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Abstract: Banknote papers are automatically recognized and classified in various machines, such as
vending machines, automatic teller machines (ATM), and banknote-counting machines. Previous
studies on automatic classification of banknotes have been based on the optical characteristics of
banknote papers. On each banknote image, there are regions more distinguishable than others in
terms of banknote types, sides, and directions. However, there has been little previous research on
banknote recognition that has addressed the selection of distinguishable areas. To overcome this
problem, we propose a method for recognizing banknotes by selecting more discriminative regions
based on similarity mapping, using images captured by a one-dimensional visible light line sensor.
Experimental results with various types of banknote databases show that our proposed method
outperforms previous methods.

Keywords: banknote recognition; selection of distinguishable areas; one-dimensional visible-light
line sensor; various types of banknote databases

1. Introduction

The accurate and reliable recognition of banknotes plays an important role in the growing
popularity of payment facilities such as ATMs and currency-counting machines. There have been
many studies on this classification functionality that have been based on the optical characteristics of
banknotes. Most studies on classification of banknotes by denomination (e.g., $1, $5, $10, etc.) have
been based on images of banknotes captured by visible-light sensors. In general, a banknote can
appear in four directions on two sides, i.e., the forward and reverse images of the front and back sides,
and the captured images of these input directions are used in recognition of banknotes.

Previous studies using visible-light images of banknotes can be divided into those that used whole
banknote images for recognition [1–6] and those that used certain regions of banknote images [7–12].
Wu et al. [1] proposed a banknote orientation recognition method that uses the average brightness
of eight uniform rectangles on a banknote image as the input of the classifier using a three-layer
back-propagation (BP) network. However, their experiments only focused on orientation recognition
of one type of Chinese banknote—the Renminbi (RMB) 100 Yuan note. A Chinese banknote recognition
method using a three-layer neural network (NN) was proposed by Zhang et al. [2]. This method uses
linear transforms of gray images to reduce the effect of noise and uses the edge characteristics of the
transformed image as the input vectors to the NN classifier. This method was applied to Sri Lankan
banknote recognition in [3]. A BP network was used as the classifier in research by Gai et al. [4]. In this
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research, recognition features were extracted by applying generalized Gaussian density (GGD) to
the capture of the statistical characteristics of quaternion wavelet transform (QWT) coefficients on
banknote images. To recognize multiple banknotes, Hassanpour and Farahabadi considered the texture
characteristics of paper currencies as a random process and used hidden Markov model (HMM) for
classification [6]. The Indian banknote recognition method proposed by Sharma et al. [5] uses a local
binary pattern (LBP) operator to extract features from banknote images and classifies banknote types
using Euclidean distances with template images.

In studies concerning regions of banknotes, not all the image data that a banknote provides
have been used for recognition; only certain areas on banknote images have been selected and used.
This helps to reduce the amount of input data required and puts the focus on regions of banknotes
that have high degrees of discrimination. A Bangladeshi banknote recognition system was proposed
using axis symmetric masks to select regions of banknote images before feeding information into
a multilayer perceptron network to reduce the network size and adapt it to banknote flipping [7].
Axis-symmetrical masks were also applied to the neuro-recognition system proposed by Takeda and
Nishikage [8] for analysis of Euro currency using two image sensors. Takeda et al. also proposed a
mask optimization technique using a genetic algorithm (GA) [10] that could be used to select good
masks using the sum of the pixels uncovered by masks, called the slab value [9], as the input to
the recognition neural network. Component-based banknote recognition with speeded-up robust
features (SURF) was proposed by Hasanuzzaman et al. [11]. In this method, components that provide
specific information about banknotes, such as denomination numbers, portraits, and building textures,
are cropped and considered to be reference regions. In the multi-currency classification method
proposed by Youn et al. [12], multi-template correlation matching is used to determine the discriminant
areas of each banknote that are highly correlated among banknotes of the same types and poorly
correlated among those of different types.

