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Abstract: Contamination of eye movement and blink artifacts in Electroencephalogram (EEG)
recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient
removal of these artifacts from EEG data is an essential step in improving classification accuracy to
develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework
based on independent component analysis (ICA) and system identification to identify and remove
ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of
the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed
algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal
activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art
techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of
the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally,
results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual
information values between corrected EEG and artifact-free EEG data.

Keywords: electroencephalogram; eye tracker; ocular artifacts; independent component analysis;
auto-regressive exogenous model; affine projection algorithm; composite multi-scale entropy; median
absolute deviation

1. Introduction

In recent years, non-invasive neuro-imaging has become a valuable research tool to understand
the underlying functionality of the brain [1–5]. Electroencephalogram (EEG) with the advantages of
portability and high temporal resolution is a non-invasive brain-imaging technique used to measure
different physiological states of the brain with amplitude typically in order of a few microvolts [6,7].
Unfortunately, measurements from EEG are highly contaminated with eye movement and blink
artifacts which are several times higher in magnitude as compared to neuronal activity [8–13]. This
issue has become a recurrent problem, for example in brain-computer interface (BCI) where it has been
proved to decrease the classification accuracy [14].

Various methods to tackle this challenging task have been proposed in the literature. A straight
forward way to reduce ocular artifacts is to discard the artifactual epochs from EEG data. However,
this may cause a considerable data loss related to neuronal activity and it also requires a huge amount
of time. In contrast, several automated methods have been proposed to detect and remove/reduce
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ocular artifacts in past. These methods can be divided into two main categories, i.e., regression based
methods [9,15–20] and blind source separation techniques [21–27].

In regression algorithms, propagation coefficients of ocular artifacts are calculated to estimate the
amount of electrooculography (EOG) signal present in EEG signal and subsequently the estimated
EOG is subtracted from EEG to obtain artifact-free EEG [28–32]. Since EOG also captures the neuronal
activity from prefrontal cortex, therefore the common neuronal activity in EEG and EOG might be
lost in regression methods and due to this bidirectional contamination problem these algorithms were
proved to be less effective [29]. Figure 1A shows the schematic diagram of regression algorithms.

Figure 1. Schematic diagrams. (A) Regression method; (B) Independent component analysis.

On the other hand, the second class of methods are based on the assumption that the neuronal
activity and artifactual activity are independent from each other. Most commonly used method in
blind source separation is independent component analysis (ICA) [21,31,32]. In ICA based algorithms,
EEG signal is decomposed into several independent components (ICs), which are then classified into
neuronal-activity-related and artifactual ICs. The selected artifactual ICs are then removed to obtain
artifact-free EEG. The main issue of this methodology is the selection of artifactual components, usually
this can be done by the visual inspection of an expert but this approach might lead to misclassification
of ICs and divergent results [33]. Recently, several automated criteria have been developed to tackle
this issue [26,32–34] and they showed significant improvement in terms of artifact removal from EEG
data but the distortion produced due the removal of those ICs in EEG signal was left unaddressed,
since an artifactual IC may contain neuronal activity along with artifacts [35]. The schematic diagram
illustrating the ICA based removal of ocular artifacts is shown in Figure 1B.

Recently, researchers proposed to combine these two methodologies to remove ocular artifacts
from EEG by utilizing their advantageous features [29,36]. Although these methods proved to be
effective in removing ocular artifacts but they always require simultaneous EOG recordings, which
is not plausible in applications like BCI. To this extent, Kierkels and coauthors [37] proposed to use
an eye tracker for eye movement artifact removal from EEG. They used eye tracker to generate eye
positions, which were used as inputs to Kalman filter to remove eye movement artifacts. Although,
their method achieved improved results over other artifact removal techniques but it is not able to deal
with blink artifacts. Later, Noureddin and colleagues [38] used a high speed eye tracker to propose
a regression based technique with recursive least square and H8 filters. Plöchl and co-authors [33]
proposed a simple criteria for identifying artifactual ICs based on the events of eye tracker and they
replaced the selected ICs with zero to get clean EEG.

In this paper, hybrid EEG and eye tracker system is used to develop a novel adaptive framework
which automatically detects and removes eye movement and blink artifacts from EEG data. In contrast
to the EOG based algorithms, the proposed algorithm is developed such that eye tracker and frontal
EEG electrodes are used to detect and remove ocular artifacts. The proposed methodology combines
the advantageous features of ICA and system identification to remove eye movement and blink
artifacts. The first step of the proposed algorithm is to obtain ICs by ICA decomposition of EEG
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data. In the next step, we proposed to use composite multi-scale entropy and eye tracker events to
automatically identify blink and eye movement artifacts related ICs, respectively. These artifactual
ICs are filtered with median absolute deviation to remove high magnitude ocular activities and then
processed to an auto-regressive exogenous model to completely remove eye movement and blink
artifacts. The parameters of the auto-regressive exogenous model are estimated using affine projection
algorithm. In the final step, inverse ICA is used to reconstruct EEG signal by back projecting all ICs.
The performance of the proposed algorithm is demonstrated through results on experimental and
standard EEG datasets. Furthermore, the proposed algorithm is compared with two state-of-the-art
techniques namely ADJUST based ICA [34] and REGICA [30]. Relative error and mutual information
are used as an evaluation indexes to measure the ability of removing ocular artifacts by the proposed
algorithm. Paired t-test is used to validate the significant improvement in removing ocular artifacts by
the proposed algorithm over previous methods. Results show that the proposed method is efficient for
automatic detection and removal of eye movement and blink artifacts from EEG signals. The schematic
diagram and summary of the proposed algorithm are shown in Figure 2 and Table 1, respectively.

