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Abstract: A signal conditioning block of a 1 ˆ 200 Complementary Metal-Oxide-Semiconductor
(CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for
inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated
antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries
wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed
signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each
detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector
is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical
modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in
the array are cancelled by initializing the output voltage level from the block. Real-time imaging
using the proposed signal conditioning block is demonstrated by obtaining images at the rate of
19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan
speed of 25 cm/s.

Keywords: THz system; CMOS detector array; real-time imaging; plasmon detector; electrical
modulation; responsivity calibration; DC offset cancellation; signal conditioning block

1. Introduction

Terahertz (THz) waves, which are located in the frequency band between optical and electronic
techniques, have very low energy levels and thus do not pose any ionization hazard [1]. These days,
THz imaging is becoming a promising technology for many applications in the field of security
screening and non-destructive testing of materials because it can safely obtain non-invasive images
with high resolution from distant objects [2]. Especially in the application of foreign body detection
in food, the imaging system is quite useful for testing all the samples in production facilities and
simultaneously distinguishing food from soft foreign materials, such as bucks, carbides, and plastics,
which is not possible with the X-ray imaging [3].

Real-time capabilities and a large projection area are essential for building the imaging system
for practical applications [3,4]. Compared to other methodologies for terahertz detection, Si-based
plasmonic CMOS detector offers more in terms of lower cost, higher sensitivity, broader spectral range,
and faster temporal response [5,6]. However, application of a CMOS detector array for a terahertz
imaging system has not been put to use as much as expected for three following reasons: First, detection
performances are limited by low responsivity, signal-to-noise ratio (SNR), and effect of DC offsets in
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the detector [5]. Second, there are the inhomogeneities of the detector and the signal conditioning
block, which is used for amplifying the output signals and filtering out noises [6]. Third, more often
than not, a large-scale array requires rapid signal processing for real-time imaging [7].

This work presents the 0.2 THz real-time imaging system employing a 1 ˆ 200 CMOS detector
array, the signal of which is processed by the conditioning block. A pixel size of CMOS array detector
should be comparable to its wavelength so that the width of the array detector for real-time imaging at
sub-THz is usually bigger than single 6-inch wafer. The devices on the same wafer show the maximum
20% characteristic variation in MOSFET and the maximum 30% characteristic variation in resistors [8].
Therefore, the fabrication variation of pixels is inevitable. Consequently, it is not easy to realize the
CMOS plasmon detector array with uniform dynamic range over wide area.

In this paper, we propose the signal conditioning block to compensate for the difference between
the pixels with wide detector array. The conditioning block takes full advantage of gate biases of
detectors and voltage gains of lock-in amplifiers to normalize the dynamic range of the pixels. The SNR
of the detector array is improved by the lock-in amplifiers using the electrical modulation at the gate
bias. The periodic calibration process at the output of the signal conditioning blocks enhances the
uniformity of the output of the detector pixel and cancels the effect of the DC offset. The process in
the signal conditioning block includes the control of the gate bias of each detector and the adjustment
of the voltage gain of each amplifier in the signal conditioning block. Moreover, the block utilizes
multi-channel synchronous analog-to-digital converters (ADCs) for high-speed and simultaneous
signal acquisition of 200 outputs of the detector array in a projection area in real-time. The sub-THz
imaging system using the proposed signal conditioning block is demonstrated with objects moving on
the conveyor belt being captured in real-time at scan rate of 19.2 frame-per-sec (FPS). The architecture
of the proposed THz imaging system employing the proposed conditioning block is shown in Section 2.
The setup of the real-time imaging measurement by the THz system is demonstrated in Section 3.