Another approach to extracting classification features involves using statistical procedures such
as principal component analysis (PCA) [13–16] or canonical analysis (CA) [17] to reduce the size of
the feature vector. In research using learning vector quantization (LVQ) as the classifier, input feature
vectors have been extracted by PCA from banknote data acquired by various type of sensors, such as
sensors of various wavelengths [13], or point and line sensors [14]. The banknote recognition method
proposed by Rong et al. [15] for a rail transit automatic fare collection system employs PCA to extract
features and build matching templates from banknote data acquired by various sensors, such as
magnetic, ultraviolet (UV) fluorescence and infrared (IR) sensors. In the hierarchical recognition
method proposed by Park et al. [16], United States dollar (USD) banknotes were classified by front or
back size and their forward or backward directions using a support vector machine (SVM) and then
recognized by denomination ($1, $2, $5, etc.) using a K-mean algorithm based on the PCA features
extracted from sub-sampled banknote images. In research by Choi et al. [17], CA was used for size
reduction and to increase the discriminating power of features extracted from Korean won images
using wavelet transform.

There have also been studies combining both of the above feature extraction approaches.
The Indian currency recognition method proposed by Vishnu and Omman [18] selects five regions
of interest (ROI): the textures of center numerals, shapes, Reserve Bank of India (RBI) seals, latent
images, and micro letters on scanned banknote images. PCA is subsequently used for dimensionality
reduction of the extracted features. Finally, the recognition results are validated using a classifier
implemented with WEKA software [18]. Texture-based analysis is also used in the Indian banknote
recognition method proposed by Verma et al. [19]. In this method, linear discriminant analysis (LDA) is
applied to ROIs containing textures on banknote images for feature reduction, and SVM is applied for
classification. Here, the ROI selection is conducted with the help of a set of external tools called Mazda.
In the smartphone-based US banknote recognition system proposed by Grijalva et al. [20], regions
of interest are located in the right parts of banknote images. From these regions, weight vectors are
extracted using PCA and are compared with those of a training set using the Mahalanobis distance to
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determine the denomination of an input banknote. Although ROIs were defined in [20], it is uncertain
whether the selected areas on banknote images are indeed those with highest discriminating power for
recognition purposes.

To overcome these limitations, we propose a banknote recognition method that uses a combination
of both of the feature extraction approaches mentioned above. From the sub-sampled banknote images,
we select areas that have high degrees of similarity from among banknotes in the same class and high
degrees of difference among those in different classes. The discriminant features are then extracted
from the selected data using PCA, and the banknote type is determined by the classifier based on
K-means algorithm. Our method is novel in the following respects:

(1) Using the sub-sampled banknote region from the captured image, the local areas that have high
discriminating power are selected using a similarity map. This map is obtained based on the
ratio of correlation map values, considering between-class and in-class dissimilarities among
banknote images.

(2) Optimally reduced features for recognition are obtained from the selected local areas based on
PCA, which reduces both the noise components and the processing time.

(3) The performance of our method has been measured using both normal circulated banknotes
and test notes, and the effectiveness of our method has been confirmed in the harsh testing
environment of banknote recognition.

(4) Through experiments with various types of banknotes—US dollars (USD), South African rand
(ZAR), Angolan kwanza (AOA) and Malawian kwacha (MWK)—we have confirmed that our
method can be applied irrespective of the type of banknote.

Table 1 presents a comparison between our research and previous studies. The remainder of this
paper is organized as follows: Section 2 presents the details of the proposed banknote recognition
method. Experimental results are presented in Section 3, and conclusions drawn from the results are
presented in Section 4.

Table 1. Comparison of proposed and previous methods.

Category Method Strength Weakness

Using the
whole
banknote
image

1. Using average brightness values
of eight uniform rectangles on
banknote images as the input for
BP network [1].

2. Edge characteristic of linear
transformed banknote image was
used as the input for three layer
NN classifier [2,3].

3. Using HMM to model textures of
banknote as a random process [6].

4. Using GGD to extract statistical
features from QWT
coefficients [4].

1. Simple in feature extraction
method [1].

2. Make use of all of the
available recognition
features on banknote image.

1. Only focused on orientation
recognition of a banknote
type—Renminbi (RMB)
100 Yuan [1].

2. Possibility of redundancy
in the input data to
the classifiers.

3. Need for additional feature
extraction or representation
method because of large-size
images could reduce
classification speed
(HMM [6], QWT [4]).

Using local
regions on
banknote
image

1. Using symmetric masks on
banknote images to select input
features for the NN
classifiers [7,8].

2. Optimizing masks for selecting
features using GA algorithm [10].

3. Using SURF based on
class-specific components of
textures on banknote images [11].

4. Determination of discriminant
areas on banknotes by
multi-template correlation
matching [12].

1. Help to reduce the size of
input data to the classifier
and reduce processing time.

2. High-discriminating-power
regions on banknote images
could be located [10–12].

1. Fixed recognition regions on
banknote images were not
the optimal discriminative
areas [7,8].

2. Difficulty in application of
embedded systems with
limited resources due to
usage of complex features
(SURF [11]).
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Table 1. Cont.