Figure 2. Schematic diagram of the proposed algorithm.

Table 1. Summary of the proposed algorithm.

Input: Contaminated EEG data, Eye tracker data

Output: Artifact-free EEG data
Synchronization of EEG and eye tracker
Decompose contaminated EEG data using ICA to get ICs
Portioning of ICs into saccade and fixation epochs
Calculate composite multi-scale entropy and ratio of mean variance to identify ocular artifacts related ICs
Apply median absolute deviation to remove high magnitude ocular activities from identified ICs
Filter ICs with auto-regressive exogenous model and affine projection algorithm
Artifact-free EEG data by back projecting all ICs using inverse ICA

The remainder of this paper is organized as follows. In Section 2, a detailed description of the
datasets and proposed algorithm is presented. Evaluation indexes used in this study are formulated in
Section 3 followed by the results and discussion sections. Finally, the main idea and conclusions are
summarized in last section.
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2. Materials and Methods

2.1. Materials

In this paper, we used experimental and standard EEG datasets to demonstrate the performance
of the proposed algorithm.

2.1.1. Participants

EEG and eye tracker measurements were acquired from 5 healthy subjects, all male, mean age 28.
Experiment was conducted under the Declaration of Helsinki. The experiment was approved by the
Institutional Review Board of Pusan National University. The experiment was conducted in a confined
room with dim light to avoid environmental disturbance.

2.1.2. Experimental Procedure

All the participants were seated in an armchair at a distance of about 1m from a monitor screen
(Samsung, SyncMaster B1940, 19”). The participants were asked to perform a task involving different
eye movements and blinks. The experiment starts with the blank screen for 5 s. During this task, a
red dot appears on the screen for the duration of 2 s at nine different positions in a square region of
960 ˆ 960 pixels. All the participants were instructed to follow the moving dot. Before every position
change of the dot, a fixation cross appeared on the screen for 1 s, thus providing the cue for the subject
to follow the dot. Each participant was instructed to blink when “blink” appears on the screen. A
blank screen appears for 5 s after every blink. All participants performed three experimental blocks.
Each experimental block consisted of 18 saccade trials and 18 fixation trials.

2.1.3. EEG Recordings

EEG data were recorded using BrainAmp DC amplifier with an ActiCap 32-channel active
electrode system developed by Brain Products GmbH, Gilching, Germany. All the data were sampled
at a rate of 500 Hz. All the electrodes were placed according to international 10–20 system as shown in
Figure 3A. The impedance of all the electrodes were reduced below 5 kΩ.

Figure 3. (A) Electroencephalogram (EEG) electrode configuration; (B) Distribution of saccade amplitude.
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2.1.4. Eye Tracker Recordings

The eye movements were recorded with a video eye tracking system Eyelink 1000 developed by
SR research Ltd., Ottawa, ON, Canada. The sampling rate was 1000 Hz. The velocity threshold of
30 ˝/s was used to define saccades, an acceleration threshold of 8000 ˝/s2 and a minimum deflection
threshold of 0.1˝. Figure 3B shows the distribution of saccades amplitude.

2.1.5. Preprocessing

In order to synchronize EEG and eye tracker, eye tracker data was down-sampled at the sampling
rate of 500 Hz. EEG and eye tracker data were then aligned by cutting them into trials according to the
triggers that were simultaneously sent to both, the EEG and the eye tracking system [32]. The EEG
data was band pass filtered between 0.5–40 Hz. All the processing and analysis were done in Matlab
(Mathworks) and EEGLAB using Intel core i3, 2.4 GHz with 4 GB RAM laptop.

2.1.6. Standard Dataset

The principle measure to evaluate the performance of the proposed algorithm is to check its ability
of removing artifactual activities from standard dataset. Preparatory to such an evaluation, publicly
available contaminated EEG dataset with eye tracker signals was utilized [39]. In this experiment,
participant read lists of five words from left to right. Their task was to report whether the list contained
the name of an animal. Eye movements were recorded binocularly with an Eyelink 1000 tracker at
1000 Hz.

EEG data was recorded from 72 channels with Biosemi Active amplifiers at a rate of 512 Hz. In
the preprocessing part, EEG data was filtered between 0.5 and 40 Hz and the baseline was removed
from all of the data.

2.2. Methods

2.2.1. Independent Component Analysis

ICA is a statistical technique used for decomposing multichannel data into several ICs under the
following assumptions [40]:

1. The number of ICs are less than or equal to the number of observed signals.
2. The artifactual and cerebral sources are linearly mixed and statistically independent.
3. Propagation delays through the missing medium (brain) are negligible.

