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Abstract: This paper proposes the first all-digital on-chip linearity enhancement technique for
improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS)
smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an
all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable
Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area
and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy.
With the help of a calibration circuit, the influence of process variations was reduced greatly for
one-point calibration support, reducing the test costs and time. However, the sensor response still
exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip
linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced
output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in
each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version,
the maximal inaccuracy of the linearized version decreased from 5 ˝C to 2.5 ˝C after one-point
calibration in a range of ´20 ˝C to 100 ˝C. The sensor consumed 95 µW using 1 kSa/s. The proposed
linearity enhancement technique significantly improves temperature sensing accuracy, avoiding
costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration
(VLSI) system.

Keywords: CMOS; smart temperature sensor; time domain; linearity enhancement; field
programmable gate array (FPGA)

1. Introduction

Thermal management systems (TMSs) are frequently used to manage the temperature of devices
and equipment to prevent thermal damage [1]. The lifespans of components decrease when their
temperature surpasses the safe temperature range, eventually causing damage and system breakdown.
Temperature sensors are used to monitor temperature and send temperature information to TMSs. To
ensure cost effectiveness and facilitate direct temperature monitoring, sensors can be mounted close to
crucial heat sources and implemented in a complementary metal-oxide semiconductor (CMOS) process
and, thus, be easily integrated with other Very Large Scale Integration (VLSI) circuits. Because of the fast
growth in the circuit density and clock frequency, current VLSI systems, such as microprocessors [1–3],
suffer from severe challenge in the temperature monitoring and control. Thus, the market demand for
integrated temperature sensors for many industrial and home applications has increased substantially.
Scientists integrate sensors into numerous systems since sensors become essential and tiny while
consuming low energy. For precise monitoring, integrated temperature sensors require careful
calibration to accurately read the temperature before use in TMSs because of process variations
and silicon aging in integrated circuits (ICs).
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To produce digital codes for communicating with VLSI systems, analog-to-digital converters
(ADCs) have been integrated into temperature sensors to create “smart temperature sensors” [4–8].
Temperature sensors based on bipolar junction transistors are utilized to translate the temperature
to a voltage signal proportional to the absolute temperature (PTAT), and then an ADC is used for
digital temperature readings. Sophisticated circuits using additional on-chip calibration techniques
are frequently used to ensure accuracy and full compatibility with the standard CMOS process [2–8].
Excellent performance, specifically, an extremely high accuracy of ˘0.1 ˝C (3σ) and a low power
dissipation of tens of microwatts, has been achieved. Offset cancellation techniques, dynamic element
matching [5,7], and linearity enhancement techniques [6,8] are usually used; however, the circuit
complexity and area increases substantially to be unattractive to the low-cost TMS.

Time-domain CMOS smart temperature sensors [9–19] have been developed to reduce the circuit
area and complexity substantially compared with that of voltage-domain smart temperature sensors.
The first CMOS time-domain sensor consisted of a temperature-to-pulse generator with inverter-based
delay lines and a time-to-digital converter (TDC) [9], as shown in Figure 1. CMOS inverters (NOT gates)
have been used to sense temperature innovatively [9–19]. The sensor had an error of ´0.7–0.9 ˝C
after two-point calibration in a range of 0 ˝C–100 ˝C. With such simple structure, the small chip
size and the satisfactory accuracy were achieved. Inverter-based oscillators of which the PTAT
period can be transformed into temperature information are frequently implemented in time-domain
temperature sensors. A temperature sensor implemented using two current-starved oscillators reached
an inaccuracy of´1.6–3.0 ˝C in a range of 0–100 ˝C [10]. Another temperature sensor with a differential
PTAT delay generator using a linear MOS operation had an error of ´0.8–1.0 ˝C in a range of 0 ˝C to
100 ˝C [11].
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with 140 logic elements (LEs) in FPGA chips and had an inaccuracy of −1.5–0.8 °C after two-point 
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To eliminate the burden associated with full custom designs, an all-digital smart temperature
sensor implemented using Field Programmable Gate Arrays (FPGAs) was proposed for rapid
prototyping [12]. As shown in Figure 2, an oscillator composed of inverters is first used to generate
the oscillation period (td,osc) PTAT. To achieve satisfactory sensor resolution, a time amplifier (TA)
comprising a circulation counter is then used to amplify the td,osc. An adequately wide pulse (tp)
is obtained using a simple XOR gate. A TDC is composed of the reference period width (tREF), the
AND gate, and the counter to convert the tp into the digital code. The smart sensor was realized
with 140 logic elements (LEs) in FPGA chips and had an inaccuracy of ´1.5–0.8 ˝C after two-point
calibration in a range of 0–75 ˝C, showing that time-domain temperature sensors are suitable for
cell-based or all-digital CMOS designs. However, two-point calibration, which can compensate for
both gain and offset errors, needs to be used to reach an acceptable inaccuracy at the cost of test
costs and time [9–12]. One-point calibration halves the test cost and time of two-point calibration for
high-volume production; thus, it is more attractive in the market.
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Another FPGA version with one-point calibration support was invented and its architecture is
presented in Figure 3 [13]. The structure of the simple smart temperature sensor is the same as that
of [12]. Differently, an off-chip calibration circuit and an adjustable-gain TA (AGTA) were used to
reduce the influence of process variations. Thus, one-point calibration can be used to save the test cost.
However, the sensor has poor linearity because of the curvature caused by the CMOS inverter [9–19].
To overcome the problem of curvature, costly off-chip second-order master curve fitting was used for
curvature correction to achieve a satisfactory accuracy of ´0.7–0.6 ˝C after one-point calibration in
a range of 0–100 ˝C [13]. Excluding the SAR-based (successive approximation register) calibration
circuit, only 48 LEs for the simple smart temperature sensor were used.
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A cell-based temperature sensor based on inverters was invented for self-calibration to eliminate
the influence of process variations [14]. When no second-order master curve fitting was applied, the
temperature sensor exhibited a substantial inaccuracy of ´5.1–3.4 ˝C after one-point calibration in a
range of 0–60 ˝C. Without applying the curve fitting, a frequency-based temperature sensor achieved a
large inaccuracy of ´2.8–2.9 ˝C after one-point calibration in a range of ´40 ˝C to 110 ˝C [15]. Later
research by the same team, a CMOS temperature sensor based on a process-variations-compensated
frequency-to-digital converter was proposed [16]. The accuracy was enhanced by linearizing the
frequency to digital conversion. Under one-point calibration, the achieved accuracy is scaled ˘1.5 ˝C
when measuring from ´40 ˝C to 110 ˝C.

