (cos θ0 sin φ0, sin θ0 sin φ0, cos φ0)
T .
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Figure 5. The established search region to match candidate points is constrained to ellipses aligned
with the epipolar line.

The orientation of the ellipse Sc is determined by αc = atan2(ey, ex), where ey, ex represents the
y and x coordinates, respectively, of e, and e = e2 − e1. The size of the ellipse Sc is determined by its
major and minor axis, respectively a and b.

The ellipse Sc is represented in its matrix form by:

Sc = Rc

[
a 0
0 b

]
RT

c

Rc =

[
cos αc − sin αc

sin αc cos αc

] (16)

The ellipse Sc represents a probability region where the candidate point must lie in the current
frame. The proposed tracking method is intended to be used during an initial short period of time.
During this period, some information will be gathered in order to compute a depth hypothesis for
each candidate point, prior to its initialization as a new map feature. For this reason, there is no extra
effort to obtain more robust variations in scale or a rotations descriptor. In this case, direct patch
cross-correlation is applied over all the image locations [ui, vi] ∈ Sc . If the score of a location [ui, vi],
determined by the best cross-correlation between the candidate patch and the n patches defined by the
region of search, is higher than a specific threshold, then this pixel location [ui, vi] is considered as the
current candidate point location. Thus, cl is updated with zuv = [ui, vi].

Unfortunately, because there is not yet reliable information about the depth of candidate points,
it is difficult to determine an optimal and adaptive size of the ellipse. In this case, a is left as a free
parameter to be chosen empirically as a function of the particularities of the application (e.g., maximum
velocity of the vehicle, video frame rate). For the application presented in this work, good results were
found with a value of a = 20 pixels.

On the other hand, it is possible to investigate the effects obtained by the variation of the relation
of (b/a) which determines the proportion of the ellipse. In Figure 6, it can be noted that the time
required to track a candidate point increases considerably as the ellipse tends to be a circle (left plot).
On the other hand, the number of candidate points being tracked is lower when the ellipse tends to be
a circle (middle plot). This is because some candidate points are lost when the ellipse is too thin, and
new candidate points must be detected. Even so, the total time required for the whole tracking process
of candidate points is much lower when the parameter b is chosen in order to define a very thin ellipse
(right plot). For the foregoing reason the value of parameter b is recommended to be ten times lower
than a.
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Figure 6. Results obtained by means of the variation of the relation between ellipse Sc axes (b/a).
(left plot): average tracking time for a candidate point; (middle plot): average number of candidate
points being tracked at each frame; (right plot): average total time per frame. These results were
obtained using the same methodology described in Section 4.2.

3.3.3. Estimating Candidate Points Depth

Every time that a new image location zuv = [u, v] is obtained for a candidate point cl , an hypothesis
of depth di is computed by:

di =
‖el‖ sin γ

sin αi
(17)

Let αi = π − (β + γ) be the parallax. Let el = tN
c0
− tN

c indicate the displacement of the camera
from the first observation position to its current position, with:

β = cos−1
(

h1 · el
‖h1‖‖el‖

)
γ = cos−1

(
−h2 · el
‖h2‖‖el‖

)
(18)

Let β be the angle defined by h1 and el . Let h1 be the normalized directional vector
m(θi, φi) = (cos θi sin φi, sin θi sin φi, cos φi)

T computed taking θi, φi from cl , and where γ is the angle
defined by h2 and −el . Let h2 = hN be the directional vector pointing from the current camera optical
center to the feature location, computed as indicated in Section 2.2 from the current measurement zuv,
see Figure 7.

Figure 7. An hypothesis di for the depth of a candidate point is computed by triangulating between
the first location when the point was detected and the current location of the vehicle.
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At each step, there may be a considerable variation in depth computed by triangulation, specially
for low parallax. In previous authors’ work [28], it is shown that estimates are greatly improved
by filtering the hypotheses of depth di with a simple low-pass filter. Moreover, in this work it
is demonstrated that only a few degrees of parallax is enough to reduce the uncertainty in the
depth estimation. When parallax αi is greater than a specific threshold (αi > αmin) a new feature
ynew = [pxi , pyi , pzi ]

T = h(cl , d) is added to the system state vector x:

xnew = [xold; ynew]
T (19)

where
ynew = tN

c0
+ m(θi, φi)di (20)