Category Method Strength Weakness

Using
statistical
analysis to
extract
features from
banknote
image

1. Using PCA on data acquired by
various sensors and LVQ for
classification [13,14].

2. Applying PCA for feature
extraction from banknote data
acquired by various sensors: IR,
UV, magnetic, fluorescence [15].

3. Using PCA for feature extraction,
SVM for pre-classification, and
K-means for denomination
recognition [16].

4. Using CA on features extracted by
wavelet transform [17].

1. Help to reduce the size of
input data to the classifier.

2. Can be applied to feature
extraction from data
acquired by multiple
sensors [13–15].

Additional processing time and
resources required for feature
extraction by statistical
analysis (memory for PCA
eigenvector data).

Combining
two feature
extraction
methods:
local region
definition and
statistical
analysis

1. ROIs were selected from five
security features on Indian
banknote image. PCA was used
for dimensionality reduction of
data extracted from ROI [18].

2. Using LDA for feature reduction
on ROIs containing textures
cropped from Indian banknote
image [19].

3. Using PCA for feature extraction
from the region on the right part
of detected banknote image [20].

4. Using feature extraction method
based on PCA on banknote areas
selected by similarity map
(proposed method).

Input feature to the classifiers was
reduced in dimensionality and
optimized by statistical analysis.

1. Using large-size scanned
color banknote images that
are difficult to apply on
embedded systems [18].

2. ROI selection had to be
conducted with the help of
external tool (Mazda [19]).

3. The selected region for
recognition on the right part
of banknote image is not
definitely optimal [20].

4. Calculation of similarity
map is necessary
(proposed method).

2. Proposed Methods

2.1. Overview of the Proposed System

Figure 1 is an overview of the proposed banknote recognition system. The pre-processing step
for acquired banknote images is as follows. A banknote region is segmented from the input image
and sub-sampled to a size of 64 ˆ 12 pixels to reduce the processing time. In the second step, from the
sub-sampled banknote image, the recognition region with the high discriminating power is selected
using a similarity map. Consequently, the optimally reduced feature vector is extracted from the data
selected with the similarity map using PCA. Finally, the banknote type and the direction of the input
image are determined using a K-means algorithm based on the PCA features.
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2.2. Acquisition of Banknote Image, Region Segmentation and Normalization

In this study, we used a commercial banknote-counting machine [21]. Figure 2 shows the set-up
of our research. As shown in Figure 2a, if we input the banknotes into the banknote-counting machine,
the image data of each banknote can be automatically acquired as shown in Figure 2b. Because of the
limitations of the size and cost of the counting machine, a conventional two-dimensional (area) image
sensor is not used. One line image is captured at each trigger time as the input banknote is moving
through the roller device inside the counting machine at a high speed and is being illuminated by a
light-emitting diode (LED). The line sensor has a resolution of 1584 pixels and is triggered to capture
464 line images for each moving input banknote. A 1584 ˆ 464 pixel banknote image of visible light is
acquired by concatenating the line images.
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Figure 2. Examples of the set-up of our research: (a) Input banknotes. (b) Acquisition of image data.

When entering the recognition system, a banknote can be exposed in one of the following
four directions: the front side in the forward direction (the “A direction”) or backward direction
(the “B direction”), the back side in the forward direction (the “C direction”) or backward direction
(the “D direction”). In this study, we classified banknotes in terms of type (e.g., $1, $5, $10) and direction.
Therefore, there are four classes corresponding to four directions for each type of banknote. To address
the problems of displacement and rotation of the banknote area in the captured image [16], we use the
commercial corner detection algorithm built into the counting machine to locate the banknote area and
exclude the background area from the captured banknote image, as shown in Figure 3. The segmented
banknote images are then sub-sampled to have the same size of 64 ˆ 12 pixels to reduce the effect of
noise and redundant data and to increase the processing speed. Examples of original banknote images,
corresponding banknote area segmented images, and sub-sampled images are shown in Figure 3.
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Figure 3. Examples of input images for four banknote directions: (a) A direction; (b) B direction;
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2.3. Similarity Map

In a sub-sampled banknote image, there are areas that are mostly similar regardless of the
banknote type and areas that are more distinguishable among different types of banknotes. To properly
select the highly discriminative regions for recognition of banknote type, we propose a method based
on the calculation of the ratio of the similarity among sub-sampled banknote images in the different
classes and in the same class. This method results in a 64 ˆ 12-pixel binary mask called a similarity
map that can be obtained from a training data set using the following procedure.

