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Abstract: A high-performance differential global positioning system (GPS) receiver with real time
kinematics provides absolute localization for driverless cars. However, it is not only susceptible to
multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving
areas. This paper proposes an accurate GPS–inertial measurement unit (IMU)/dead reckoning (DR)
data fusion method based on a set of predictive models and occupancy grid constraints. First, we
employ a set of autoregressive and moving average (ARMA) equations that have different structural
parameters to build maximum likelihood models of raw navigation. Second, both grid constraints
and spatial consensus checks on all predictive results and current measurements are required to have
removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to
achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be
pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios.
The experimental results demonstrate that the method can significantly smooth small jumps in bias
and considerably reduce accumulated position errors due to DR. With low computational complexity,
the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the
new data fusion method is practically applied in our driverless car.

Keywords: local navigation; GPS-IMU/DR integrated navigation; multimodal data fusion; maximum
likelihood estimation; driverless car

1. Introduction

Autonomous navigation is one of the most key technologies for driverless cars. Accurate positioning
and orientation estimation of vehicles is generally regarded as the basis of many sophisticated
modules such as environmental perception, path planning, and autonomous decision-making of
driverless cars under complex urban scenarios. Different from stand-alone GPS that is increasingly a
popular navigation system, an enhanced differential GPS (DGPS) receiver with phase carrier signal
measurements may run in operating modes of real time kinematics (RTK–DGPS), which has the highest
absolute position accuracy of up to a few centimeters. In DGPS, mobile GPS device continuously
receives correction data from ground-based reference station over transmitter of shorter range, aiming
to compensate location inaccuracies [1]. DGPS systems operating under complicated urban scenarios,
however, occasionally lose broadcast signals and probably acquire inaccurate localization data due
to many unpredictable factors such as buildings’ occlusion, signal attenuation, and a diversity of
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electronic interference. In general, it works well in a limited range in terms of pseudorange correction
principle. In addition, atmospheric visibility of satellite, potential environmental effects, and multipath
may have negative impact on precision and reliability of GPS itself [2]. Two widely used multipath
mitigation methods, i.e., high-resolution correlator (HRC) and multipath mitigation technique (MMT),
and a new coupled amplitude delay lock loops (CADLL) method, wich is based on multipath signal
amplitude, code phase, and carrier phase, are evaluated in [3]. They may fail under dynamic multipath
scenario or when multipath is stronger than line-of-sight (LOS). Except for GPS, DR that employs
vehicle kinematic model and incremental measurements of wheel encoder is often viewed to play a
crucial role in precise short-term navigation of driverless cars [4]. As one of the autonomous relative
navigations, the DR technique is capable of continually providing position information. A major
disadvantage of using DR for navigation is that they typically suffer from accumulated error because
of wheel slippage and wheel imperfection [5]. Actually, localization accuracy can maintain only within
a very short range. As a result, substantial efforts have been made to improve long-term precision and
robustness through slip estimation [6].

Several complementary navigation systems, including GPS, IMU, and DR, are usually combined
through a variety of information fusion methods, typically such as Kalman filter (KF) [7]. In fact,
GPS or GPS–IMU can provide absolute position and orientation, even if it contains discontinuous
data and/or random drifts. Contrarily, as a local navigation system, DR is able to conduct accurate
localization within a certain distance or duration. However, position errors will be accumulated with
increase of distance. Undoubtedly, integration of GPS–IMU and DR is a natural selection to accurately
navigate driverless car. In the last few decades, a lot of multimodal data fusion methods for meeting
reliable, robust, and decimeter-level requirements for driverless cars, e.g., the extended Kalman filter
(EKF) and the unscented Kalman filter (UKF), has emerged. The EKF simplifies nonlinear filtering
and is used for state estimation in [8–17]. Among this literature, several types of additional sources of
information, including on-board motion sensors, cameras or LiDAR vision systems, and road map
databases, are adopted to compensate for EKF-based navigation systems. References [8–11] improve
accuracy of localization by integration of different navigation systems such as IMU, GPS, and DR.
Ma et al. [12] combine stereo-camera sensor, IMU, and leg odometry by virtue of EKF. In [13,14],
both accurate digital map and camera are integrated to improve location accuracy. Moreover, four
EKF-based state estimation architectures are evaluated in [15], including nonlinear model (NLM) [16]
and error model (ERM) [17], each with/without a complementary filter [18,19]. The experimental
results show that NLM with a complementary filter has superior localization performance, which
will be adopted to make comparison with our model in Section 3. Unlike the EKF, the UKF employs
unscented transform to address approximation issues of the EKF, which is also extensively exploited
in multimodal data fusions [20–22]. Actually, there still exist some problems even if the above two
kinds of methods have been widely applied. The deficiencies of the KFs including EKF and UKF were
specifically pointed out in [23]. For example, considering that there are uncertainties or unknown
statistical characteristics for process and/or measurement noises, it is very hard to perform reliable
multimodal data fusion. Hence, the above-mentioned fusion methods are not sufficient to establish
robust and accurate state estimation. To the best of our knowledge, there have been no reports on
multimodal data fusion methods based on a set of predictive models and occupancy grid constraints.

