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Abstract: Clinical rehabilitation assessment is an important part of the therapy process because
it is the premise for prescribing suitable rehabilitation interventions. However, the commonly
used assessment scales have the following two drawbacks: (1) they are susceptible to subjective
factors; (2) they only have several rating levels and are influenced by a ceiling effect, making
it impossible to exactly detect any further improvement in the movement. Meanwhile, energy
constraints are a primary design consideration in wearable sensor network systems since they
are often battery-operated. Traditionally, for wearable sensor network systems that follow the
Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted.
This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the
upper limb motion function, based on compressed sensing technology. With the sparse representation
model, less data is transmitted to the computer than with traditional systems. The experimental
results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be
compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More
importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom
stage classification model. It also indicated that the proposed system can not only reduce the amount
of data during the sampling and transmission processes, but also, the reconstructed accelerometer
signals can be used for quantitative assessment without any loss of useful information.

Keywords: compressed sensing; wearable sensor network; quantitative assessment; stroke;
Brunnstrom stage classification

1. Introduction

Stroke, also known as cerebrovascular insult (CVI), cerebrovascular accident (CVA), or brain
attack, is when poor blood flow to the brain results in cell death. Between 1990 and 2010, the number
of strokes which occurred each year decreased by approximately 10% in the developed world and
increased by 10% in the developing world [1]. In 2013, stroke was the second most frequent cause of
death after coronary artery disease, accounting for 6.4 million deaths (12% of the total) [2]. In China,
stroke, with an annual mortality rate of approximately 157 per 100,000, has surpassed heart disease to
become the leading cause of death and adult disability. In addition, China has 2.5 million new stroke
cases each year and 7.5 million stroke survivors [3].

Considering the large population of stroke patients in China and the limited rehabilitation resources
(rehabilitation centers, physicians, therapists), it is an inevitable trend for stroke patients to do rehabilitation
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training in home settings. Many previous research results have proven that, in comparison with inpatient
care, home-based rehabilitation shows no difference in the effect on any of the outcomes [4,5]. Moreover,
as there are fewer limitations on the time and space, patients can do rehabilitation training according
to their own schedule in the home settings. However, due to the fact that there are no physicians or
physiotherapists in these home settings to evaluate the motor function of stroke patients and adjust the
prescribed training, how to precisely and automatically assess the motor function without the participation
of physicians has become an important problem that needs to be resolved. Fortunately, the availability of
wearable devices provides a potential approach to solve this problem.

With the development of the Internet of Things (IoT), wearable devices have been widely applied
in the healthcare area. Considering sensor types, inertial measurement sensors such as accelerometers,
gyroscopes, and magnetometers are used individually or together to monitor and analyze the motor
functions of stroke patients [6,7]. In addition, some studies combine inertial measurement sensors with
physiological sensors, like ECG, sEMG, etc. [8,9]. Based on the application scenarios, the following four
categories can be distinguished: fall detection [10,11], physical activity monitoring [12–14], movement
recognition [15–17] and quantitative assessment [18–20]. Particularly in the area of quantitative
assessment for stroke patients, many valuable research results have been published. Patel et al. [21]
proposed a Random Forests-based algorithm to estimate Functional Ability Scale (FAS) scores by using
the signals of six accelerometers placed on the affected arm and the trunk. Based on the same dataset,
Din et al. [20] established a Random Forests model to predict the Fugl-Meyer Assessment (FMA)
scores. Uswatte et al. [22] have shown that just two accelerometers are adequate for assessing whether
rehabilitation has an effect on arm function outside the laboratory. Previous work by our research
group found that accelerometer data can be used to automatically classify the clinical Brunnstrom
stages and some quantitative assessment indexes were designed to evaluate the motor function of
stroke patients [23–26].