To enhance on-chip linearity without adopting the off-chip second-order master curve fitting,
two delay lines were used at the cost of two-point calibration for curvature compensation, yielding the
currently optimal inaccuracy of ´0.35–0.3 ˝C from 0 to 90 ˝C [17]. To ensure acceptable inaccuracy
in wider temperature range operations, another curvature compensation technique that involves
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using two oscillators was proposed. The sensor adopted two-point calibration to achieve a maximum
inaccuracy of 1.4 ˝C for ´40–120 ˝C extensive range [18].

Either costly off-chip second-order master curve fitting [13] or a time-consuming analog
linearization technique [17,18] must be adopted to enhance linearity and achieve acceptable inaccuracy
because of the curvature of CMOS inverters. Otherwise, the inaccuracy is substantial [14,15] or the
operating temperature range is limited [12,14]. This study proposes the first all-digital on-chip linearity
enhancement technique. Furthermore, applying the calibration technique described in [13] enables the
fully digital smart temperature sensor to achieve a satisfactory accuracy after one-point calibration for
a wider temperature range. The rest of this paper is organized as follows: Section 2 provides details
on the proposed sensor, including the calibration circuit and the linearity enhancement technique;
Section 3 presents the Experimental results; and finally, Section 4 concludes the paper.

2. Circuit Description

The architecture of the proposed all-digital smart temperature sensor is presented in Figure 4. It
comprises a simple smart temperature sensor, a calibration circuit for one-point calibration support,
and a proposed linearity-enhanced circuit. The main feature that differentiates the proposed sensor
from the time-domain sensors proposed in previous studies is the first all-digital on-chip linearity
enhancement technique proposed in this paper. In contrast with the structure shown in Figure 3,
the calibration circuit is implemented on-chip, and the linearity-enhanced circuit is connected with
the simple version to linearize the digital value N(T) and derive a new digital value N'(T). Process
variation calibration and linearity enhancement enable improving accuracy and reducing the test costs
of high-volume production.
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The proposed technique was introduced simply in [19]. The linearity-enhanced circuit and the
calibration circuit were implemented on one FPGA board to off-chip calibrate and linearize simple
smart temperature sensors fabricated in a 0.35-µm CMOS process. In this paper, the proposed sensor
with calibration circuit and linearity-enhanced circuit was realized using the FPGA boards; a detailed
description is provided.