The basic purpose of ICA is to consider the non-Gaussianity of the measured signal and to find
their projections. Mathematical mode of ICA, for the observed EEG data can be represented as

xpkq “ Aspkq, k “ 1, 2, 3, ... , N (1)

where xpkq P <Mˆ1 is the measured EEG signal, spkq P <Mˆ1 is the corresponding IC, A P <MˆM is
the full rank unknown mixing matrix, k is discrete time, N is the number of samples and M is the
number of ICs. Since the total number of ICs contributing to EEG data are unknown, therefore in this
study they are supposed to be equal to the number of electrodes used in EEG data acquisition. Given
xpkq, the issue is how to estimate both A and spkq. The ICs ŝipkq, i “ 1, 2, 3, ..., M can be represented as

ŝipkq “ wT
i xpkq, k “ 1, 2, 3, ... , N (2)

where wi is a column vector. After estimation of each wi, the ICs can be obtained by using the
following expression

ŝpkq “ Wxpkq, W « A´1 (3)
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The algorithm implemented in this paper is infomax ICA with default parameters using runica
function of the EEGLAB tool box (MATLAB, Torrance, CA, USA) [41]. These parameters involved
pre-sphering of the data and to avoid training if weight change was less then 10´6.

2.2.2. Features Computation

Eye Blinks

Entropy has been found to be very useful in detecting artifactual components in physiological
signal. Costa and coauthors [42] developed a multi-scale methodology to calculate the entropy of
the biological signal and their method has been proved to be effective then Shannon’s and Renyi’s
entropy [43]. In the light of the above, we proposed to use composite multi-scale entropy [44] to
automatically identify blink related artifactual ICs.

The composite multi-scale entropy rationale is that the blink components have low entropy values
as compared with neural components, because the pattern of blink activity is more regular than the
neuronal activity detected in EEG signals. Hence the utility and value of composite multi-scale entropy
as a statistical tool for identification of blink related ICs. The step-wise procedure for computation of
composite multi-scale entropy is as follows:

(1) Let ui be the ith IC, the lth coarse-grained time series for a scale factor of τ,
zpτql “

!

zpτql,1 zpτql,2 ¨ ¨ ¨ zpτql,p

)

can be defined as

zpτql,j “
1
τ

τ`l´1
ÿ

i“pj´1qτ`l

ui, 1 ď j ď
N
τ

, 1 ď l ď τ (4)

(2) In the composite multi-scale entropy algorithm, at a scale factor of τ, the sample entropies
(SampEns) of all coarse-grained time series are calculated and the composite multi-scale entropy
value is defined as the mean of τ entropy values. That is

CMSEpu, τ, m, rq “
1
τ

τ
ÿ

l“1

SampEnpzpτql , m, rq (5)

where CMSE represents the composite multi-scale entropy. In this study, the composite multi-scale
entropy was calculated from τ “ 1 to 20, and the sample entropy of each coarse-grained IC was
calculated with m = 2 and r “ 0.15σ, where σ is the standard deviation of the IC [42,44].

Eye blinks typically generate abrupt amplitude jumps in frontal electrodes. As blink activities are
notably different from neuronal activities, it is possible to detect them using a suitable threshold for
composite multi-scale entropy. Since the composite multi-scale entropy values for ocular activities are
expected to be low, in the proposed adaptive algorithm, the threshold for identifying blink related ICs
is defined as,

θL “ x´ 1.64s (6)

where θL represents the threshold, x and s are the mean and standard deviation of the composite
multi-scale entropy values for all ICs. All ICs with composite multi-scale entropy values above
the threshold are assumed to be neuronal-activity-related ICs, while the others are selected for
reconstruction.

Horizontal Eye Movements

Horizontal eye movements generate large amplitude fluctuations in frontal channels that are
typically slower than those of blinks, therefore not efficiently identifiable by the composite multi-scale
entropy. To identify horizontal eye movement related artifacts, all the ICs were portioned into saccade
and fixation epochs [33]. Saccade epochs were defined as the time between horizontal eye movements
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start and end as given by the eye tracker. An additional interval of 5 ms before and 10 ms after was
added to saccade epochs. In contrast, the fixation epochs were defined as the time between saccade
epochs. Finally, the ratio of the mean variance for saccade and fixation epochs was calculated for all
the ICs:

Ratio “
meanpvar iancesaccadeq

meanpvar iance f ixationq
(7)

If for given IC the ratio of mean variance defined in Equation (7) was greater than 1.1, the
corresponding IC was selected as artifact related IC and subsequently processed for correction.

Vertical Eye Movements

Since the time course of artifacts caused by vertical eye movements is similar to the one generated
by horizontal eye movements, the feature described in Equation (7) can be used to identify vertical eye
movements related ICs.