In this paper, we propose a novel data fusion method for precise localization problem of driverless
car using a set of ARMA predictive models and occupancy grid constraints. It is only based on on-board
GPS–IMU and DR navigation data. First, a set of ARMA models with different structural orders are
used for concurrent predictions, avoiding prior selection of the order of ARMA models. Second, both
grid constraints and spatial consensus check on all predictive data and current measurements are
conducted to remove outliers, resulting in stationary stochastic process. Third, the standard deviation
of fused data can be controlled by grid size. Finally, the extensive experimental results achieved
on field tests under real urban scenarios show that the proposed multimodal data fusion method
can not only smooth small jumps in bias due to satellite signal occlusion or multipath but decrease
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accumulated location errors caused by DR. Most importantly, the localization precision of our method
outperforms existing state-of-the-art methods in terms of the identical test dataset.

This paper is organized as follows. Section 2 proposes our novel data fusion method.
The experimental results and performance evaluation are provided in Section 3. Section 4
draws conclusions.

2. Accurate GPS–IMU/DR Data Fusion Method

2.1. Occupancy Grid Constraints-Based Local Navigation

Suppose that vehicle displacement at a sampling period provided by GPS–IMU integrated
navigation system or DR system is denoted as r∆xk, ∆yks

T , k = 0,1,2¨ ¨ ¨¨. Under normal circumstances,
the time series t∆x1, ∆x2, ¨ ¨ ¨, ∆xk, ¨ ¨ ¨u and t∆y1, ∆y2, ¨ ¨ ¨, ∆yk, ¨ ¨ ¨u are considered as a collection of
stationary stochastic processes, which implies that current state is only dependent on previous one-step
or multi-step states without nonstationarity. In this paper, we use a couple of ARMAs for modeling such
covariance stationary time series data. Notice that we adopt position increments r∆x, ∆ysT instead of
absolute positions [x, y]T so as to avoid multilinear problems. In general, the selection of ARMA model
order is viewed as the first step prior to parameter estimation. A comprehensive survey on methods for
determining the order of ARMA can also see [24]. In the popular traditional methods, optimal model
could be found on the basis of certain criterions after completing estimates of model parameters, e.g.,
final prediction error (FPE) [25], Akaike information criterion (AIC) [26], and minimum description
length (MDL) [27,28]. In [29], eigenvectors of covariance matrix of input data rather than parameter
estimation are employed to determine the model order. Using Bayesian framework, a new method for
jointly estimating model order and parameters is presented in [30]. In fact, there do not exist any generic
methods on the best order selection problem, although improvements have been proceeding [31],
among which some policy is used to be closer to real structural model at the cost of computational
complexity. Thus, the determination of model order is really regarded as one of the most difficulties.
In this paper, we present a novel method that has no requirements for determining model order, where
a set of ARMA models with multiple different orders are utilized for position predictions that are
eventually evaluated and screened by occupancy grid constraints and spatial consensus check, together
with current measurements. This leads to reasonable selection of the best structural parameter.

The flowchart of the proposed multimodal data fusion method is shown in Figure 1, where
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denote
the eastern and northern displacements given by DR, respectively. The two groups of time series are
used to predict current positions though a set of ARMA models with different orders. Considering that
ARMA models contains multiple orders, as described as the p-order ARMA (p = 1,2,¨ ¨ ¨,n) in Figure 1,
a total of 2n predictions can be yielded. With the addition of current measurements by GPS–IMU and
DR, we make further use of grid constraints and spatial consensus check to have removal of outliers,
in order to fulfill data fusion for resulting stationary stochastic processes.
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Figure 1. The flowchart of the proposed data fusion method. 
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Figure 1. The flowchart of the proposed data fusion method.