First, we generate a reference banknote image for each class by averaging all the banknote images
belonging to the same class. An example of a reference image of a recent US $100 banknote in the
front-forward direction is shown in Figure 4a. Based on the reference images generated, we calculate
the correlation maps for each input banknote with respect to the class to which it belongs in the training
set using the following formulas:

Mpi, jq “
ˇ

ˇI1pi, jq ´ R1pi, jq
ˇ

ˇ (1)

with
I1pi, jq “

Ipi, jq ´ µI
σI

(2)

R1pi, jq “
Rpi, jq ´ µR

σR
(3)

where I(i, j) and R(i, j) are the gray-scale values of the pixel at position (i, j) of the input image and
reference image, respectively; µI and σI are the mean and standard deviation values of the input
image; and µR and σR are the mean and standard deviation values of the reference image. If the input
banknote image and reference image are in the same class, the correlation map is defined as an in-class
correlation map, denoted by MIC(i, j); otherwise, it is defined as a between-class correlation map,
denoted by MBC(i, j). By taking the average images of all the in-class and between-class correlation
maps of all the training banknote images in each class, we obtain the in-class and between-class
correlation maps of each class, denoted by MICpi, jq and MBCpi, jq, respectively. Examples of visualized
between-class and in-class correlation maps of recent US$100 banknotes in the front-forward direction
are shown in Figure 4b,c.

In the next step, the similarity map of each class is calculated by determining the pixel-wise ratio
of between-class and in-class correlation maps, using Equation (4). If a pixel has an in-class map
value equal to zero, its similarity map value is assigned the maximum value among those of the other
calculated pixels. An example of a visualized similarity map for a front-forward US$100 banknote
image is shown in Figure 4d.
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Spi, jq “
MBCpi, jq
MICpi, jq

(4)

Using Equation (4), we can determine the areas where the dissimilarity of banknotes from the
different classes is higher than that of the same class. These areas are the regions that have high
discriminating power for banknote images and are represented by the bright pixels in the similarity
map, scaled to the gray values, as shown in Figure 4.
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Finally, we average the similarity maps of all the banknote classes to obtain the final similarity
map. To select the banknote areas corresponding to the bright pixels on the similarity map, we use the
thresholding method, so that the histogram of the similarity map is divided by half, the higher map
values are assigned “1”, and the lower values are assigned “0”. The resulting binary similarity map
image is considered to be a mask for selecting the pixels at white mask positions (corresponding to
bright similarity map values) on the sub-sampled banknote image. These are used in recognition of
the banknote type. The number of pixels selected for use in recognition is roughly half of the original
sub-sampled image (approximately (64 ˆ 12)/2 = 384 pixels). This procedure and examples of each
intermediate stage are illustrated in Figure 5.
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2.4. Feature Extraction by PCA and Classification by K-Means Algorithm

2.4.1. PCA Method and PCA-Based K-Means Algorithm

To further reduce the number of dimensions of the input vector, we apply the PCA method to
banknote data selected using the similarity map in the previous step. PCA is a statistical procedure for
representing the data in a lower-dimensional space by projecting original data onto the eigenvectors
corresponding to the largest eigenvalues of the covariance matrix. The procedure for conducting PCA
in our research is similar to that used in the eigenface method [20,22]. First, we calculate the covariance
matrix of the mean-subtracted training data using the following formula:

C “
1
N

XXT (5)

where X “
”

px1 ´ µq px2 ´ µq ... pxN ´ µ q

ıT
is the µ mean-subtracted vector from the input data

xi (i = 1, . . . ,N) and N is the number of original data values.
From the covariance matrix C, we calculate the eigenvalues and eigenvectors of C. The N

eigenvalues [λ1, λ2, . . . , λN] are sorted in descending order, and their corresponding eigenvectors are
arranged row by row to form the matrix V, as follows:

V “

»