2.2.3. Median Absolute Deviation

Once the artifactual ICs are identified, they are then processed for correction by a two-step
methodology. In the first step, the ocular activities (outliers) that are set to zero are only those notable
ones that are of a considerably high magnitude. In this way, the amount of neuronal activity in the
ocular artifacts related components can be retained. In the present study, median absolute deviation
was used to detect and remove high-magnitude ocular activities from the components [45]. The
step-wise procedure for such removal is as follows:

(1) Evaluate the median absolute deviation of the identified ocular activity among the identified
artifactual ICs (median absolute deviation is defined as the median of the absolute deviation from
the median)

MAD “ bM p|uipkq ´Mpuiq|q (8)

where MAD is the median absolute deviation, M is the median, Mpuiq is the median of the ith
artifactual IC, b is a constant;

(2) If uipjq exceeds the criteria calculated using Equation (9), it is thresholded to zero:

Mpuiq ´ 3 ˚MAD ă uipkq ă Mpuiq ` 3 ˚MAD (9)

uipkq ´Mpuiq

MAD
ą |˘3| (10)

2.2.4. Auto-Regressive Exogenous Model

The procedure described above will only remove those artifactual components which can be
clearly seen and detectable in ocular artifacts related ICs. Auto-regressive exogenous model is used
to completely remove ocular artifacts from identified ICs. It is expected that the amount of neuronal
activity included in identified components is much lower than that of present in contaminated EEG.
Therefore, in the present study we applied auto-regressive exogenous model to ocular artifacts related
ICs instead of EEG data. A linear auto-regressive exogenous model can be used to remove ocular
artifacts from artifactual ICs by the following equation

ypkq `
p
ÿ

i“1

aiypk´ iq “
q
ÿ

j“1

bjEFp1pk´ jq `
r
ÿ

l“1

clEFp2pk´ lq ` epkq (11)

where y is the output, EFp1 and EFp2 are the inputs of the auto-regressive exogenous model representing
Fp1 and Fp2 electrode of EEG at discrete time k, ai, bj and cl are the parameters to be estimated, p, q
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and r represent the order of the model and epkq is the error assumed to be white-noise disturbance.
Mathematically, Equation (11) can be rewritten in linear regression as below

ypkq “ XTpkqβ` epkq (12)

where X and β have the following form

Xpkq “ r´ypk´ 1q, ¨ ¨ ¨ ,´ypk´ pq, EFp1pk´ 1q, ¨ ¨ ¨ , EFp1pk´ qq, EFp2pk´ rq, ¨ ¨ ¨ , EFp2pk´ rqsT

β “ ra1, ¨ ¨ ¨ , ap, b1, ¨ ¨ ¨ , bq, c1, ¨ ¨ ¨ , crs
T

+

(13)

2.2.5. Affine Projection Algorithm

The error signal can be obtained by subtracting the estimated output from the desired signal.
Mathematically, it can be written as [46]

epkq “ ypkq ´ XTpkqβ̂pk´ 1q (14)

Then, the objective of the estimation problem is to minimize the squared Euclidean norm of

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β̂pk` 1q ´ β̂pkq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2
(15)

Subject to constraints
ypkq ´ XTpkqβ̂pkq “ 0 (16)

Thus, an update equation is required such that the difference between two consecutive estimations
of the unknown parameters is minimized. This can be achieved by using the method of Lagrange
multipliers which converts the constrained minimization into an unconstrained one. Thus, the cost
function can be defined as

Jpkq “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β̂pkq ´ β̂pk´ 1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

2
`

”

ypkq ´ XTpkqβ̂pkq
ı

θpkq (17)

where θ is the Lagrange multipliers vector. Taking the gradient of J(k) with respect to β̂pkq and equating
the result to zero, we can find

β̂pkq “ β̂pk´ 1q `
1
2

Xpkqθpkq (18)

Using Equations (12) and (14) and the Lagrange method, we can write

θpkq “ 2
”

XTpkqXpkq
ı´1

epkq (19)

Substituting Equation (19) into Equation (18), the optimal change in the parameter vector can be
written as

β̂pkq “ β̂pk´ 1q ` Xpkq
”

XTpkqXpkq
ı´1

epkq (20)

A step size parameter µ and regularization constant δ can be used to modify the above equation
for efficient updating of the parameter vector as

β̂pkq “ β̂pk´ 1q ` µXpkq
”

δI ` XTpkqXpkq
ı´1

epkq (21)

3. Evaluation Index

Since it is not possible to exactly evaluate the performance of proposed methodology that
how much artifacts from EEG data has been removed due to the unknown contributions of the
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neuronal activity and ocular activity. That is, it is not possible to measure signal to artifact ratio.
But the performance of the proposed algorithm can be evaluated using data in the intervals before
artifact contamination [47]. To test how well the proposed algorithm performed in comparison to
the conventional methods, we asked an independent EEG expert to tag all intervals in our data that
he considered as ocular artifacts related. The selection was done by visual inspection of the EEG
time series. All the remaining data was considered as artifact-free EEG data and used to calculate
the performance metrics. In this study, we used two performance measures to quantitatively verify
the ability of the proposed algorithm in removing ocular artifacts and how much the EEG signals are
distorted after the artifact rejection procedure.

3.1. Relative Error

In the present study, the relative error criteria was used to evaluate the proposed algorithm’s utility
in removing ocular artifacts from EEG signals and comparing it with the results of the conventional
methodologies. Relative error is defined as [47]

RE “

ˇ

ˇ

ˇ
EEG f ree ´ EEGout

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
EEG f ree

ˇ

ˇ

ˇ

(22)

where RE represents the relative error, EEG f ree is the artifact-free EEG signal as selected by EEG expert,
EEGout is the artifact corrected EEG signal from the proposed algorithm and | ¨ | denotes the norm
calculation for vector.