2.2. Prediction Using a Set of ARMA Models with Different Orders

After collecting raw data from GPS–IMU and DR, it is required to establish a set of ARMA
models with multiple structural orders for prediction of localization. In this paper, we adopt 1st order,
2nd order, and 3rd order ARMA predictive models, respectively. Without loss of generality, ARMA
predictive model for GPS–IMU data can be expressed as,

∆xG
k “ Φ1∆yG

k´1 `Φ2∆yG
k´2 ` ¨ ¨ ¨ `Φp∆yG

k´p ` θ1∆xG
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k´p (1a)
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where p∆xG
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k q denotes prediction at time step k using previous p position increments or
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Specifically, θ “ rΦ1, Φ2, ¨ ¨ ¨Φp, θ1, θ2, ¨ ¨ ¨, θps
T or θ1 “ rΦ11, Φ12, ¨ ¨ ¨Φ1p, θ11, θ12, ¨ ¨ ¨, θ1ps

T represents the
2p-dimensional vector constituted by unknown parameters, εk or ε1k indicates noise, and the superscript
“G” denotes position increments from GPS–IMU data. If it is from DR, the superscript is expressed
by “D”. Assume that εk is statistically independent and distributed with Gaussian distribution with
zero mean and variance of σ2. Consequently, likelihood estimation of parameter vector θ is stated
as follows:

The noise probability density function εk is given by
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Note that the probability of data is a function of Y, which contains all the ∆yG
k for a fixed value of

θ, i.e., Y “ r∆yG
1 , ∆yG

2 , ¨ ¨ ¨, ∆yG
k s

T . If it is considered as a function of θ, then the likelihood function can
be described below,

Lpθq “ Lpθ; Y, δq “ ppY |δ , θq (4)

where δ indicates matrix that contains all the δk,p.
Considering that ∆yG

k is statistically independent, the likelihood function is rewritten as

Lpθq “
źm
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ˇ

ˇ
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źm
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As a result, θ should be estimated so as to make data have high probability. Instead of directly
maximizing Lpθq, we can also make maximization of any strictly increasing function of Lpθq such as
log-likelihood function logLpθq, i.e.,

logLpθq “
m
ÿ

k“1

logpp∆yG
k

ˇ

ˇ

ˇ
δk,p , θq (6)

By maximizing the logLpθq [26], we can optimally find the set of parameters θ of ARMA models.
Correspondingly, unknown parameters of 1st order, 2nd order, and 3rd order ARMA predictive models
can on-line be estimated.

2.3. Accurate Data Fusion Method

At time step k, two current measurements from GPS–IMU and DR, respectively, together with
six predictions delivered by the above-mentioned ARMA predictive models with 1st order, 2nd order,
and 3rd order, are all projected onto identical occupancy grid map for data fusion. Owing to the
fact that there always exist measurement noises and prediction errors caused probably by incorrect
model orders and nonlinearities, this paper presents a novel policy of eliminating outliers through
occupancy grid constraints and spatial consensus check (shown in Algorithm l). In the accurate data
fusion method, we only choose those grid cells that contain the majority of predictions and current
measurements, including that of falling on the frontier. With the grids map, the number of points falling
into the same grid is counted. In this case, dense data of solely falling into an occupancy grid of H ˆW
are retained as inliers, while sparse data scattered in other grids are classified as outliers. Our empirical
data illustrates that the selection of both H and W equal to 0.2 m leads to the best performance. After
eliminating outliers, we conduct refinement of inliers through Algorithm 1. Specifically, by iteratively
filtering noise inside grids, the best localization of centroids could be estimated among inliers.

Figure 2 shows the grid-based data fusion scheme, where the current navigation data measured
by GPS–IMU and DR, as well as the predictions obtained using multiple ARMA models presented in
Section 2.2 are all indicated in black points, while the grey points stand for the outliers that should be
eliminated and the red points denote the data fusion results evaluated in accordance with our method.
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Algorithm 1. Spatial Consensus Check
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1 or n1

2.
end

end

After iteratively filtering noise inside grids, we get the final increments at time step k by averaging
all the inliers.