However, in our previous works, the accelerometer data were wirelessly transmitted from
wearable devices to a receiver using the ZigBee protocol. Because the wearable devices are
battery-operated, the battery life is inversely proportional to the amount of data transmitted. Hence, in
order to extend the battery life and reduce the amount of data during the sampling and transmission
processes, this paper proposes a novel wearable sensor network system based on compressed sensing
technology. The main aim of this paper is to investigate whether the accelerometer signals collected
during the training process of stroke patients could be compressed and whether the reconstruction
errors have any influence on the quantitative assessment models. This paper is organized as follows: in
Section 2, the wearable sensor network, compressed sensing technology and experiment protocols will
be described. The experimental results and corresponding discussion will be described in Section 3.
Finally, the contributions of this work and future work will be presented in Section 4.

2. Materials and Methods

2.1. Compressed Sensing-Based Wearable Sensor Network

As shown in Figure 1, the compressed sensing-based wearable sensor network consists of three
parts: an accelerometer sensor node, ZigBee wireless receiver, and computer. Compared with
traditional accelerometer sensor nodes based on the Nyquist sampling theorem, the sensor node
proposed in this paper has the advantage of “compressed sampling”, through which the sampling rate
was reduced and the power consumption during the sampling and transmission processes were much
lower than with the traditional method. The ZigBee wireless receiver was connected to the computer
through a USB port and sends the compressed data to the computer. On the computer side, firstly, the
accelerometer signal was reconstructed from the compressed data; secondly, those features that can
represent the motor function of stroke patients were extracted using the time and frequency domain
method; finally, through mapping the features were related to the clinical assessment outcomes given
by physicians, and a quantitative assessment model was built.
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Figure 1. System structure of a compressed sensing-based wearable sensor network. 

2.2. Signal Recovery Algorithms 
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Assume the signal x was sparse under a certain orthogonal space શ ∈ ℝே×ே; that is, x can be 
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In this paper, for ease of hardware implementation, the sparse Gaussian random matrix was 
adopted, where the value of every element was previously embedded into the microcontroller unit 
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Based on the framework proposed by Candes and Donoho [30], the principle of signal recovery 
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basis pursuit (BP) [33], sparse Bayesian learning (SBL) [34] and so on. Considering the signal 
generally has block/group structure and there exists intra-block correlation among the elements 
within each block, Zhang et al. [35,36] proposed a new signal recovery framework called block SBL 
(BSBL) and the results showed that the performance was obviously better than that of other 
traditional methods. Hence, this paper chose the BSBL algorithm to reconstruct the accelerometer 
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2.2. Signal Recovery Algorithms

Compressed sensing (CS) [27–29] is a novel signal compression method that depends on the
sparsity of signals for compression and reconstruction. The following Equation (1) describes the
relationship of a fundamental noisy model:

y “ Φx` v (1)

In this paper, x P RNˆ 1. is a part of a raw accelerometer signal, y P RMˆ1 is the compressed data
that will be wirelessly transmitted to a remote receiver via the ZigBee wireless protocol, and v can be
omitted. Φ P RMˆN pM ! Nq is a designed sensing matrix that linearly compresses x. Therefore, the
model used in this paper is a noiseless model, expressed as:

y “ Φx (2)

Assume the signal x was sparse under a certain orthogonal space Ψ P RNˆ N ; that is, x can be
represented by the following form:

x “ Ψθ (3)

where θ = [θ1, θ2, . . . θN]T was a K-sparse vector pK ! Nq, which means θ only has K
non-zero elements.

In this paper, for ease of hardware implementation, the sparse Gaussian random matrix was
adopted, where the value of every element was previously embedded into the microcontroller unit in
the form of a lookup table.

Based on the framework proposed by Candes and Donoho [30], the principle of signal recovery
was to solve the following l1 norm optimization problem:

$

&

%

min
θ

||θ||1

s.t.y “ ΦΨθ
(4)

In the past decades, many researchers have focused on this problem and proposed a series of
recovery algorithms, such as matching pursuit (MP) [31], orthogonal matching pursuit (OMP) [32],
basis pursuit (BP) [33], sparse Bayesian learning (SBL) [34] and so on. Considering the signal generally
has block/group structure and there exists intra-block correlation among the elements within each
block, Zhang et al. [35,36] proposed a new signal recovery framework called block SBL (BSBL) and
the results showed that the performance was obviously better than that of other traditional methods.
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Hence, this paper chose the BSBL algorithm to reconstruct the accelerometer signal from compressed
data. The basic principle of the BSBL framework is illustrated in the Appendix.