The system state covariance matrix P is updated by:

Pnew =

[
Pold 0

0 Pynew

]
(21)

where Pynew is the 3× 3 covariance matrix which models the uncertainty of the new feature ynew, and:

Pynew = ∇Y

[
Pyi 0
0 σ2

d

]
∇YT (22)

In Equation (22), Pyi is taken from cl (Equation (13)). Let σ2
d be a parameter modelling the

uncertainty of process of depth estimation. Let ∇Y be the Jacobian matrix formed by the partial
derivatives of the function ynew = h(cl , d) with respect to [(tN

c0
)T , θ0, φ0, d]T .

3.3.4. Visual Updates and Map Management

The process of tracking visual features yi is conducted by means of an active search
technique [27]. In this case, and in a different way from the tracking method described
in Section 3.3.2, the search region is defined by the innovation covariance matrix Si, where
Si = ∇HiPk+1∇HT

i + ξi.
Assuming that for the current frame, n visual measurements are available for features y1, y2, ..., yn,

then the filter is updated with the Kalman update equations as follows:
xk = xk+1 + K(z− h)
Pk = Pk+1 − KSKT

K = Pk+1∇HTS−1

S = ∇HPk+1∇HT + ξ

(23)

where z = [zuv1 , zuv2 , ..., zuvn ]
T is the current measurement vector. Let h = [h1, h2, ..., hn]T be the current

prediction measurement vector. The measurement prediction model hi = (u, v) = h(xv, yi) has been
defined in Section 2.2. Let K be the Kalman gain. Let S be the innovation covariance matrix. Let
∇H = [∇H1,∇H2, ...∇Hn]T be the Jacobian formed by the partial derivatives of the measurement
prediction model h(x) with respect to the state x.

∇Hi =

[
∂hi
∂xv

, ...02×3...
∂hi
∂yi

, ...02×3...
]

(24)

Let ∂hi
∂xv

be the partial derivatives of the equations of the measurement prediction model hi with

respect to the robot state xv. Let ∂hi
∂yi

be the partial derivatives of hi with respect to feature yi. Note that
∂hi
∂yi

has only a nonzero value at the location (indexes) of the observed feature yi. Let ξ = (I2n×2n)σ
2
uv
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be the measurement noise covariance matrix. Let σ2
uv be the variance modelling the uncertainty in

visual measurements.
A SLAM framework that works reliably in a local way can easily be applied to large-scale

problems using different methods, such as sub-mapping, graph-based global optimization [29], or
global mapping [30]. Therefore, in this work, large-scale SLAM and loop-closing are not considered.
However, these problems have been intensively studied in the past. Candidate points whose tracking
process is failing are pruned from the system. Furthermore, visual features with high percentage of
mismatching are removed from the system state and covariance matrix. The removal process is carried
out using the approach described in [31].

3.4. Attitude and Position Updates

When an attitude measurement yN
a is available, the system state is updated. Since most low-cost

AHRS devices provide their output in Euler angles format, the following measurement prediction
model ha = h(x̂v) is used: θv

φv

ψv

 =

 atan2(2(q3q4 − q1q2), 1− 2(q2
2 + q2

3))

asin(−2(q1q3 + q2q4))

atan2(2(q2q3 − q1q4), 1− 2(q2
3 + q2

4))

 (25)

During the initialization period, position measurements yr are incorporated into the system using
the simple measurement model hr = h(x̂v):

hr = [px, py, pz]
T (26)

The regular Kalman update equations (Equation (23)) are used to update attitude and position
whenever is required, but using the corresponding Jacobian ∇H and measurement noise covariance
matrix R.

The metric scale of the world cannot be retrieved using only monocular vision, as mentioned
previously, and thus additional information must be added to the system. For instance, the metric
scale can be retrieved if the position of some landmarks are known a priori with low uncertainty [32].
In this work, it is assumed that the GPS signal is available for an initial period at least. This period
is considered as an initialization period that must allow the convergence of depth for at least some
features close to their actual values. These first features added to the map during the initialization
period set a metric scale in estimations. Afterwards, the system can operate relying only on visual
information to estimate the location of the vehicle.