2. Signal Conditioning Block for THz Imaging System

Figure 1 shows the architecture of the real-time imaging system operating at 0.2 THz. The intensity
of input signals generated by the gyrotron is determined by the polarizer because the THz beam is
linearly polarized parallel to the linear polarization of the integrated patch antenna of the detector [9].
The overall intensity of the THz input coupled to the antenna of the detector can be controlled in
a biquadratic cosine by changing the angle of the polarizer [6]. The THz beam distributed in Gaussian
profile is converted to a uniform line beam by the optical system [10–12]. The optical system consists
of a high-density polyethylene cylindrical lens and a metal cylindrical mirror [11]. A 1 ˆ 200 CMOS
detector array receives THz signals through samples on the conveyor belt with a moving speed of
25 cm/s. The length of a scan line is 20 cm, which is calculated by multiplying 200 pixels by a pitch of
1 mm. The detector pixel in the array, which is integrated with a linearly polarized patch antenna and
fabricated by 65-nm CMOS technology, employs an asymmetric structure in the source and drain to
improve the responsivity [5].
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signal conditioning block of a 1 ˆ 200 CMOS detector array.
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The signal conditioning block consists of the amplifier chain, interfaces between analog and
digital signals, and the main controller and data acquisition block. The overall system architecture
of the proposed signal conditioning block is shown in Figure 2. DC outputs of the detector pixels
are amplified up to the voltage gain of 50 dB and filtered with a series of low-pass filters inside
the amplifier chain. The signals are then collected at a main controller and data acquisition board
having passed through the interface board where 13-channel synchronous 12-bit ADCs and thirteen
32 ˆ 1 multiplexers (MUXs) reside. Figure 3 shows the block diagram of the amplifier chain, a part of
the signal conditioning block for amplifying the outputs and filtering out noises in the outputs.
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2.1. Electrical Modulation Using the Gate Bias of the Detector Pixel

A plasmon detector receives THz signals from the gate coupled to the integrated antenna and
produces a DC voltage to the drain depending on the incident power of the THz signals [4,6,13].
The SNR of the detector array plays an important role in obtaining clear and accurate THz images [14].
The SNR of a single detector pixel can be improved at the chopping frequency by using a mechanical
chopper and a lock-in amplifier because its performance is limited by the 1/f noise and DC offset near
DC or low frequency range [7]. However, the chopper cannot be used in real-time imaging system with
the large detector array because the chopper stability affects the quality of the imaging, it is difficult for
the chopper covering the array with a large area to increase the chopping frequency, and the vibration
of the chopper blade makes noises and decreases the uniformity of the output.

The electrical modulation by the proposed signal conditioning block is used to improve the SNR
of the THz imaging system. As shown in Figure 4, the electrical modulation controlling the bias voltage
of the detector can achieve the same effect as the mechanical chopper. The CMOS sub-THz detector
in the array shows different output level depending on the gate bias, and the output of the detector
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is modulated in accordance with the gate bias [5]. The frequency of the modulation signal from the
waveform generator can be controlled from 100 Hz to 1 MHz.
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Figure 4. Schematic and conceptual diagram of electrical modulation of the detector pixel in the THz
imaging system.

2.2. Calibration of the Detectors in the Array

It is important to obtain the uniform image quality of the large-scale real-time THz imaging
system in order to minimize the performance variation across the detector pixels in the array [6].
Especially, measured responsivities should be normally distributed over the pixels along the array [15].
As for an extreme case, Figure 5 shows the differences in the measured voltage responsivities of CMOS
plasmon detectors consisting of the detector array due to the fabrication variation [16]. The gain
variation of the amplifiers in the signal conditioning block also affects the uniformity of the imaging
system [17]. The calibration process by the proposed signal conditioning block is to approximately
adjust the output level of each detector pixel to the maximum input voltage of the ADC. The proposed
conditioning block controls the gate bias of the detector pixels and the voltage gain of the amplifiers
when the THz wave is evenly incident on the detector array for the calibration. The detectors in the
array are classified with six operating conditions as shown in Table 1 after the calibration process.
This process can simultaneously calibrate both the responsivity of the detector and the performance
variation of the amplifier chain in the signal conditioning block. The ratio between the standard
deviation and the average of the measured response voltages is 0.56 before the calibration, and it is
modified to 0.02 after calibration [16]. The output signals through the amplifier chain are synchronously
converted to the digital domain using thirteen ADCs, which have the maximum input voltage of 5 V
and a spurious free dynamic range of ´85 dB.
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Table 1. Operating conditions of detectors in the signal conditioning block after the calibration process.