2.3. Extreme Learning Machine

Extreme learning machine (ELM) was firstly proposed by Huang et al. [37], who applied it to the
nonlinear mapping of a single layer feedforward network (SLFN). The SLFN structure is shown in
Figure 2. In the following section, we will briefly introduce the principle of ELM.
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Assume there are N samples txi,yiu pi “ 1, 2, ¨ ¨ ¨ , Nq, where xi “ rxi1, xi2, ¨ ¨ ¨ , xins
T
P Rnˆ 1,

yi “ ryi1, yi2, ¨ ¨ ¨ , yims
T
P Rmˆ1, m and n are the size of the input and output vector, respectively.

Equation (5) is the mathematically expression of a standard single layer feedforward networks (SLFNs),
which has L hidden neurons with activation function g pxq:

Hβ “ Y (5)

where Y “ ry1, ¨ ¨ ¨ , yNs
T
P RNˆm, β “ rβ1, ¨ ¨ ¨ ,βLs

T
P RLˆm and:

H pw1, ¨ ¨ ¨ , wL, b1, ¨ ¨ ¨ , bL, x1, ¨ ¨ ¨ , xNq “

¨

˚

˝

g pw1x1 ` b1q . . . g pwLx1 ` b1q
...

. . .
...

g pw1xN ` b1q ¨ ¨ ¨ g pwLxN ` b1q

˛

‹

‚

(6)

where wi “ rwi1, wi2, ¨ ¨ ¨ , wins
T is the weight vector connecting the input neurons and the ith hidden

neuron, βi “ rβi1, βi2, ¨ ¨ ¨ , βims
T is the weight vector connecting the output neurons and the ith hidden

neuron, and bi is the threshold of the ith hidden neuron.
The training process of an SLFN is simply the equivalent to finding a least-squares solution β̂ of

Equation (5):

||H pw1, ¨ ¨ ¨ , wL, b1, ¨ ¨ ¨ , bLq β̂´Y|| “ min
β

||H pw1, ¨ ¨ ¨ , wL, b1, ¨ ¨ ¨ , bLqβ´Y|| (7)

According to the least-squares regression theory, the best solution of the linear system is:

β̂ “ H`Y (8)

where H+ is the pseudo inverse of H.
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Compared with traditional backpropagation neural networks, ELM does not have to iteratively
adjust the connecting weights and bias, as it maps the training process to a problem of solving a group
of linear equations. Besides, in reference [37], Huang et al. have proved that given any small positive
value ε ą 0 and activation function g : R Ñ R which is infinitely differentiable in any interval, there
exists rN ď N such that for N arbitrary distinct samples, for any wi and bi randomly chosen, then with
probability one, ||Hβ´Y|| ă ε.

In summary, the whole procedure of establishing an ELM model includes three steps, which are
listed in Table 1.

Table 1. Flow of the ELM algorithm.

Step 1: Generate random input weight wi and bias bi, i “ 1, ¨ ¨ ¨ , rN.
Step 2: Compute the output of neurons in hidden layer according to Equation (6).
Step 3: Compute the output weight β according to Equation (8).

2.4. Experiment Protocols

All the following experiments were approved by the Ethics Committee of Jiaxing 2nd Hospital,
(Jiaxing, China). Twenty-three stroke patients and four physicians were selected to participate in these
experiments. According to the Brunnstrom stage classification criteria, the 23 patients’ Brunnstrom
stages ranged from II to V. However, considering that patients in stage I cannot move their upper limbs
without extra assistance, patients in stage I were not selected for our experiments. Similarly, due to the
fact that in China, the majority part of stage VI patients leave the hospital due to the high medical costs
and limited rehabilitation resources, we used four physicians instead of stage VI patients to participate
our experiments.