For the proposed method, the initialization period will end when at least n features show a certain
degree of convergence. It has been theoretically demonstrated (e.g., [33]) that knowledge about the
position of three landmarks can be enough to make the metric scale observable. However, in practice,
there is always the possibility that the tracking process of some features fails at any time. For this
reason, in this work the initialization period will be ending when n ≥ 3 features have converged. In
experiments, good results have been found with n = 5.

In [34], the convergence of features is tested using the Kullback distance. However, the complexity
of the sampling method proposed to evaluate this distance is quite high. In the present work, good
results have been found with the following criteria:

max(eig(Pyi )) <
‖yi − rN‖

100
(27)

where Pyi is the 3× 3 sub-matrix extracted from the covariance matrix P corresponding to the yi feature.
In this case, if the greater eigenvalue of Pyi is smaller than one percent of the distance between the
camera and the feature, then it is considered that the uncertainty in this feature has been minimized
enough to take it as an initial reference of metrics.
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It is important to note that the origin of the local reference system of navigation is established at
the end of the initialization period. The reason is because at the beginning of the movement the GPS
errors can wrongly dominate the estimations.

Since the proposed method is not deterministic, the duration of the initialization period varies
even for the same input dataset (see Figure 8). For this reason, in order to simplify the experimental
methodology, a fixed initialization period was used for computing the results of comparative studies
presented in Section 4. In this manner, it was easier to align (in time) the estimated trajectories in order
to perform a Monte Carlo validation. The fixed initial period was empirically determined to allow
a high percentage of initial convergence. In a real scenario, the duration of the initialization period
should be determined by an adaptive criteria, as authors have proposed in this section.

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

1

2

3

4

5

6

7

Figure 8. Histogram of the duration of the initialization period obtained after 20 runs of the proposed
method. This particular case corresponds to the flight trajectory presented in Section 4.2.

4. Experimental Results

In this section, the results obtained using synthetic data from simulations are presented as well
as the results obtained from experiments with real data. The experiments were performed in order
to validate the performance of the proposed method. A MATLAB R© implementation was used for
this purpose.

4.1. Experiments with Simulations

In simulations, the model used to implement the vehicle dynamics was taken from [35]. To model
the transient behaviour of the GPS error, the approach of [36] was followed. The monocular camera
was simulated using the same parameter values of the camera used in the experiments with real data.
The parameter values used to emulate the AHRS were taken from [1].

Figure 9 illustrates two cases of simulation: (a) The quadrotor was commanded to take off from the
ground and then to follow a circular trajectory with constant altitude. The environment is composed by
3D points, uniformly distributed over the ground, which emulate visual landmarks; (b) The quadrotor
was commanded to take off from the ground and then to follow a figure-eight-like trajectory with
constant altitude. The environment is composed by 3D points, randomly distributed over the ground.

In simulations, it is assumed that the camera can detect and track visual features, avoiding the
data association problem. Furthermore, the problem of the influence of the estimates on the control
system was not considered. In other words, an almost perfect control over the vehicle is assumed.

Figure 10 shows the average mean absolute error (MAE) in position, obtained after 20 Monte
Carlo runs of simulation. The MAE was computed for three scenarios: (i) using only GPS to estimate
position; (ii) using GPS together with camera along all of the trajectory in order to estimate position
and map; (iii) using GPS only during the initialization period, and then performing visual-based
navigation and mapping.
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Figure 9. Comparison of the estimated trajectories obtained by filtering GPS data (left plots), and the
estimated maps and trajectories obtained through visual-based navigation (right plots). Two different
kind of trajectories and distributions of landmarks are simulated: (upper plots) a circular trajectory,
(lower plots) a figure-eight-like trajectory. The GPS signal was used only during the initialization
period. The actual trajectory is shown in black. The estimates are shown in blue.

10 15 20 25 30
0

1

2

3

4

M
et

er
s

Seconds

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

M
et

er
s

Seconds

Mean absolute error (MAE)

Mean absolute error (MAE)

Figure 10. Mean absolute error (MAE) in position computed from two simulations (a and b) out of 20
Monte Carlo runs: (upper plot) simulation (a) results; (lower plot) simulation (b) results.