3. Experimental Results

To evaluate navigation performance of our method, we performed extensive on-site navigation
experiments on our driverless car shown in Figure 3. In this section, we first make analysis of raw
navigation data given by GPS–IMU and DR. Along the ground truths of autonomously driving
trajectories, we then investigated position errors for stand-alone GPS–IMU, DR and our data fusion
method. The ground truth is found through tight integration of NovAtel GPS receiver and IMU in
the open air when the GPS mode is RTK. In addition, on the basis of datasets provided by [15], we
conducted comparative study of the proposed method with state-of-the arts such as state dependent
Riccati equation (SDRE) navigation filtering [15,16], which is an alternative to the EKF. Evaluation of
four Kalman filtering based state estimation architectures is given in [15], which demonstrates that
the NLM outperforms the other three architectures in the experiments provided in [15]. Hence, our
method will be made comparison with SDRE in Section 3.2. Finally, the multimodal data fusion results
in the presence of interrupted GPS–IMU signals will be further discussed.
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Figure 3. Driverless car developed by Tsinghua University. 
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the driverless car parking at three different locations (also see Table 1). It is observed from Table 1 
that there is significant change in x-coordinates at the identical location #1 over 10 min, the 
maximum value of which is up to 6.102 m with the standard deviation of 1.428. Note that location #1 
is just under overpass with heavy traffic flow. In this situation, GPS–IMU data become instable due 
to severe satellite signal occlusion and multipath effects. However, position data of (x,y) recorded at 
locations #2 and #3 always remain very stable because they are sampled in an open site. 
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3.1. Analysis of Raw Navigation Data

Let us first examine the characteristics of raw navigation data collected by GPS–IMU that is
installed on our driverless car. We kept a record of position and orientation data over 10 min when
the driverless car parking at three different locations (also see Table 1). It is observed from Table 1
that there is significant change in x-coordinates at the identical location #1 over 10 min, the maximum
value of which is up to 6.102 m with the standard deviation of 1.428. Note that location #1 is just
under overpass with heavy traffic flow. In this situation, GPS–IMU data become instable due to severe
satellite signal occlusion and multipath effects. However, position data of (x,y) recorded at locations #2
and #3 always remain very stable because they are sampled in an open site.
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(X_min, Y_min) (´2521.839, 1990.442) (´215.399, 190.123) (´0.013, ´0.001)
(X_max, Y_max) (´2515.737, 1990.554) (´215.393, 190.134) (0.099,0.397)

(X_average, Y_average) (´2516.651, 1990.461) (´215.396, 190.129) (0.038, 0.255)
(X_stdev, Y_stdev) (1.428, 0.022) (0.001,0.002) (0.037, 0.128)

Meanwhile, our driverless car is equipped with two wheel encoders (Nemicon SBH-1024-2MD),
which can precisely produce the rolling turns of wheels. We then calculate trajectory distances of the
two wheels and take the averaging of them as DR outputs. Unlike GPS–IMU data, DR data look like
rather stationary but have unusual accumulated errors.

3.2. Comparative Study

Figure 4 shows four moving trajectories of driverless cars on a real route containing curved roads,
including GPS–IMU measurements, DR outputs, and data fusion obtained using our methods, as
well as the ground truth. Apparently, the former three trajectories are roughly consistent with the
ground truth. To gain more clear insights about performance, we have four local trajectories enlarged,
as shown in Figure 5. Notice that it has the same legend as in Figure 4.
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first curved segmentation; (c) In the vicinity of the second curved segmentation; (d) In the vicinity of
the destination.

Figure 5 demonstrates that the fusion results we achieved are almost between the GPS–IMU raw
data and DR data, keeping smooth and steady, even in curved segmentation. Compared to the ground
truth, our data fusion results are much closer to the actual localization physically going with the
driverless car. To demonstrate the relative localization performances, Figure 6 (left) shows the average
position error curves of the three trajectories derived from GPS–IMU, DR, and our method, respectively.
The final average position error is only 0.18 m for the fusion data when the DR has already an error of
0.49 m. The difference between the fusion data and the reference is also plotted in Figure 6 (right). The
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left curves in Figure 6 indicate average position errors. In other words, position errors will be averaged
over time, which can clearly reflect accumulation of errors. However, the right ones represent position
errors at a specific time in our experiment. The overall position root–mean-square (RMS) errors are
calculated to be 0.47 m for GPS–IMU 0.58 m for DR, and 0.25 m for the proposed method, respectively.
Actually, our fusion method still needs to be further improved when turning-about, even if the fusion
results are much better than that of either GPS–IMU or DR data for straight or curved roads. It is
probably caused by big azimuth error of DR when crossing intersection.
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In general, the EKF is proven to work very well among all data fusion methods. Using the
datasets on real road and the code implementation provided by [15], we carried out a comparative
study of our method with NLM (SDRE filter). The results are shown in Figures 7 and 8. Figure 7
shows the trajectories obtained by different fusion methods and the average position errors of the
proposed method and NLM when compared with the ground truth. Figure 8 depicts our fusion data
with the reference values. Note that the ground truth was obtained using top-down camera tracking
of the driverless car. The precision of visual tracking system was experimentally determined to be
15 cm ˘ 12 cm within 15 m ˆ 10 m outdoor area. The red solid curve represents the experimental
results achieved with NLM, while our position error is marked in green solid line. It is easy to see
from Figure 7 that our method outperforms NLM. The position RMS errors of the above-mentioned
methods are listed in Table 2.
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Table 2. Performance comparison of our method with the nonlinear model (NLM) in [15].