Table 2 lists the general information of the 23 stroke patients, from which it can be clearly seen
that there were 13 males and 10 females, with an age distribution range from 47 to 79. None of
the patients had severe communication and cognitive problems. Before the data collection, all the
experimental processes were demonstrated and the matters needing attention during the experiments
were highlighted in advance by the physicians.

Table 2. The general information of the 23 stroke patients.

Brunnstrom Stage Level Patients Sex (M/F) Hemiplegic Side
(Left/Right)

Limb Dominance
(Left/Right)

II 2 0/2 2/0 0/2
III 10 5/5 6/4 2/8
IV 4 3/1 3/1 0/4
V 7 5/2 2/5 1/6

The accelerometer sensors were placed on the geometric center of the arms, as shown in Figure 3.
The distance between the accelerometer sensor on the forearm and dorsal stripes was 10 cm, while the
distance between the accelerometer sensor on the upper arm and the epicondyus lateralis humeri was
8 cm.
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Generally, in motion capturing and monitoring applications, reconstruction performance is often
evaluated by comparing the reconstructed signals with raw ones through the mean square error
(MSE). However, in this paper, the signal reconstruction was not the final goal, so the reconstructed
accelerometer signals were further processed to establish an automatic Brunnstrom stage classification
model. Due to the infidelity of the MSE for structured signals, it is difficult to analyze how the
predictive accuracy of the quantitative assessment model is affected by the reconstruction errors
measured by MSE. Hence, it is necessary to compare the predictive accuracy of Brunnstrom stage
classification models, which are built based on the reconstructed and raw accelerometer signals,
respectively. Consequently, to achieve our goal, all of the experiments were implemented in two
actions: (1) Bobath handshake; (2) shoulder touch.

2.4.1. Bobath Handshake

The purpose of this experiment is to validate the reconstruction performance of the BSBL algorithm
during the Bobath handshake exercise. The whole process of the Bobath handshake exercise can be
divided into the following three steps:

(1) Sit down on a chair, cross the hand and keep the thumb of the hemiplegic side on top.
(2) Straighten the upper extremities, lift above the head and hold for 3 s.
(3) Move the hands back to the initial position.

An additional movie file shows the Bobath handshake exercise in more detail (see
Supplementary File 1).

2.4.2. Shoulder Touch

Our previous studies have found that the accelerometer signals of the shoulder touch exercise
can be applied to automatically classify the Brunnstrom stage for stroke patients. To investigate
whether the reconstruction errors affect the predictive accuracy of the quantitative assessment model,
the shoulder touch exercise was completed by every participant in order to collect the compressed
accelerometer signals. The whole process of the shoulder touch exercise can be divided into the
following four steps:

(1) Sit down on a chair, and naturally droop the upper limb of the hemiplegic side.
(2) Raise the upper limb of the hemiplegic side to the horizontal position.
(3) Move horizontally to the healthy side shoulder and hold for 5 s.
(4) Move back to the initial droop position and take a short break.

An additional movie file shows the shoulder touch exercise in more detail [see Supplementary File 2].
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All patients were required to finish these exercises without extra assistance to reflect their true
movement function. Before the data collection, they were asked to practice several times with the
guidance of physicians so that they were familiar with the whole process. During the experimental
processes, they were requested to repeat the shoulder touching exercise eight times.

The data sampling and management were implemented by using the Remote Rehabilitation
Training and Assessment Software (RRTAS), which was developed by our group. The run environment
of RRTAS is Windows 32 bit platform and .Net Framework 3.5 or above. An additional document file
introduces RRTAS in more detail (see Supplementary File 3).

3. Results and Discussion

3.1. Accelerometer Signals Compress and Recovery

The raw accelerometer signal of the Bobath handshake exercise is shown in Figure 4, in which
the axes X1, Y1 and Z1 are the signals of sensors placed on the forearm, while the axes X2, Y2 and
Z2 are the signals of sensors placed on the upper arm. From Figure 4, we can see that during the
Bobath handshake exercise, all six of the axes from two accelerometer sensors show period changes.
However, 5400 raw sampling data in each axis need to be transmitted to the computer through the
ZigBee wireless protocol during all eight Bobath handshake exercises.
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Figure 4. Raw accelerometer signals.