2.1. Inverter-Based Smart Temperature Sensor and One-Point Calibration Technique

As mentioned previously, a CMOS NOT gate composed of a P-channel MOS and a N-channel
MOS transistor can be used for temperature sensing to produce the PTAT delay. This can be expressed
as [20]

tNOTpTq “
2LCL

WCOXVDD
ˆ

1
µpTq

ˆ
lnp3´ 4VthpTq{VDDq

1´VthpTq{VDD
(1)
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where T, W/L, and CL are the operation temperature, aspect ratio of transistors, and loading capacitance
of the NOT gates, respectively. The temperature relationship of mobility (µ) and threshold voltage
(Vth) are expressed as [21]

µpTq “ µ0 ˆ p
T
T0
q

km
, km “ ´1.2 „ ´2.0 (2)

VthpTq “ VthpT0q ` αpT´ T0q, α “ ´0.5 „ ´3mV{˝C (3)

where T0 is the reference temperature. Although µ and Vth are both affected by the temperature, the
thermal influence of tNOT(T) is dominated by µ [9–19]. Therefore, the thermal relationship of Vth (T)
can be ignored for simplification, and tNOT(T) can be further expressed as

tNOTpTq “
2LCLT0

km

µ0
WCOXVDD

ˆ
lnp3´ 4Vth{VDDq

1´Vth{VDD
ˆ

1
Tkm “ γˆ T´km (4)

where γ is a process-dependent factor with nearly temperature independence. In Equation (4), the
PTAT delay is dependent on the process variations. Furthermore, the oscillator constructed by the
NOT gates resembles the NOT gate and can be used to generate an oscillation period PTAT, which is
expressed as

td,oscpTq “ 2ˆ kˆ tNOTpTq “ 2ˆ kˆ γˆ T´km (5)

where k is the number of stages in the oscillator. The period is usually too short to attain a desired
temperature resolution, unless k is set to an extremely high value. Thus, a TA with a gain of n was
designed to amplify td,osc and obtain the tp PTAT. Finally, the reference clock (tREF) was used to count
tp to output the sensor output N(T), which can be formulated as

NpTq “
tppTq
tREF

“
nˆ td,oscpTq

tREF
“

n
tREF

ˆ 2ˆ kˆ γˆ T´km “ βˆ T´km (6)

where β is a factor with process dependence and temperature insensitivity because n, k, and tREF are
ideally temperature insensitive. The characteristic of N(T) unavoidably resembles that of the NOT gate.
In Equation (6), if km is ´1 (the ideal value), then N(T) is perfectly linear. However, the value of km
rangers from ´1.2 to ´2.0 for a 0.35-µm CMOS process [21], indicating that the transfer curve of N(T)
has curvature.

As shown in Figure 5 [13], the oscillator consists of a NAND gate and 24 NOT gates to produce the
td,osc PTAT. The AGTA consists of a programmable down counter and D type Flip Flops (DFFs)
to amplify the td,osc. The DFF1 was used for deglitching. Through the simple AND gate, an
end-of-conversion (EOC) signal was activated to stop the oscillator for power saving.
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Compared with the simple version, two parts were modified to support one-point calibration; an
AGTA rather than the fixed-gain TA was used, and the calibration circuit composed of a magnitude
comparator and SAR control logic was added. As described, the calibration technique used in this
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study is similar to that used in [13], in which the theory and calibration procedure were introduced.
The temperature of the ith sensor was set to the calibration temperature (TC), and the corresponding
N(T) of the sensor was varied by adjusting the time gain (n) of the AGTA to approximate the preset
calibration value (NC). A magnitude comparator was used to detect the difference between N(T)
and NC. The result, Comp, was sent to the SAR logic to set n to the proper value (ni) at TC. The
variation in the oscillation period (td,osc,i) of the ith sensor at TC was compensated properly to obtain
the identical NC for all sensors. After calibration, all calibrated sensors have similar digital codes at the
corresponding temperature because sensor resolution is stable (gain calibration) and all sensors have
the same values at TC (offset calibration).

2.2. Proposed All-Digital On-Chip Linearity Enhancement Technique

Form Equation (6), because km is nearly constant for a given process technology [13,18], almost
identical curvature is expectable among the error curves of the all calibrated sensors. According to the
character of the similar curvature, individual linearization for each sensor is not required. Thus, the
transfer curve of only one sensor is required to design the linearity-enhanced circuit, which linearizes
the output curves of all sensors to attain the new curves with linearity improvement.

Figure 6 illustrates the concept of the proposed linearity enhancement technique. One transfer
curve of the calibrated sensor is denoted as the N(T) curve. In addition to the NC at the medium
calibration temperature Tmc (i.e., TC at the one-point calibration step), the two digital values N(Tlc) and
N(Thc) at the highest and lowest temperatures (Thc and Tlc) were measured. Subsequently, according
to the three known values NC = N(Tmc), N(Thc) and N(Tlc), we perform linear interpolation, SH(T)
and SL(T), for estimating the error between the N(T) and the ideal line N0(T). Therefore, the error
N(T)–N0(T) in the high-temperature region (HTR) with temperature T > Tmc is approximated with

∆NHpTq “ SHpTq ´ N0pTq (7)
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Then, the new output curve is calibrated as

N1pTq “ NpTq ´ ∆NHpTq “ NpTq ´ pSHpTq ´ N0pTqq (8)

Similarly, for the low-temperature region (LTR), the new output curve is calibrated as