Figures 9 and 10 clearly show the benefits of incorporating visual information into the system. It is
important to note that the trajectory obtained relying only on the GPS was computed by incorporating
GPS readings into the filter, and do not denote raw measurements. In Figure 10 it is interesting to note
that the computed MAE values for the trajectories obtained through visual-based navigation exhibit
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the classical SLAM behaviour when the quadrotor returns near to its initial position. In this case, the
error is minimized close to zero. On the other hand, when the GPS is used all the time, the MAE
remains more constant. In this case, it is seen that even when the vehicle is close to its trusted position,
there is some influence of the GPS errors that affect the estimation. This behaviour suggests that for
trajectories performed near to a local frame of reference, and even when the GPS signal is available,
it is better to navigate having more confidence in visual information than in GPS data. On the other
hand, in the case of trajectories moving far away from its initial frame of reference, the use of absolute
referenced data obtained from the GPS imposes an upper bound on the ever growing error, contrary to
what is expected with a pure vision-based SLAM approach.

In these experiments, it is important to note that the most relevant source of error comes from the
slow-time varying bias part of the GPS. In this case, some of the effects of this bias can be tackled by
the model in Equation (5) by means of increasing the measurement noise covariance matrix. On the
other hand, it was found that increasing this measurement matrix too much can affect the convergence
of initial features depth. A future work could be, for instance, to develop an adaptive criteria to fuse
GPS data, or also to extend the method in order to explicitly estimate the slow-varying bias of the GPS.

4.2. Experiments with Real Data

A custom-built quadrotor is used to perform experiments with real data. The vehicle is equipped
with an Ardupilot unit as flight controller [37], a NEO-M8N GPS unit, a radio telemetry unit 3 DR
915 Mhz, a DX201 DPS camera with wide angle lens, and a 5.8 GHz video transmitter. In experiments,
the quadrotor has been manually radio-controlled (see Figure 11).

A custom-built C++ application running on a laptop has been used to capture data from the
vehicle, which were received via MAVLINK protocol [38], as well as capturing the digitalized video
signal transmitted from the vehicle. The data captured from the GPS, AHRS, and frames from the
camera were synchronized and stored in a dataset. The frames with a resolution of 320 × 240 pixels,
in gray scale, were captured at 26 f ps. The flights of the quadrotor were conducted in a open area
of a park surrounded by trees, see Figure 11. The surface of the field is mainly flat and composed
by grass and dirt, but the experimental environment also included some small structures and plants.
An average of 8–9 GPS satellites were visible at the same time.

Figure 11. A park was used as flight field. Data obtained from the sensors of a radio-controlled
quadrotor has been used to test the proposed method. The eight year-old first author’s son was in
charge of piloting the flying vehicle.

In experiments, in order to have an external reference of the flight trajectory to evaluate the
performance of the proposed method, four marks were placed in the floor, forming a square of known
dimensions (see Figure 4). Then, a perspective on 4-point (P4P) technique [39] was applied to each



Sensors 2016, 16, 372 17 of 23

frame in order to compute the relative position of the camera with respect to this known reference.
It is important to note that the trajectory obtained by the above technique should not be considered
as a perfect reference of ground-truth. However, this approach was very helpful to have a fully
independent reference of flight for evaluation purposes. Finally, the MATLAB implementation of the
proposed method has been executed offline for all the dataset in order to estimate the flight trajectory
and the map of the environment.

An initial period of flight was considered for initialization purposes, as explained in Section 3.4.
Figure 12 shows two different instances of a flight trajectory. For this test, the GPS readings were fused
into the system only at the initialization period; after that, the position of the vehicle and the map of
the environment were recovered using visual information. Since the beginning of the flight (left plots),
it can be clearly appreciated how the GPS readings diverge from the actual trajectory. Several features
have been included into the map just after a few seconds of flight (right plots).
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Figure 12. Estimated trajectory and map corresponding to two different instants of time during periods
of visual-based navigation: (upper plots) real images at 8.56 s and 15.22 s of flight; (middle plots)
zenital view of maps and estimated trajectories at 8.56 s and 15.22 s of flight; (lower plots) sectional
view of maps and estimated trajectories at 8.56 s and 15.22 s of flight. The estimated trajectory is
indicated in blue. The P4P visual reference is indicated in yellow. GPS position measurements are
indicated in green. Comparing visual features with the estimated map, it can be appreciated that the
physical structure of the environment is partially recovered.
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Figure 13 shows a 3D perspective of the estimated map and trajectory after 30 s of flight. In this
test, a good concordance between the estimated trajectory and the P4P visual reference were obtained,
especially if it is compared with the GPS trajectory.
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Figure 13. 3D plot of the estimated map and trajectory obtained in visual-based navigation mode.
Considering the trajectory obtained by the P4P visual technique as a reference, it can be clearly
appreciated that GPS is unreliable to estimate position when fine manoeuvres are performed.