—

—

—

–

v1

v2

...
vN

fi

ffi

ffi

ffi

fl

(6)

where vi is the eigenvector corresponding to eigenvalue λi, i = 1, . . . , N. Matrix V is of size N ˆ N.
If we need to reduce the input data size to M smaller than N, the projection of X onto the first M
eigenvectors’ directions is conducted, and results in Y, which consists of the coefficients of the principal
components of X, as shown in the following equation:

Y “ VMX “

»

—

—

—

–

v1

v2

...
vM

fi

ffi

ffi

ffi

fl

»

—

—

—

–

px1 ´ µq

px2 ´ µq

...
pxN ´ µq

fi

ffi

ffi

ffi

fl

(7)

The sizes of VM, X, and Y are M ˆ N, N ˆ 1, and M ˆ 1, respectively. As a result, the banknote
data are represented by the PCA coefficients in lower dimensionality, and we use these coefficients as
inputs to the classifier in the next step.

The features extracted by PCA are used for classification of the banknote type and direction.
The number of classes is predefined as the number of denominations to be recognized multiplied by
four directions. When a banknote is input into the system, its recognition features are extracted, and
the type and direction are determined based on the Euclidean distance to the class centers (vectors),
which are obtained using a K-means clustering algorithm [23]. For example, in the case of USD,
the number of classes is 68, which equals 17 types of banknotes ˆ4 directions (A, B, C, and D).
Therefore, there are 68 class centers in the training result for USD. Using the extracted features of an
input banknote, the distances between this PCA feature vector and the 68 center vectors are calculated,
and the banknote is determined to belong to the class with the nearest center to the banknote’s feature
(the nearest centroid classifier [24]).

2.4.2. Determination of Number of PCA Dimensions used for Feature Extraction Method

A typical nearest-centroid-based classifier uses the shortest distance between the input vector
and the center vectors as the class assignment criterion. However, there are cases in which the class
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assignment is not certain, e.g., when the input vector is located at nearly the central position between
two class centers. In such a case, the difference between the shortest and second-shortest distances of
input vector to the class centers is small. In this study, we considered both the shortest distance, referred
to as the 1st distance, and the second-shortest distance, referred to as the 2nd distance, to evaluate the
certainty and effectiveness of the classification results.

First, we draw a scatter plot of the 1st distances and the differences between the 1st and 2nd
distances of the genuine acceptance cases of USD, as shown in Figure 6. The system must have
the ability to reject the unrecognized cases. To simulate the rejected cases, we use the test notes on
which the patterns were modified, as shown in Figure 7. Because the test notes are unrecognized,
their distances to all the banknote class center vectors are greater than those of genuine banknotes.
Therefore, their 1st distances are greater, and the positions of the test note cases on the matching
distance scatter plot are far away from those of the genuine accepted banknote cases. Figure 6 shows
an example of a scatter plot of matching distances of real USD banknotes and test notes.
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It can be seen from Figure 6 that the matching score distributions of banknotes and test notes
are separated in the plots and that the degree of varies with the dimensionality of the extracted
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PCA features. When applying a threshold for rejection based on matching distances, the test notes
must be rejected and, consequently, the error cases and uncertain banknote cases (banknotes that are
damaged, soiled, faded, etc.) will also be rejected. If the score distributions of genuine-acceptance
banknotes and test notes are well separated, the uncertain and error cases are easier to reject, and
the recognition results are more reliable. To evaluate the separation between these matching score
distributions, we calculate the distributions’ scatter values based on distribution centers using Fisher’s
criterion in LDA [23]. For each test, we obtain two distances dX and dY, namely the 1st distance and
the difference between the 1st and 2nd distance. The center of each distribution is at the position
(µX , µY). The measure of scatter of the matching distance distribution is equivalent to a variance and is
calculated as follows:

S “
N´1
ÿ

i“0

rpdXi ´ µXq
2
` pdYi ´ µYq

2
s (8)

where N is the number of samples in the distribution. The scatter values of the accepted cases and
rejected cases are denoted by SA and SR, respectively. Using the Fisher criterion in LDA, our goal is to
find the optimal number of PCA dimensions for banknote feature extraction so that the following ratio
(called the F-ratio) is maximized:

F “
SB
SW

“
pµAX ´ µRXq

2
` pµAY ´ µRYq

2

SA ´ SR
(9)

where SB and SW are the between-class scatter and within-class scatter, respectively, and (µAX , µAY)
and (µRX , µRY) are the centers of the acceptance and rejection distributions, respectively.