3.2. Mutual Information

The mutual information index was calculated to measure the mutual dependence of the
artifact-free EEG signal and output EEG from the proposed method. Mathematically, it is found
by using Kullback-Leibler divergence between the probability distribution function as [24]

MI “

8
ż

´8

8
ż

´8

f pa, bqlog
f pa, bq

f paq f pbq
dadb (23)

where MI is the mutual information, f pa, bq is the joint pdf and f paq and f pbq are the marginal pdfs.
Mutual information is calculated using an open source MATLAB function minfo.m developed by Dr.
Jason Palmer [48]. If the mutual information between artifact-free EEG and output EEG from proposed
method is large, it means they are closely related.

4. Results

This paper presents an automatic framework based on ICA and auto-regressive exogenous model
to identify and remove ocular artifacts from EEG signals by combining EEG and eye tracker. The
effectiveness of the proposed algorithm was demonstrated using experimental and standard EEG
datasets. The performance of the proposed algorithm is compared with two conventional methods,
i.e., ICA and REGICA to verify the significant improvement of results. In this study, ADJUST as
implemented in EEGLAB toolbox is used to represent ICA based algorithms and REGICA is used to
represent methods based on the combination of ICA and regression.

Five experimental EEG datasets were used to verify the performance of the proposed algorithm.
Figure 4 plots the results of artifact removal by the proposed algorithm for one subject. Figure 4A
shows the experimental EEG data for one subject, Figure 4B, the corresponding ICs obtained from ICA
decomposition of the EEG data, and Figure 4C, comparison of the artifact-free EEG data obtained after
implementation of the proposed algorithm and conventional algorithms. In Figure 4B, ICs 2 and 13 are
blink related components and ICs 9 and 23 are eye movement related components as identified by the
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proposed algorithm. It is evident in Figure 4C that the ocular artifacts were significantly removed by
the proposed algorithm, in contrast to Figure 4A. Furthermore, the comparison with the conventional
algorithms show the improved performance of the proposed algorithm.

Figure 4. Results on experimental dataset. (A) Experimental EEG data for one subject; (B) Independent
components (ICs) obtained from independent component analysis (ICA) decomposition of EEG data;
(C) Comparison of the corrected EEG by the proposed algorithm and conventional algorithms.
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Figure 5 compares the proposed method and ADJUST for artifact removal for one subject at Fp1
and Fp2. Figure 5A shows the contaminated EEG data; Figure 5B,C are the corresponding artifact-free
EEG after implementation of the proposed algorithm and ADJUST, respectively; Figure 5D compares
the proposed algorithm and ADJUST with the contaminated EEG data. The two black boxes on the
left and two on the right in Figure 5D highlight the uncontaminated and contaminated regions of
the EEG signals at Fp1 and Fp2, respectively, which are partially enlarged in Figure 5E. Figure 5E
shows that ADJUST causes distortion and loss of neuronal activity from the EEG data, whereas the
proposed algorithm successfully preserves the neuronal-activity-related EEG signal intact. Indeed,
in Figure 5E, it can be seen that the proposed algorithm performs better in removing ocular artifacts
and reconstructing the EEG signal. Figure 6 illustrates the comparison of corrected EEG by proposed
method with REGICA method. Figure 6D, meanwhile, compares the proposed algorithm with the
REGICA at Fp1 and Fp2, respectively, and indicates that the proposed algorithm offers significantly
better performance (Figure 6E).

Figure 5. Comparison of the proposed algorithm with ADJUST using experimental data.
(A) Contaminated experimental EEG data at Fp1 and Fp2; (B) Corrected EEG by the proposed
algorithm; (C) Corrected EEG by ADJUST; (D) Comparison of corrected EEG with contaminated
experimental EEG. (E) Partial enlargement of highlighted regions.
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Figure 6. Comparison of the proposed algorithm with REGICA using experimental data.
(A) Contaminated experimental EEG data at Fp1 and Fp2; (B) Corrected EEG by the proposed
algorithm; (C) Corrected EEG by REGICA; (D) Comparison of corrected EEG with contaminated
experimental EEG; (E) Partial enlargement of highlighted regions.

Figures 7 and 8 show the comparison results of the proposed algorithm with ADJUST and REGICA
for all subjects at Fp1 and Fp2, respectively. It can be seen that the proposed algorithm outperforms
conventional methods in removing ocular artifacts from EEG data as well as in preserving the neuronal
activity related EEG signal (enlarged panels). In order to investigate the effect of the different ocular
artifacts reduction methods on artifact-free data in frequency domain, the power spectral density (PSD)
is computed and compared.

For this purpose, 10 s of artifact-free EEG data before artifact contamination is selected by an
expert. Then, the PSD was computed using pwlech function in MATLAB. The resulting PSD of one
subject on a frontal electrode Fp1 and a most occipital electrode Oz is shown in Figure 9. It can be
seen in Figure 9A,B (upper panel) that the proposed algorithm outperforms the conventional methods
(enlarged panels), whereas the PSD at Oz (bottom panel) for all the algorithms show good agreement
with the PSD of the artifact-free EEG.
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Figure 7. Comparison results of the proposed algorithm and ADJUST for all subjects at Fp1 and Fp2.