As mentioned above, by adjusting the dimension of sensing matrix Φ, the compression ratio (CR)
can be changed as follows:

CR “
N ´M

N
“ 1´

M
N

(9)

Here, we first set the CR to 0.7222 to validate the reconstruction performance of the BSBL
algorithm. This means that the raw accelerometer signal was compressed to 1500 sampling data.
The corresponding compressed signal is shown in Figure 5, where it can be seen that the compressed
signal looks very different from the raw accelerometer signal due to the randomness of the sensing
matrix Φ. This characteristic indicates that compressed sensing can not only compress the raw signal
into a lower dimension compressed signal, but also can encrypt the raw signal so that the privacy of
the patients is protected.
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Figure 5. Compressed accelerometer signals.

From Figure 4, it is obvious that the raw accelerometer signal is far from sparse and
periodic. This creates a huge difficulty for traditional CS recovery algorithms to reconstruct the
raw accelerometer signals. Fortunately, the BSBL recovery framework proposed by Zhang [35,36]
significantly outperforms tradition CS algorithms thanks to its ability to explore and exploit an
intra-block correlation in signals. When the prior block partition is given, the whole raw accelerometer
signal is divided into 30 blocks of equal size (each block contains 5400/30 = 180 sampling data).
The reconstructed accelerometer signals are shown in Figure 6. To validate the recovery performance
of BSBL algorithm, we also reconstructed the compressed signals with BP and OMP algorithms, and
the correlation coefficients of the reconstructed and raw signals of each algorithm are all listed in
Table 3. It is clear that by using the BSBL algorithm, the correlation coefficients of the reconstructed
and raw signals were higher than with the other two methods, which suggests that the BSBL algorithm
is very effective for accelerometer signal recovery.
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Table 3. Signal recovery results of BSBL, BP and OMP algorithms.

Methods
Correlation Coefficients between Reconstructed and Raw Signals

X1 Y1 Z1 X2 Y2 Z2

BSBL 0.9991 0.9957 0.9965 0.9991 0.9979 0.9969
BP 0.8762 0.8814 0.8729 0.8651 0.8964 0.9015

OMP 0.9356 0.9521 0.9188 0.9672 0.9248 0.9366

3.2. Effects of Block Size and CR on Recovery Performance

In this section, we will discuss the effects of block size and compression ratio on the quality
of signals reconstructed from raw accelerometer signals. Here, we chose the signal to noise ratio
(SNR) as the evaluation index to analyze the reconstruction error. The definition of SNR is shown in
Equation (10):

SNR “ 20lg
‖ x ‖2

2

‖ x´
^
x ‖

2
2

(10)

where x and
^
x are the raw and reconstructed signals, respectively. A higher SNR means a smaller

reconstruction error.
The effects of block size on SNR are shown in Figure 7. It is clear that the trends of all six axes

are same; that is, as the block size increases, the SNR also increases. In particular when the block
size changes from 5 to 20, the corresponding SNR increases quickly. This is due to the fact that the
sampling rate of the raw accelerometer sensor is 50 Hz, and for stroke patients the duration of the
Bobath handshake exercise is about 12 s. Hence, if the block size is too small (for example, a block size
less than 10), the signals in each block are almost unchanged because the duration of each block is very
short. Consequently, all of the intra-block correlations of each block are close to 1 and the variances are
close to 0.