3. Experimental Results

In this study, we used a database consisting of 99,236 images captured from 49,618 USD banknotes
on both sides. The images in the database include the four directions of 17 types of banknotes: $1, $2,
$5, recent $5, most recent $5, $10, recent $10, most recent $10, $20, recent $20, most recent $20, $50,
recent $50, most recent $50, $100, recent $100 and most recent $100. The number of images in each
banknote class is shown in Table 2. In our experimental database of USD banknote images, both the
number of images and the number of classes are comparatively larger than those in previous studies,
as shown in Table 3.

Table 2. Numbers of banknote images in experimental USD database.

Type of Banknote A Direction B Direction C Direction D Direction

$1 2018 2016 2018 2016
$2 1626 1660 1626 1660
$5 849 834 849 834
Recent $5 1208 1218 1208 1218
Most Recent $5 1795 1797 1795 1797
$10 1498 1509 1498 1509
Recent $10 1258 1277 1258 1277
Most Recent $10 1564 1565 1564 1565
$20 1651 1647 1651 1647
Recent $20 1063 1069 1063 1069
Most Recent $20 1965 1959 1965 1959
$50 1270 1262 1270 1262
Recent $50 1397 1343 1397 1343
Most Recent $50 1479 1573 1479 1573
$100 1011 1126 1011 1126
Recent $100 1964 1761 1964 1761
Most Recent $100 1250 1136 1250 1136
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Table 3. Numbers of images and classes in the experimental databases used in previous studies and
in this study.

Study Number of Images Number of Classes

[4] 15,000 24
[13] 3600 24
[14] 3570 24
[16] 61,240 64
[25] 65,700 48

This study 99,236 68

First, we calculated the similarity map and applied half-histogram thresholding to obtain the
mask for selecting the discriminative areas in a 64 ˆ 12-pixel sub-sampled banknote image. Using the
resulting binary mask shown in Figure 5, we selected 388 gray values of the pixels corresponding to
the white areas of the mask from the sub-sampled image for banknote classification.

From the selected banknote image data, we extracted the classification features using PCA. In this
step, the reliability of the classification results is affected by the dimensionality of the extracted PCA
feature vector, as explained in Section 2.4. Therefore, in subsequent experiments, we determined
the optimal PCA dimensionality that yields the best classification accuracy and reliability in term of
maximization of the F-ratio given by Equation (9). A USD test note database consisting of 2794 images
was collected for our rejection test experiments. We considered test notes and false accepted cases of
banknotes to belong to the same distribution, such that the remaining distribution consists of only
genuine accepted cases. The experimental results for the F-ratio calculation and classification accuracy
for various numbers of PCA dimensions are shown in Figure 8. The error rate was calculated based on
unsupervised K-means clustering for 68 classes in the USD banknote database.
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Figure 8. Example of average similarity map obtained from similarity maps of all USD classes and
binary mask obtained from similarity map for feature selection.

It can be seen from the Figure 8 that although there were no classification errors in the cases
in which 20, 40, or 60 PCA dimensions were used for feature extraction, the separations between
the distributions of genuine accepted cases and rejected cases were not good in terms of low ratios
between each distribution’s scatter measures. The scatter plot of the matching distances when 20 PCA
dimensions were used is shown in Figure 6a. The F-ratio reached a maximum value of 0.001275 at
a dimensionality of 160. As the number of extracted features increases, much more processing time
is required. Therefore, we considered two cases—the use of 80 or 160 PCA dimensions for feature
extraction—in subsequent experiments conducted to evaluate the recognition accuracy achieved.
Scatter plots of the distances for the cases of extraction of 80 and 160 PCA dimensions for banknote
and test note matching tests are shown in Figure 9.
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With the parameters for banknote feature extraction determined, we evaluated the accuracy of the
proposed recognition method in comparison to the accuracy reported for methods used in previous
studies, as shown in Table 4. When we used 80 or 160 PCA dimensions for feature extraction, there were
no changes in the error rates and rejection rates, which were 0.002% and 0.004%. The rejected cases
correspond to the banknotes for which the 1st matching distances were higher than the 1st threshold
and for which the differences between the 1st and 2nd distances were lower than the 2nd threshold.
The 2nd threshold is used to ensure that the recognition result is reliable, as explained in Section 2.4.2.
In Figure 9, the positions of rejected cases on the scatter plots are in the gray areas. Because the total
error and false rejection rate was 0.006%, the correct recognition rate of our method was 99.994%.