Approach North Position RMSE (m) East Position RMSE (m) Position RMSE (m)

NLM[15] 0.8241 0.3268 0.8865
Our Method 0.7973 0.3171 0.8581

From Figures 7 and 8 and Table 2, it is readily observed that our method performs better than
the NLM in [15], which outperforms classical NLM without complementary [16] and ERM [17].
Additionally, we conduct an additional analysis of computational load for the above methods. Note
that the cycle duration of the NLM is estimated using the simulation (MATLAB) [15], while that of
our new method is evaluated through the on-board system of our driverless car implemented by C++.
And the results are listed in Table 3. Although the comparison is unfair, it illustrates that the proposed
method does have superior performance in terms of accuracy and computational load.

Table 3. Analysis of computational load.

NLM NLM + CF Our Method

Cycle duration
(ms)

0.8 1.0 0.005

3.3. Data Fusion Results with Interrupted GPS–IMU Signal

When satellite signal occlusion or multipath error occurs, position estimates delivered by
GPS–IMU might be severely biased occasionally. Figure 8 shows the experimental results obtained
using our fusion method, which indicates that the proposed method is capable of providing steady
and continual vehicle trajectories even if there is bias or even big interruption in GPS–IMU signals.

It is readily observed from Figure 9 that there indeed exist small discontinuity jumps in bias due
to satellite signal occlusion or multipath, as indicated in the red marked GPS–IMU raw data, which is
occasionally even up to 2 m in bias and intolerable for navigation systems of driverless cars. However,
our new data fusion method makes vehicle trajectories perfectly smooth, as shown in curves marked
in green and the localization accuracy is almost unaffected by a jump in GPS–IMU data. In fact, the
proposed adaptive data fusion method is practically applied in THU-IV2 driverless cars developed
by ourselves.
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4. Conclusions 

In this paper, we propose a new multimodal data fusion method for accurate navigation of 
driverless cars based on a set of predictive models and occupancy grid constraints. The novelty of 
our method includes: (1) we employ a set of ARMA models with different structural orders to 
concurrently make location predictions, avoiding subjectively determining the order of ARMA 
models; (2) both grid constraints and spatial consensus check are presented to have removal of 
outliers, in order to generate stationary stochastic process; and (3) the standard deviation of data 
fusion can be controlled by size of grid in advance. To evaluate navigation performance of the 
proposed method, we conduct a considerable amount of on-site experiments. The experimental 
results demonstrate that our method can not only smooth small jumps in bias due to satellite signal 
occlusion or multipath but also achieve promising localization fusion precision. Although 
accumulated position errors caused by DR are significantly reduced, there still remains a certain 
value with the increase of distance in a sense. In particular, degradation in fusion accuracy will 
occur when GPS–IMU retains discontinuity jumps in bias for a longer period of time. In this case, a 
policy on blocking GPS–IMU data sources should be adopted. 
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4. Conclusions

In this paper, we propose a new multimodal data fusion method for accurate navigation of
driverless cars based on a set of predictive models and occupancy grid constraints. The novelty of our
method includes: (1) we employ a set of ARMA models with different structural orders to concurrently
make location predictions, avoiding subjectively determining the order of ARMA models; (2) both
grid constraints and spatial consensus check are presented to have removal of outliers, in order to
generate stationary stochastic process; and (3) the standard deviation of data fusion can be controlled
by size of grid in advance. To evaluate navigation performance of the proposed method, we conduct a
considerable amount of on-site experiments. The experimental results demonstrate that our method
can not only smooth small jumps in bias due to satellite signal occlusion or multipath but also achieve
promising localization fusion precision. Although accumulated position errors caused by DR are
significantly reduced, there still remains a certain value with the increase of distance in a sense. In
particular, degradation in fusion accuracy will occur when GPS–IMU retains discontinuity jumps
in bias for a longer period of time. In this case, a policy on blocking GPS–IMU data sources should
be adopted.
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