Although the reconstruction performance is affected by the block size in the block partition, this
does not limit its application to the wearable sensor network. Figure 7 also shows that a wide range of
the block size (for example, from 20 to 40) can lead to satisfying results.
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Figure 8 illustrates the effects of CR on SNR, from which we can see that when the CR increases,
the SNR decreases, especially when the CR is higher than 0.75. That is to say, if the CR does not exceed
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0.75 (the length of compressed signal cannot be less than 1350), a satisfactory quality reconstructed
signal can be achieved.
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According to compressed sensing theory, the relationship between M and N should satisfy the
following inequality:

M ą Klog
ˆ

N
K

˙

(11)

where K is the sparsity of the raw signal. Now we validate the theoretical CR of the accelerometer
signals. Figure 9 shows the sparsity discrete cosine transform (DCT) coefficients of the raw
accelerometer signal. Clearly, only a few DCT coefficients (K « 600) have large amplitudes, while the
majority of coefficients have small amplitudes. Hence, the theoretical maximum CR should be:

CRmax “ 1´
Mmin

N
« 1´

600ˆ log p5400{600q
5400

« 0.7559 (12)
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This result is essentially the same as Figure 8, which means that the more sparser the raw signal
is, the higher CR can be achieved.
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3.3. Effects of Compressed Sensing on Quantitative Assessment Model

In the previous experiment, we showed that the accelerometer signals of rehabilitation exercises
can be compressed and precisely reconstructed. Another question is whether the reconstructed signals
affect the predictive accuracy of the quantitative assessment model. To answer this, we carried out the
following experiment: as mentioned above, there are many assessment scales in clinical settings to
evaluate the movement function of stroke patients, such as the Fugl-Meyer assessment scale, Functional
ability scale, Brunnstrom stage classification, Action Research Arm Test, and so on. Compared with
other assessment scales, the Brunnstrom stage classification tool only has six levels, hence it has the
advantage of being easy to use and time saving. In our previous work [26], we have proven that the
Brunnstrom stage of stroke patients can be automatically classified through the shoulder touch exercise
by using the ELM method.
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Figure 10. (a)–(e) Reconstructed and raw accelerometer signals from Brunnstrom stages II to VI.

Due to space limitations, here we present only the reconstructed and raw axis Y1 accelerometer
signals ranges from Brunnstrom stage II to VI in Figure 10. It is clear that as the Brunnstrom stage
increases, the reconstruction error decreases. This is because the lower the Brunnstrom stage, the
weaker the stroke patient’s motor function, and he or she cannot finish the shoulder touch exercise
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freely. Additionally, with the Brunnstrom stage decreases, the smoothness of accelerometer signals
becomes worse, which brings about difficulty in signal recovery.

To investigate the effects of reconstruction error on the predictive accuracy of the Brunnstrom
stage classification model, we established the quantitative assessment model with the reconstructed
and raw accelerometer signals, respectively. To ensure the consistency of our comparison, the feature
extraction and ELM parameters were all set to be the same. More specifically, 12 features including root
mean square (RMS), amplitude (AMP) from three axes of two accelerometer sensors were extracted
and set as the input of ELM model, the output of the ELM model was the Brunnstrom stage level, and
the number of hidden neurons was set to 30. The training set contains 152 samples and the testing set
contains 38 samples.

The results are shown in Figure 11 and Table 4, from which it can be seen that of the total
38 samples in the testing set, there were 34 samples whose Brunnstrom stages were accurately
predicted by using the reconstructed signal, while 35 samples were accurately predicted using the
raw signal, which indicated that the reconstruction error alone has no influence on the accuracy of the
quantitative assessment model. Actually, the analysis of variance (ANOVA) result, listed in Table 5,
indicates that there is no statistically significant difference between the predictive accuracy of the raw
and reconstructed Brunnstrom stage classification model. Consequently, we can conclude that the
reconstruction error has no influence on the establishment of a quantitative assessment model.
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Table 4. Comparison of compressed and raw signals on quantitative assessment model accuracy.

Brunnstrom Stage Samples in Testing Set Predictive Accuracy
Raw Model Compressed Sensing Model

II 2 100 (2/2) 100 (2/2)
III 14 85.7 (12/14) 78.6 (11/14)
IV 9 88.8 (8/9) 100 (9/9)
V 9 100 (9/9) 88.8 (8/9)
VI 4 100 (4/4) 100 (4/4)

Total 38 92.1 (35/38) 89.5 (34/38)

Table 5. Analysis of variance results.