In order to gain more insight about the performance of the proposed method, the same three
experimental variants used in simulations were computed, but in this case with real data: (i) GPS;
(ii) GPS + camera; (iii) camera (GPS only at the initialization). In this comparison, all the results
were obtained averaging ten executions of each method. Is important to note that those averages are
computed because the method is not deterministic since the search and detection of new candidate
points is conducted in a random manner over the images (Section 3.3.1). The P4P visual reference
was used as ground-truth. The number of visual features being tracked at each frame can affect
the performance of monocular SLAM methods. For this reason, the methods were tested by setting
two different values of minimum distance (M.D.) between the visual features being tracked. In this
case, the bigger the value, the lesser the number of visual features that can be tracked.

Figure 14 shows the progression over time for each case. A separate plot for each coordinate
(north, east, and down) is presented. Table 1 gives a numerical summary of the results obtained
in this experimental comparison with real data. These results confirm the results obtained through
simulations. For trajectories estimated using only GPS data, the high average MAE in position makes
this approach not suitable for its use as feedback to control fine manoeuvres. In this particular case,
it is easy to see that the major source of error comes from the altitude computed by the GPS (see
Figure 14, lower plots). Additional sensors (e.g., a barometer) can be used to mitigate this particular
error. However, the error in the horizontal plane (north–east) can be still critical for certain applications.
In this sense, the benefits obtained by including visual information into the system are evident.

As it could be expected, the number of map features increases considerably as the minimum
distance between visual points is decremented. However, it is interesting to remark that, at least for
these experiments, there was no important improvement in error reduction. Regarding the use of the
GPS altogether with monocular vision, a slightly better concordance was obtained between the P4P
reference and trajectory estimated avoiding the GPS data (after the initialization). These results still



Sensors 2016, 16, 372 19 of 23

suggest that, at least for small environments, it could be better to rely more on visual information than
on GPS data after the initialization period.
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Figure 14. Estimated average of position expressed in coordinates for a minimum distance of 15 pixels:
north (left upper plot), east (left middle plot), and down (left lower plot), and for a minimum distance
of 25 pixels: north (right upper plot), east (right middle plot), and down (right lower plot). A period
of 5 s of initialization was considered where the GPS was available.

Table 1. Numerical results in real data experiments; (i) M.D. stands for minimum distance between
features (in pixels units); (ii) N.O.F. stands for average number of features maintained into the system
state; (iii) aMAE stands for average mean absolute error (in meters).

M.D. (15p) M.D. (15p) M.D. (25p) M.D. (25p)

Method N.O.F. aMAE (m) N.O.F. (s) aMAE (m)

GPS - 1.70 ± 0.77σ - 1.70 ± 0.77σ
Camera + GPS 56.4 ± 10.2σ 0.21 ± 0.11σ 30.9 ± 4.9σ 0.22 ± 0.10σ

Camera 57.9 ± 9.3σ 0.20 ± 0.09σ 30.9 ± 5.6σ 0.20 ± 0.08σ

The feasibility to implement monocular SLAM methods in real-time has been widely studied in
the past. In particular, since the work of Davison in 2003 [32], the feasibility for EKF-based methods
was shown for maps composed of up to 100 features using standard hardware. Later, in [29], it was
shown that filter-based methods might be beneficial if limited processing power is available. Even
real-time performance has been demonstrated for relatively high computation demanding techniques
as the optimization-based method proposed in [40]. In the application proposed in this work, it can be
seen (Table 1) that the number of features that are maintained into the system state (even for the low
M.D.) are considerably below an upper bound that should allow a real-time performance, for instance
by implementing the algorithm in C or C++ languages.
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5. Conclusions

In this work, a vision-based navigation and mapping system with application to unmanned
aerial vehicles has been presented. The visual information is obtained with a camera integrated in the
flying vehicle pointing to the ground. The proposed scheme is closely related to monocular SLAM
systems where a unique camera is used to concurrently estimate a map of visual features as well as the
trajectory of the camera. As a difference from the purely monocular SLAM approaches, in this work a
multi-sensor scheme is followed in order to take advantage of the set of sensors commonly available in
UAVs in order to overcome some technical difficulties associated with monocular SLAM systems.

