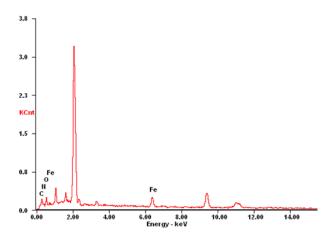
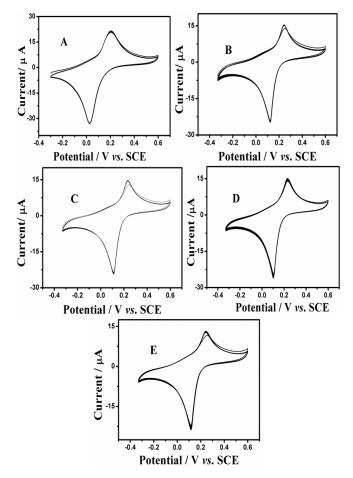
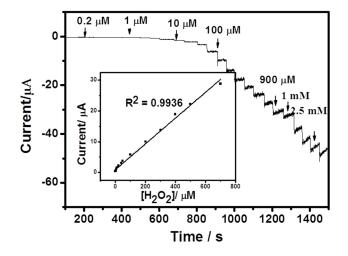
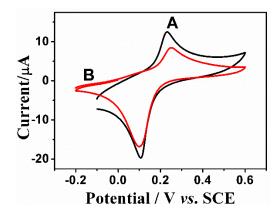
Supplementary Materials: One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

Ezzaldeen Younes Jomma and Shou-Nian Ding


Figure S1. EDAX showing the elements content of the composite Fe₃O₄-Prussian blue.

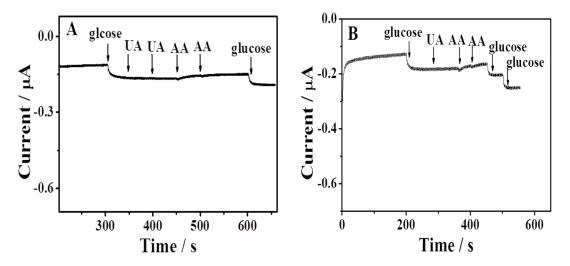

Figure S2. Multi-CVs of the Fe₃O₄-PB/GCE in 0.01 M Phosphate buffer solution (PBS) containing 0.1 M KCl at deferent pH values (**A**) 5.0, (**B**) 6.0, (**C**) 7.0, (**D**) 8.0, (**E**) 9.0.

Figure S3. Current-time response of the Fe₃O₄-PB/GCE to the successive addition of H₂O₂ in 0.01 M PBS (pH 6.0) + 0.1 M KCl under stirring at -0.1 V. Insert: Plot of catalytic current vs. H₂O₂ concentration.

Figure S4. Typical CVs obtained at Fe₃O₄-PB/GCE (**A**) and GOD-BSA/Fe₃O₄-PB/GCE (**B**) in 0.01 M PBS (pH 6.0) + 0.1 M KCl. Scan rate: 50 mV·s⁻¹.

Figure S5. Typical Chronoaperometry (I-t) response of 0.025 μ M glucose and (A) 0.1 μ M AA and 0.1 μ M UA (B) 0.2 μ M AA and 0.2 μ M UA at GOD-BSA/Fe₃O₄-PB/GCE. Applied Potential: -0.15 V.