Furthermore, Table 2 lists the relative error indices calculated for all three algorithms with respect
to the five EEG datasets. The relative error values show the superior performance of the proposed
algorithm over ADJUST and REGICA for all of the datasets. A paired t-test was run to determine if the
relative error values differed statistically among the proposed algorithm, ADJUST and REGICA. It can
be seen from Table 2 that the proposed algorithm is highly statistically significant when compared with
ADJUST and REGICA, except for one subject against REGICA (p < 0.17). For the purpose of further
validation, mutual information index is used to evaluate the performance of the proposed algorithm
against ADJUST and REGICA. Average mutual information values of all subjects for all electrodes are
listed in Table 3. The results of mutual information index show that the proposed algorithm preserved
more mutual information between the artifact-free EEG signal and the reconstructed EEG signal as
compared to the conventional methods.
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Figure 8. Comparison results of the proposed algorithm and REGICA for all subjects at Fp1 and Fp2.

Figure 9. Cont.
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Figure 9. Comparison of the proposed algorithm with ADJUST and REGICA in frequency domain
at Fp1 and Oz. (A) EEG spectra after applying filter 0.5–40 Hz; (B) EEG spectra after applying filter
0.5–20 Hz.

Table 2. Relative error values results for the proposed algorithm against ADJUST and REGICA using
artifact-free EEG data.

Subject Proposed ADJUST ICA p-val REGICA p-val

1 0.0001 ˘ 0.0001 0.0645 ˘ 0.0944 <0.001 0.0452 ˘ 0.0613 <0.001
2 0.0185 ˘ 0.0305 0.1741 ˘ 0.1417 <0.001 0.0437 ˘ 0.0393 <0.011
3 0.0146 ˘ 0.0230 0.1025 ˘ 0.1191 <0.001 0.0527 ˘ 0.06– <0.005
4 0.0134 ˘ 0.0244 0.1893 ˘ 0.1582 <0.001 0.0779 ˘ 0.1140 <0.005
5 0.0273 ˘ 0.0320 0.2727 ˘ 0.2358 <0.001 0.0366 ˘ 0.0389 <0.17

Average 0.0147 ˘ 0.0220 0.1606 ˘ 0.1498 0.0512 ˘ 0.0637

Table 3. Average mutual information values results of all subjects for the proposed algorithm against
ADJUST and REGICA for all electrodes.

Electrode Location Proposed ADJUST REGICA

Fp1 2.7148 0.6680 1.4023
Fp2 2.6286 0.7578 1.4563
F7 2.7169 1.1796 1.9115
F3 2.7165 1.2789 2.0176
Fz 2.6973 1.3932 1.9717
F2 2.6434 1.3789 2.0190
F8 2.5538 1.4237 1.8863

FC5 2.6946 1.2919 2.3216
FC3 2.5262 1.5692 2.3181
FC2 2.5720 1.8742 2.3239
FC6 2.6034 1.8046 2.1482
T7 2.7158 1.4571 2.3656
C3 2.6685 1.4754 2.3942
Cz 2.7435 2.0669 2.4309
C4 2.6075 1.9813 2.3062
T8 2.6611 1.8524 2.3069

TP9 2.6515 1.5851 2.3234
CP5 2.6888 1.5566 2.4402
CP1 2.6669 2.0910 2.4864
CP2 2.7186 2.1592 2.4384
CP6 2.5839 2.0236 2.3601
TP10 2.6307 1.9541 2.3272

P7 2.5600 1.8588 2.4463
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Table 3. Cont.

Electrode Location Proposed ADJUST REGICA

P3 2.6275 2.1776 2.4715
Pz 2.6076 2.1811 2.3613
P2 2.6230 2.1739 2.3948
P8 2.6290 2.0796 2.4958

PO9 2.6540 2.2194 2.4626
O1 2.6597 2.1380 2.4375
Oz 2.6758 2.2584 2.4655
O2 2.5836 1.9191 2.3257

PO10 2.6514 2.1337 2.4338
Average 2.6461 1.7488 2.2578

Finally, the proposed algorithm was tested on a standard EEG dataset to determine its utility
for removal of ocular artifacts from EEG. Since the standard dataset does not contain EOG signals,
so we only used this dataset to compare the proposed algorithm with ADJUST. Figure 10 compares
the proposed method with ADJUST for artifact removal from standard EEG data at Fp1 and Fp2.
Figure 10A shows the standard EEG data with the ocular contamination, Figure 10B,C, the artifact-free
EEG after implementation of the proposed algorithm and ADJUST, respectively, and Figure 10D, a
comparison of the proposed algorithm and ADJUST with contaminated standard EEG data. The black
boxes in Figure 10D highlight the uncontaminated and contaminated EEG-signal regions, which
are partially enlarged in Figure 10E. It can be visualized that the performance of the proposed
algorithm in removing ocular artifacts and maintaining the neuronal-activity-related EEG signal
intact is significantly better than ADJUST (Figure 10E).