When a monocular camera is used, depth information cannot be retrieved in a single frame. In this
work, a novel method is developed with this purpose. The proposed approach is based on a stochastic
technique of triangulation to estimate features depth. Another important challenge that arises with
the use of monocular vision comes with the fact that the metric scale of the environment can be only
retrieved with a known factor if no additional information is incorporated into the system. In this
work, the GPS readings are used during an initial short period of time in order to set the metric scale of
estimation. After this period, the system operates relying uniquely on visual information to estimate
the location of the vehicle.

Due to the highly noisy nature of the GPS measurements, it is unreliable to work only with filtered
GPS data in order to obtain an accurate estimation of position to perform fine manoeuvres. In this case,
visual information is incorporated into the system in order to refine such estimations.

The experimental results obtained through simulations as well as with real data suggest
the following and relevant conclusions: (i) the integration into the system of very noisy GPS
measurements during an initial short period is enough to recover the metric scale of the world;
(ii) for flight trajectories performed near to the origin of the navigation frame of reference it is better to
avoid integration of GPS measurements after the initialization period.
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Nomenclature

pN 3D point, defined in euclidean coordinates, expressed in frame N

pC 3D point, defined in euclidean coordinates, expressed in frame C

u, v Undistorted pixel coordinates of a visual feature
ud, vd Distorted pixel coordinates of a visual feature
f , u0, v0, k1, ..kn Intrinsic parameters of the camera
RNC Rotation matrix from navigation to camera frame
tN
c Position of the camera optical center expressed in the navigation frame

hC Vector pointing from tN
c to PC expressed in frame C

yN
a Attitude measured

aN Actual attitude
φv, θv, ψv Roll, pitch, and yaw of the vehicle
va Modelled Gaussian white noise in attitude
σ2

a Attitude measurement variance
yN

r GPS position measurement
vr Modelled Gaussian white noise in position
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σ2
r Position measurement variance

x Augmented system state
P System state covariance matrix
xv State of the vehicle
qNR Quaternion representing the orientation of the vehicle
ωR Angular velocity of the vehicle
rN Vehicle position
vN Lineal velocity of the vehicle
yN

i Map feature
xi, yi, zi Euclidean coordinates of features
VN Linear velocity impulse
ΩC Angular velocity impulse
σ2

v Linear velocity impulse variance
σ2

ω Angular velocity impulse variance
Q Process noise covariance matrix
∇Fx Jacobian of the prediction model with respect to the system state
∇Fu Jacobian of the prediction model with respect to the unknown inputs
cl Data stored for each candidate point
yci 3D semi-line defined by a candidate point
tN
c0

Camera position when the candidate point was first observed
θ0, φ0 Azimuth and elevation of the candidate point when it was first observed
zuv Visual point location
hN Vector pointing from tN

c0
to PN expressed in frame C

Pyci
Covariance matrix of yci

∇Yci Jacobian of the function yci with respect to the system state and visual measurement
d Feature depth
e Epipolar point
Sc Elliptical region of search of candidate points
αc Orientation of the ellipse Sc

a, b Major and minor axis of the ellipse Sc

α Parallax of the candidate point
el Displacement of the camera from its first observation to its current position
ynew New feature to be added to the system state
Pynew Covariance matrix which models the uncertainty of ynew

∇Y Jacobian of the function ynew with respect to cl and d
σ2

d Modelled uncertainty associated with the process of depth estimation
S Innovation covariance matrix
K Kalman gain
ξ Measurement noise covariance matrix
σ2

uv Visual measurement variance
z Measurement vector
h Predicted measurement vector
hi Measurement prediction model for the i feature
∇H Jacobian of the function h with respect to the system state x
ha Measurement prediction model of attitude
hr Measurement prediction model of position
Pyi sub-matrix of P corresponding to a feature yi
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