Source Sum of Squares df Mean Square F Prob > F

Between Groups 0.0132 1 0.01316 0.01 0.9205
Within Groups 96.9737 74 1.31046

Total 96.9868 75
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4. Conclusions

To reduce the amount of data in a wearable sensor network during the sampling and transmission
processes, this paper proposes a novel wearable sensor network based on compressed sensing
technology, and applied it to the monitoring and quantitative assessment of stroke patients’ upper
limb motor function. The experimental results showed that the proposed method can not only
compress and precisely reconstruct the raw accelerometer signals, but can also apply the reconstructed
signals to establish the Brunnstrom stage automatic classification model. It also indicated that the
proposed system can provide a theoretical basis for individualized and remote rehabilitation. However,
considering the fact that the clinical experiment only recruited 23 stroke patients, which is too small
a number to verify the statistical reliability and validity of the proposed quantitative assessment
model, in the future, we will gather more clinical data and improve the generalization performance
of the model. Additionally, in this paper, the compressed signals need to be reconstructed on the
computer side before the analysis process. In the future, we will try to investigate whether the analysis
process can be directly implemented in the compressed domain. If yes, this could reduce the off-line
computation burden and make the “on-node” analysis more possible.

Supplementary Materials: Additional File 1: Bobath handshake exercise (Movies, MP4 format), Additional File 2:
Shoulder touch exercise (Movies, MP4 format), Additional File 3: Introduction of Remote Rehabilitation Training
and Assessment Software.
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Appendix

Without loss of generality, assume x can be divided into g blocks, i.e.:

x “ rx1, ¨ ¨ ¨ , xd1
looooomooooon

xT
1

, ¨ ¨ ¨ , xdg´1`1, ¨ ¨ ¨ , xdg
looooooooomooooooooon

xT
g

s
T

where di p@iq are not necessarily identical. Among the g blocks, only k pk ! gq blocks are nonzero but
their locations are unknown.

Each block xi PRdiˆ 1 is assumed to satisfy a parameterized multivariate Gaussian distribution:

p pxi; γi, Biq „ N p0, γiBiq , i “ 1, ¨ ¨ ¨ , g

where γi is a non-negative parameter controlling the block-sparsity of x. When γi=0, the ith block
becomes zero. Bi PRdiˆdi is a positive definite matrix, capturing the correlation structure of the ith

block. Under the assumption that blocks are mutually uncorrelated, the prior of x is:

p px; tγi, Biuiq „ N p0, Σ0q

where Σ0=diag
 

γ1B1, ¨ ¨ ¨ , ¨ ¨ ¨γgBg
(

. Assume the noise vector satisfies p pv; λq„N p0, λIq, where λ is a
positive scalar. Therefore the posterior of x is given by:

p
´

x
ˇ

ˇ

ˇ
y; λ, tγi, Biu

g
i“1

¯

“ N pµx, Σxq

with:
µx “ Σ0ΦT

´

λI`ΦΣ0ΦT
¯´1

y

Σx “

ˆ

Σ´1
0 `

1
λ

ΦTΦ

˙´1

Once the parameters λ, tγi, Biu
g
i“1 are estimated, the Maximum-a-Posteriori (MAP) estimate of x,

denoted by
^
x , can be directly obtained from the mean of the posterior, i.e.:

^
x Ð Σ0ΦT

´

λI `ΦΣ0ΦT
¯´1

y

The parameters can be estimated by a Type II maximum likelihood procedure. This is equivalent
to minimizing the following cost function:

L pθq fi

´2log
ş

p py|x; λqp px; tγi, Biuiq dx

“ log
ˇ

ˇ

ˇ
λI`ΦΣ0ΦT

ˇ

ˇ

ˇ
` yT

´

λI`ΦΣ0ΦT
¯´1

y

where θ denotes all the parameters, i.e., θfi

!

λ, tγi, Biu
g
i“1

)

.
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