Table 4. Comparison of recognition accuracy of the proposed method and previous studies.

Recognition Method Experimental USD Banknote
Image Database Error Rate (%) Rejection Rate (%)

[4] 15,000 images/24 classes 0.120 0.580
[16] 61,240 images/64 classes 0.114 0.000

Proposed method 99,236 images/68 classes 0.002 0.004
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It can be seen from Table 4 that although the numbers of banknote images and classes in our
USD database were greater than in other studies, the recognition accuracy of our method was higher
than that in previous studies in terms of low false recognition rates and rejection rates. Consequently,
we can confirm that our proposed method outperforms the previous previously proposed methods for
USD banknote recognition.

The false recognition case for our method is shown in Figure 10, in which the uppermost image
is the original banknote image and the middle and lower images are the deskewed image and the
64 ˆ 12-pixel sub-sampled image of the upper image, respectively. The banknote on the left was
misclassified as belonging to the class of the banknote on the right. This error case occurred because
the image was captured from a folded banknote, as seen in Figure 10.
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Figure 10. False recognition case of USD banknote: (a) Input banknote; (b) False recognized class.

Figure 11 presents illustrations of rejection cases in our experiments in which the images are
arranged in the same manner as in Figure 10. Although these input banknote images were correctly
recognized, their matching scores were too high, so their distributions on the scatter plots in Figure 9
were in the rejection region, where the 1st distances are greater than the 1st threshold. It can be seen
in Figure 11 that the upper case corresponded to images of a folded banknote, similar to the false
recognition case in Figure 10. The remainder of the rejected images was captured from a severely
damaged banknote with a tear, folded corner, and writing patterns. These resulted in 1st distances
to the genuine classes of these banknote features being higher than the 1st rejection threshold and
consequently the images being rejected by the system.

In subsequent experiments, we applied the proposed method to other countries’ banknote
image databases to confirm the performance of our method for different types of paper currency.
The banknotes used in these experiments were South African rand (ZAR), Angolan kwanza (AOA)
and Malawian kwacha (MWK). The numbers of banknote images and classes in the experimental
databases are shown in Table 5. Figure 12 shows some examples of banknote images for each type
of currency.
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Because test notes similar to those used in the USD experiments were not available for the AOA, 
MWK and ZAR currencies, we tested the recognition accuracy of these databases using the same 
parameters as those for USD recognition. In addition, because there has been no previous research 
on recognition of paper banknotes from Angola, Malawi, or South Africa, we were not able to 
compare the accuracy of our method with any methods applied to these currencies in previous 
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Table 5. Numbers of banknote images and classes in the experimental databases of Angolan kwanza
(AOA), Malawian kwacha (MWK) and South African rand (ZAR).

Currency Number of Images Number of Classes

AOA 1366 36
MWK 2464 24
ZAR 760 40
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Because test notes similar to those used in the USD experiments were not available for the
AOA, MWK and ZAR currencies, we tested the recognition accuracy of these databases using the
same parameters as those for USD recognition. In addition, because there has been no previous
research on recognition of paper banknotes from Angola, Malawi, or South Africa, we were not able
to compare the accuracy of our method with any methods applied to these currencies in previous
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studies. Our proposed method correctly recognized 100% of the banknote images in the AOA and
ZAR databases and 99.675% of the banknotes in the MWK database. The experimental results for
the similarity maps and the recognition error rates for the AOA, MWK and ZAR databases are given
in Table 6.

Table 6. Experimental results for the AOA, MWK, and ZAR banknote image databases.

Currency Similarity Map Binary Mask Error Rate (%)
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From the images of the similarity maps and the resulting masks shown in Table 6, most of
the selected areas for recognition in the MWK and ZAR banknote images were on the two sides.
The recognition area in the AOA banknote images was located in the middle of the images. The reason
for these results is that the patterns on these banknotes, such as numbers, seals, photos, and portraits,
are asymmetrically distributed. In the cases of MWK and ZAR, the photo and portrait patterns are
printed far to the two sides of the banknotes, while on AOA banknotes, the feature patterns are more
different in the middle areas, depending on the banknotes’ denominations and directions. As a result,
the high-discriminating-power regions for AOA, MWK, and ZAR banknote images were determined
and are shown in Table 6.