Conditions Gate Bias (V) Overall Voltage Gain (dB) Dynamic Range 1

1 1.0 25 4.88
2 0.2 29 4.72
3 0.1 28 4.73
4 ´0.1 28 4.88
5 0.5 26 4.7
6 ´0.1 27 4.84

1 The difference between the maximum and minimum voltages.

DC offsets should be minimized because they may introduce dead pixels in the THz images
constructed by the DC output voltages of the detector array. There are various sources of DC offsets
in the system and an actual environment. The DC offset in each pixel can be obtained using a metal
sample, which blocks THz signals generated from the gyrotron. DC offsets are stored as a reference
and subtracted from the output signals in the digital domain as shown in Figure 6. Uniform THz
images can be achieved from the calibration process after the cancellation.
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Figure 6. DC offset cancellation and output signal amplification in digital domain: (a) An output
voltage of the detector pixel before DC offset cancellation; (b) An output voltage of the same pixel after
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3. Experiment Demonstration

Module boards of the detector array and the signal conditioning block are shown in Figure 7.
The detection module in Figure 7, which is fixed on the conveyor system, consists of a Teflon cover,
module housing, and four printed circuit boards (PCBs) as follows: the 1 ˆ 200 CMOS detector
array board (Figure 7a), the amplifier chain board (Figure 7b), the interface board including ADCs,
DACs, and MUXs (Figure 7c), and the main controller and data acquisition board for data acquisition,
operation control, and communication with the PC (Figure 7d). Electrical modulation, calibration, and
DC offset cancellation are operated by control signals from the main controller and data acquisition
board. Parasitic characteristics are present in the CMOS detector array board because the detector unit
is connected to the PCB with gold bond wires, but they are effectively reduced by using a metallic
shield [6].

The performance of the proposed signal conditioning block for the CMOS detector array is
demonstrated by the real-time THz images. First, the system using the proposed signal conditioning
block obtains the THz images without the conveyor belt to measure the THz detection of the large-scale
detector array. Samples move horizontally with the scan speed of approximately 10 cm/s over the
detector array. The measured THz images of the logo of our institute and a hand are shown in
Figure 8. The images are captured from the real-time THz videos. The institution logo, KERI (Korea
Electrotechnology Research Institute), is made of copper tape with the thickness of 0.06 mm and
attached on the polystyrene board with the dielectric constant of 1.03 and the thickness of 10 mm.
The image resolution less than 8 mm is verified from the measurement results because the measured
images can discriminate the minimum line width of 8 mm shown in Figure 8a.
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Figure 8. Captured image of the real-time THz video: (a) The institution logo, KERI (Korea 

Electrotechnology Research Institute); (b) A hand. Samples move horizontally with the scan speed of 

approximately 10 cm/s over the detector array. The image resolution less than 8 mm is verified from 

the measurement results because the measured images can discriminate the minimum line width of 

8 mm marked in (a). 