Figure 10. Comparison of the proposed algorithm with ADJUST using standard data.
(A) Contaminated experimental EEG data at Fp1 and Fp2. (B) Corrected EEG by the proposed
algorithm. (C) Corrected EEG by ADJUST. (D) Comparison of Corrected EEG with contaminated
experimental EEG. (E) Partial enlargement of highlighted regions.
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5. Discussion

The analysis of EEG signal always requires the identification and removal of artifacts due to
eye movements and blinking. In this study, a novel algorithm, based on the combination of ICA
and auto-regressive exogenous model, is proposed for automatic identification and removal of ocular
activities from EEG. Since using EOG is not plausible for applications like BCI, therefore in the proposed
algorithm eye tracker and frontal EEG electrodes are used to remove ocular artifacts from EEG signal.
In the literature, regression based techniques are the most commonly used methods to remove ocular
artifacts. Although these techniques are simple and fast but due to bidirectional contamination they
proved to be less effective [29]. To overcome this issue, the proposed algorithm reconstruct ICs instead
of applying regression to EEG signal. Our assumption lies with the fact that the amount of the cerebral
activity included in the contaminated ICs is much lower compared to that existing in the contaminated
EEG signals. So, as long as the cerebral and ocular activities are derived from independent sources,
the cerebral activity included in the artifactual ICs tends to be minimal. It can, therefore, be assumed
that the artifactual components contain less cerebral activity common to EOG/frontal EEG. In this
way, filtering artifactual ICs with auto-regressive exogenous model will cause less removal of cerebral
activity. Thus, the corrected EEG contains more cerebral information in contrast to the conventional
regression analysis.

Recent efforts on artifact removal in EEG signal has shown a great utility of ICA. Although the
success of ICA is encouraging, it should be treated with care [49]. Existing studies have focused almost
extensively on the important reduction of the typical artifacts in ICA corrected EEG signal [50–52],
while distortion of the cerebral part of EEG signal introduced by the method as a side effect have
been left unattended [35]. First, the effectiveness of ICA strongly depends on the quality of the
signal decomposition. Not all signal sources may be isolated into separate components and there are
no definite means to evaluate whether or not contributions of other sources confound a particular
component [33]. Additionally, selection of ocular artifacts related components is another issue in ICA
based methodologies. Usually this can be done by inspecting the time series and topographic maps of
the ICs [31,53,54], thus relying on the subjective judgment of the experimenter. Usually, this approach
leads to misclassification of ICs and divergent results. To overcome these issues, we proposed a
procedure to identify eye artifact-related ICs, by composite multi-scale entropy and comparing their
activations during saccade and during fixation intervals, as defined by high temporal resolution eye
tracking. The identified ICs are then filtered with median absolute deviation and auto-regressive
exogenous model, so that the underlying neuronal activity will be preserved and distortion in the
cerebral part of EEG will be minimized. Furthermore, several BCIs have been proposed in literature
by using hybrid EEG- eye tracker system. Thus, the proposed algorithm can also be used with those
algorithm to improve EEG signal quality which can further be used to improve classification accuracy
of the BCI. Our results suggest that the proposed algorithm outperforms ICA (Figures 5, 7 and 9,
Tables 2–5). It can be seen in Figures 7 and 8 that artifact-free EEG by the proposed algorithm for Fp1
and Fp2 are slightly different even the input EEG is same. This might be due to the ICA decomposition
of the EEG signal, since the weight matrix contain different weights for different electrodes.

Table 4. Comparison results for identification of artifactual ICs.

Subject

EEG Experts Propsoed Algorithm ADJUST

Vertical and
Horizontal Blink Vertical and

Horizontal Blink Vertical and
Horizontal Blink

1 1 1 1 1 0 1
2 1 1 1 2 0 2
3 1 2 2 2 2 2
4 2 1 2 1 2 1
5 1 1 1 1 3 1
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Table 5. Performance evaluation of the proposed algorithm and ADJUST for all subjects.

Method
True

Positive
(TP)

False
Positive

(FP)

True
Negative

(TN)

False
Negative

(FN)

Average
Sensitivity

Average
Specificity

Proposed 12 2 146 0 100% 98.64%
ADJUST 10 4 144 2 83.33% 97.29%

Urigüen and Garcia-Zapirain [55] reviewed all previous methods for removing/reducing artifacts
from EEG signal and they concluded that an optimal method should consist of combining various
algorithms in cascade to enhance the quality of the signal by using multiple processing stages. The idea
of recovering neuronal signal from artifactual ICs was firstly proposed by Castellanos and Makarov [35].
They proposed that artifactual ICs should not be simply replaced with zero as they might have leaked
neural signal in it. Recently another methodology based on the same assumption was developed by
Klados and colleagues [29]. In their method, they used regression based removal of ocular activity
from ICs. Although these methods proved to be effective in removing ocular artifacts from EEG signal
but they require the processing of all ICs and more computational cost which is not plausible for
applications like BCI. Furthermore, processing of all ICs may cause to produce distortion in those ICs
which are not related to ocular artifacts and results in distortion to EEG signal. In contrast to all these
methodologies, the proposed algorithm filters only the automatically identified artifactual components
using median absolute deviation and auto-regressive exogenous model. In this way more neuronal
activity related information can be preserved and it requires less computational cost. Results enhance
our hypothesis that instead of processing all ICs only artifactual ICs should be processed (Figures 6, 8
and 9, Tables 2–5).