Examples of error cases in the MWK database are shown in Figure 13. The lower image with
smaller sizes for each pair was sub-sampled from the upper banknote image. In this figure, the MK100
banknote images of the front side and forward back side shown in the left column were misclassified
as MK500 banknotes in the same direction, examples of which are shown in the right column. It can be
seen from the Figure 13 that in the areas selected for recognition by map in Table 6, the shapes of the
textures in the sub-sampled images of the MK100 and MK500 banknotes are slightly similar to each
other. This resulted in misclassification in these cases. However, the banknote images in the AOA and
ZAR databases were correctly recognized with error rates of 0%, so we can confirm that our proposed
method can be applied to paper currencies from various countries and achieve good performance in
terms of matching accuracy.
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We also measured the processing time for our recognition method. This experiment was conducted
using the USD banknote image database and a desktop personal computer (PC) with a 2.33 GHz
CPU and 4 GB of memory. In these experiments, we compared the time required when using 80
and 160 PCA dimensions for the feature extraction process. When 160 PCA dimensions were used,
the system was able to process approximately 442 images/s (1000/2.26 ms). When the number of
extracted features by PCA was reduced by half, the processing speed increased to 568 images per
second (1000/1.76 ms). Therefore, we used 80 PCA dimensions for final decisions using our banknote
recognition method. The average processing times are shown in Table 7.

Table 7. Processing time of the proposed recognition method on desktop computer (unit: ms).

Number of PCA
Dimensions Sub-Sampling Feature Extraction K-Means

Matching
Total Processing

Time

160 1.23 0.78 0.25 2.26
80 (Proposed) 1.23 0.40 0.13 1.76

In a previous study [16] in which a higher-powered PC (3.5-GHz CPU, 8 GB of memory) was used,
up to 5.83 ms was required to recognize an image. Our proposed method required less processing
time for the following reasons. First, because we used deskewed banknote images of smaller sizes
(up to 400 ˆ 120 pixels, compared to 1212 ˆ 246 in [16]), the sub-sampling time was reduced. Second,
the number of extracted features used for recognition in our method was smaller (80 dimensions,
compared to 192 in [16]). Therefore, the feature extraction and matching processes required less time
than with the method used in [16].

In addition, we measured the processing time of a banknote-counting machine using a Texas
Instruments (TI) digital media processor (chip). This machine required approximately 1 ms to process
and recognize one input banknote using our proposed method with 80 PCA features extracted from a
visible-light banknote image.

We also calculated the total memory usage required to employ our proposed method with a
counting machine with limited resources. The measurement details are given in Table 8. The total
memory usage was 931,924 Bytes for our method. Our proposed method outperformed the USD
recognition method described in [16] in terms of both processing time (15.6 ms) and memory usage
(1.6 MB).

Table 8. Calculation of memory usage of our proposed method.

Category Data Size Data Type Memory Usage (Bytes)

Original image 1584 ˆ 464 BYTE 734,976
Deskewed image 400 ˆ 120 BYTE 48,000

Sub-sampled image 64 ˆ 12 BYTE 768
Similarity map 388 Integer 1552

Selected region by similarity map 388 BYTE 388
PCA transform matrix 80 ˆ 388 Integer 124,160
Extracted PCA features 80 Integer 320

K-means centers 80 ˆ 68 Integer 21,760

Total 931,924

4. Conclusions

In this paper, we propose an efficient banknote recognition method based on the selection
of the high-discriminating-power regions of banknote images captured by visible-light sensors.
The recognition regions are determined by calculating the ratio between the in-class similarity and
between-class similarity of banknote images. Our experimental results show that using a PCA-based
K-means algorithm as the classifier, our proposed method was able to recognize various paper
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currencies by denomination and input direction with high accuracy, as indicated by low error rates
and rejection rates. With the help of a test note database that represents rejection cases, we were also
able to evaluate the reliability of our method based on the measurement of scatter between genuine
acceptance and rejection score distributions.

In future work, we plan to combine our recognition method with the evaluation of fitness for
recirculation of banknotes to properly reject poor-quality banknotes that are difficult to recognize.
In addition, we intend to extend our method for recognizing paper currencies from multiple countries,
rather than recognition of denominations and directions of banknotes only from an individual country.
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