The next demonstration is to obtain the THz real-time images for objects with various materials 

on the conveyor belt with the scan speed of 25 cm/s. Test samples are transported by the conveyor 

Figure 7. Photographs of (a) a 1 ˆ 200 CMOS detector array board (size: 50 mm ˆ 220 mm);
(b) printed circuit boards (PCBs) for amplifier chain in the signal conditioning block (PCB unit size:
30 mm ˆ 21 mm); (c) an interface board including ADCs, DACs, and multiplexers (MUXs) (size:
350 mm ˆ 220 mm); and (d) a main controller and data acquisition board (size: 350 mm ˆ 220 mm).
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Figure 8. Captured image of the real-time THz video: (a) The institution logo, KERI (Korea
Electrotechnology Research Institute); (b) A hand. Samples move horizontally with the scan speed of
approximately 10 cm/s over the detector array. The image resolution less than 8 mm is verified from
the measurement results because the measured images can discriminate the minimum line width of
8 mm marked in (a).
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The next demonstration is to obtain the THz real-time images for objects with various materials
on the conveyor belt with the scan speed of 25 cm/s. Test samples are transported by the conveyor
belt with a moving part made of Teflon material. Figure 9 shows real-time images for various samples
on the conveyor belt. THz waves are reflected from the surface of the metal, and the metal objects can
be detected using the imaging system in real time as shown in Figure 9b. Plastics and adhesive tapes
with a PVC can be also detected using the imaging system in real time because the THz signals are
quite attenuated in highly dense plastics and tapes.
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Figure 9. Captured images of THz real-time videos for various samples and photographs of the
samples: (a) Scissors; (b) A wrench; (c) A pocket knife and a tapeline; (d) Adhesive tapes. Insets:
Photographs of the samples in each image.

Two types of samples are prepared for the demonstration of the real-time THz imaging system.
The patterns of “+” and “´“ with the line width of 8 mm are shaped by using copper tape with the
thickness of 0.06 mm and placed between two polystyrene blocks with the dielectric constant of 1.03
and the thickness of 10 mm. Figure 10 shows the detail dimension of the samples. Nine samples are
arranged with the space of 20 mm on the conveyor belt.

The patterns of “+” and “´“ are successively remarked by the imaging system using the proposed
conditioning block in Figure 11a. The images are the other examples showing the image resolution of
8 mm or less. There are no image shapes for the polystyrene blocks in Figure 11a. Most THz signals
are transmitted without any reflections on the surface of the blocks because the difference of dielectric
constant between the air and the polystyrene blocks is negligible. The shape of adhesive tape with an
acetate, which are used to bond the conveyor belt, is imaged by the system as shown in Figure 11b.
In contrast to the copper tape, the THz waves can be transmitted through the adhesive tape with the
thickness of 0.1 mm and the dielectric constant of approximately 5. However, the waves are attenuated
by the adhesive tape because of boundary condition between the air and the tape. Figure 11b shows
that the imaging system can detect the difference of signal power between the THz waves passing
through the adhesive tape and otherwise.



Sensors 2016, 16, 319 8 of 11
Sensors 2016, 16, 319 8 of 11 

 

  
(a) (b) 

Figure 10. Photographs of two samples for the demonstration of the real-time THz imaging system. 

(a) the pattern of “+” ; and (b) the pattern of “−“. 

 
(a) 

 
(b) 

Figure 11. Photographs of samples and captured images of real-time THz videos of moving samples 

(a) two types of patterns of “+” and “−“ and (b) adhesive tapes with an acetate to bond the conveyor belt. 

The frame-per-sec (FPS) of the imaging system can be calculated from signal acquisition time 

and the number of acquisition for overall detectors in the array and expressed as 

1 Frame
FPS

ST N



 (1) 

Figure 10. Photographs of two samples for the demonstration of the real-time THz imaging system.
(a) the pattern of “+” ; and (b) the pattern of “´“.

Sensors 2016, 16, 319 8 of 11 

 

  
(a) (b) 

Figure 10. Photographs of two samples for the demonstration of the real-time THz imaging system. 

(a) the pattern of “+” ; and (b) the pattern of “−“. 

 
(a) 

 
(b) 

Figure 11. Photographs of samples and captured images of real-time THz videos of moving samples 

(a) two types of patterns of “+” and “−“ and (b) adhesive tapes with an acetate to bond the conveyor belt. 