The performance of the proposed algorithm is compared with two state-of-the-art techniques,
(1) ADJUST based ICA [34] and (2) REGICA [29]. Both conventional algorithms have been implemented
through EEGLAB toolbox. In the current study, composite multi-scale entropy and eye tracker based
criteria are proposed for use in automatic identification of blink and eye movement related artifactual
components. To verify that the proposed algorithm can differentiate between artifactual ICs and
neuronal-activity related ICs, a comparison with manual detection by two experienced experts and
ADJUST was carried out. The criteria used to recognize artifactual components by EEG experts
was in view of time course, topographic maps and the power spectrum plots of the ICs in EEGLAB.
Notably, both experts’ selection of eye movement and blink related ICs was identical. The results of
this comparison was listed in Table 4. The performance of the proposed algorithm is also statistically
analyzed by calculating True positive (IC marked as artifactual both by the algorithm and visual
inspection), False Positive (IC marked by the algorithm but not with the visual inspection), True
Negative (IC marked neither by the algorithm nor with the visual inspection), and False Negative (IC
not marked with the algorithm but with the visual inspection). The total count for each parameter
for all subjects is tabulated in Table 5. Average sensitivity and average specificity for all subjects is
calculated as follows [27]:

Sensitivity “
TP

TP` FN
ˆ 100% (24)

Speci f icity “
TN

TN ` FP
ˆ 100% (25)

The agreement rate between visual inspection and the proposed algorithm and ADJUST was
calculated using [27]:

Agreement Rate “
TP` TN

TP` TN ` FP` FN
(26)

The agreement rate between the proposed algorithm and visual inspection is found to be 98.75%,
whereas for ADJUST the agreement rate is found to be 96.25%. The result of this analysis suggest that
the proposed algorithm can be used as a valuable tool for automatic identification of artrifactual ICs.
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Relative error is a measure which depicts the performance of each algorithm in both removing ocular
artifacts as well as quantifying the amount of distortion introduced in the time-domain. Our results
suggest that the proposed algorithm (0.0147 ˘ 0.0220) has a better performance in removing ocular
artifacts from EEG signal, since it successfully removes ocular artifacts, while at the same time keeping
the cerebral signal intact in the time domain when it was compared to ADJUST (0.1606 ˘ 0.1498) and
REGICA (0.0512˘ 0.0637) algorithms. Moreover, paired t-test enhances the dominance of the proposed
algorithm as the difference with ADJUST method is highly statistically significant for all subjects
(p < 0.001). In case of REGICA the difference is highly statistically significant with p < 0.001 except
for subject 2 (p < 0.011) and subject 5 (p < 0.17). Furthermore, mutual information index was adopted
to investigate that how much information artifact-free EEG signal shares with the reconstructed EEG
signal after the implementation of different methods. The average mutual information value for
all datasets using the proposed algorithm (2.6461) against ADJUST (1.7488) and REGICA (2.2578)
demonstrate improved performance of the proposed method. This analysis enhances our hypothesis
that ICA and regression method are less effective in removing ocular artifacts from EEG signal. Finally,
the contribution of the different component of the proposed algorithm is analyzed by eliminating
different component one by one. After eliminating different components, the performance of the
proposed algorithm in removing artifacts and keeping the neuronal activity related EEG signal intact
is decreased and the relative error is increased. In case of eliminating composite multi-scale entropy
and eye tracker based criteria for detection of artifactual ICs cause an increase in the relative error
(0.4219 ˘ 0.0889). This enhances our hypothesis that only artifactual ICs should be identified and
processed for artifact correction. Hence the utility and value of composite multi-scale entropy and
eye tracker based criteria as a useful tool for identification of eye movement and blink related ICs.
Furthermore, the ability of removing ocular artifacts by the proposed algorithm is decreased by the
elimination of median absolute deviation. However, the elimination of median absolute deviation
has very less effect on the neuronal activity related EEG signals in nonartifactual zone because
median absolute deviation is only used to remove high magnitude ocular activities. Lastly, in the
proposed algorithm auto-regressive exogenous and affine projection algorithm is used to remove
remaining artifacts and to compensate for the possible neuronal activity loss due to median absolute
deviation filtration. The elimination of auto-regressive exogenous and affine projection algorithm
cause an increase in relative error (0.0253 ˘ 0.0156). This analysis show that the performance of the
proposed algorithm is decreased by the elimination of different components. One striking feature of
the proposed algorithm is that it does not require any calibration or pre-training. Also, this is one
of the few studies concerning an artifact removal technique, in which statistical analysis is used to
evaluate the performance of the proposed methodology.

6. Conclusions

This paper presents a novel algorithm using hybrid EEG and eye tracker system to automatically
identify and remove ocular artifacts from EEG data by combining ICA and auto-regressive exogenous
model. The performance of the proposed algorithm is demonstrated using experimental and standard
EEG datasets. The proposed methodology enables the removal of ocular artifacts in the artifactual zone
while keeping the neuronal activity related EEG signal intact in the non-artifactual zone. Additionally,
results show that the proposed algorithm outperformed the two state of the art techniques based
on ADJUST and REGICA. Relative error and mutual information are used as evaluation indexes
to quantify the amount of distortion produced in corrected EEG by each algorithm. The statistical
significance of the proposed algorithm is verified using paired t-test.
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