The frame-per-sec (FPS) of the imaging system can be calculated from signal acquisition time 

and the number of acquisition for overall detectors in the array and expressed as 

1 Frame
FPS

ST N



 (1) 

Figure 11. Photographs of samples and captured images of real-time THz videos of moving samples
(a) two types of patterns of “+” and “´“ and (b) adhesive tapes with an acetate to bond the
conveyor belt.



Sensors 2016, 16, 319 9 of 11

The frame-per-sec (FPS) of the imaging system can be calculated from signal acquisition time and
the number of acquisition for overall detectors in the array and expressed as

FPS “
1 Frame
TS ¨ N

(1)

where TS is the period of the signal sampling and N is the number of acquisition needed to achieve one
frame [18,19]. N also indicates the maximum number of detector pixels supported in the system. TS is
set to 125 µs in the proposed system. The calculated N is 416 because the thirteen synchronous ADCs
operate 32 times repeatedly by controlling the MUXs. Using Equation (1), the FPS of the proposed
imaging system brings out 19.2. TS can be reduced to 100 µs, and 24 FPS can be achieved by the
system. The performances of the THz imaging system using the proposed signal conditioning block are
compared with the previous results in Table 2. The main difference from the previous results listed in
Table 2 is the imaging method. The linear array detector in the THz imaging system obtains images over
an objects continuously moving on the conveyor belt. Therefore, it carries wide fabrication-variation
of the detectors. To make the variant outputs from the detector in the array uniform, the proposed
signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each
detector and the voltage gain of the lock-in amplifiers in the block.

Table 2. The comparison of the THz imaging system.

Performances [4] [15] [20] [21] This Work

Detector Process CMOS CMOS CMOS Sb-HBD CMOS

Operating Frequency 650 GHz 280 GHz 650 GHz 700 GHz 200 GHz

Scanning Method No scanning 2D step scan Parallel scanning No scanning Line scanning

Optics Integrated
silicon lens Lens-less Discrete Picarin &

PTFE lenses
Integrated silicon

lens
Discrete

polyethylene lens

# of detectors in the array 32 ˆ 32 4 ˆ 4 3 ˆ 5 80 ˆ 64 1 ˆ 200

One projection area 4.2 cm ˆ 4.2 cm 1 mm ˆ 1 mm 0.2 mm ˆ 0.15 mm 1 8.5 cm ˆ 6.8 cm 2 1 cm ˆ 20 cm

Imaging method Single shot Pixel
multiplexing Pixel multiplexing Single shot Continuous

imaging

Scan speed 0.63 cm/s 25 cm/s

FPS 25 5 19.2

Dynamic Range 55 dB 15 dB 14 dB
1 The projection area is the physical area of a pixel which is used for measuring the detector performances;
2 The projection area was calculated with the THz images shown in the paper.

Several black lines, attributed to damaged detector pixels, are shown in the captured images of
real-time THz videos. 200 CMOS detector units are separately attached on the PCB and three wires in
each detector are connected to the detector units with the PCB. For that reason, the detector module
consisting of a large number of the detector units is apt to cause breakage and contamination in the
fabrication process. The number of the black lines is increased in Figures 9 and 11 compared with
Figure 8. It can be understood that the THz waves are attenuated by the conveyor belt and the outputs
of the detector pixels are saturated more easily with the calibration process for the compensation of
the signal attenuation.

4. Conclusions

We demonstrated the performance of the proposed signal conditioning block making the variant
outputs from the 1 ˆ 200 CMOS plasmon detectors in wide array uniform, by taking terahertz images
in real time. The electrical modulation improves the SNR of CMOS detectors, and the calibration
process with DC offset cancellation also improves the uniformity of THz images to minimize the
performance discrepancy caused by the detector array and electronic circuits in the proposed signal
conditioning block. The imaging system with the proposed conditioning block for 1 ˆ 200 CMOS
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detector array achieved 19.2 FPS real-time imaging of the samples on the conveyor belt with the scan
speed of 25 cm/s.
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