N1pTq “ NpTq ´ ∆NLpTq “ NpTq ´ pSLpTq ´ N0pTqq (9)
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The effect of the linearization regarding the curvature is obvious by observing the following facts.
The maximum errors of N(T) in the HTR and LTR are respectively

NpThcq ´ N0pThcq “ SHpThcq ´ N0pThcq (10)

NpTlcq ´ N0pTlcq “ SHpTlcq ´ N0pTlcq (11)

while the ones of N'(T) in the HTR and LTR are smaller since derived from Equations (11) and (12)
we have

ˇ

ˇN1pTq ´ N0pTq
ˇ

ˇ “ |NpTq ´ SHpTq| “ SHpTq ´ NpTq ă SHpTq ´ N0pTq ă SHpThcq ´ N0pThcq (12)

for Tmc < T < Thc and

ˇ

ˇN1pTq ´ N0pTq
ˇ

ˇ “ |NpTq ´ SLpTq| “ SLpTq ´ NpTq ă SLpTq ´ N0pTq ă SLpTlcq ´ N0pTlcq (13)

for Tlc < T < Tmc.
The linear error approximation exhibits a curvature reduction with a noticeable linearity

improvement in the new transfer curve.
Presented in Figure 7 are the corresponding error curves EpNq “ NpTq´N0pTq and EpNq “ N0pTq´N1pTq

along with digital value at different temperature. After the procedure of one-point calibration, the error at Tmc is
zero, and the maximal error in E(N) is greater than the one in E(N1). The error lines of linear approximation
E(SH) for HTR and E(SL) for LTR can be respectively formulated as

EpSHq “
EpThcq´EpTmcq

NpThcq´NpTmcq
pNpTq´NpTmcqq “

EpThcq

NpThcq´NC
pNpTq´NCq (14)

EpSLq “
EpTlcq´EpTmcq

NpTmcq´NpTlcq
pNpTmcq´NpTqq “

EpTlcq

NC´NpTlcq
pNC´NpTqq (15)

where E(Thc), E(Tlc), and E(Tmc) are the errors of digital value at Thc, Tlc, and Tmc, respectively, and
E(Tmc) = 0 as mentioned. Theoretically, the linearized errors at Tlc, Tmc, and Thc should be zero.
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As mentioned, the transfer curves of the calibrated sensors before linearization are almost the
same, the proposed linearity-enhanced circuit is designed according to one sensor’s transfer curve,
and it is applicable for linearization of other sensors to produce new curves with reduced curvature.
According to Equations (14) and (15), the flowchart for the linearization procedure is presented in
Figure 8. The first step is to determine the falling region of the algorithm input N read out from
the calibrated sensor. When N is large than NC, it falls into HTR for the linearization. Contrarily,
N falls into the LTR because it is smaller than NC. Then, the difference Ndi f f between N and NC
is calculated. By linear approximations of the digital value errors in Equations (14) and (15), the
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correction either ∆NH “ EpSHq or ∆NL “ EpSLq is determined in the third step. Finally, the linearized
value N1 “ N´∆NH or N1 “ N´∆NL is attained.
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To demonstrate the performance of the linearization, theoretical modeling using pure software
(MATLAB) and simulation using the FPGA EDA (Electronic Design Automation) tool (Xilinx
(Integrated Software Environment) ISE) were performed. The estimated inaccuracies are shown in
Figure 9 for comparison. Compared with the unlinearized version, the error is improved considerably.
The linearized results from theoretical modeling using MALTAB and ISE simulation were similar and
resembled the expected effect (i.e., E(N1)). This successfully validates the function of the proposed
all-digital linearity enhancement technique. Linearity enhancement enables improving the accuracy
of the sensor at low-cost condition, and neither costly off-chip second-order master curve fitting nor
time-consuming analog signal linearization are necessary.
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Figure 9. Inaccuracy of the unlinearized sensor and estimated inaccuracies of theoretical model using
Matlab and ISE simulation for the proposed linearization.

The proposed linearity enhancement is easy to implement in a simple circuitry, which is more
cost-effective compared to higher degree interpolation. The circuit area costs of the proposed linearity
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enhancement and degree-2 Lagrange polynomial interpolation technique [22] are 43 and 70 slices,
respectively, while the respective accuracy ranges are´1.5–0.7 ˝C and´1–1 ˝C. By applying to eight
sensors before linearization, the simulated results after improvement by the two techniques using ISE
simulation tool are shown in Figure 10. The degree-2 method reaches a little bit better accuracy, but it
noticeably requires much higher circuit area cost and design complexity.
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Figure 10. Estimated inaccuracies of the two techniques considering process variations of eight sensors.

In IC design, we usually utilize FPGA for ASIC (Application-Specific Integrated Circuit) fast
prototyping. For pure digital design, the cell-based design flow is usually applied. Though the
same linearity enhancement is also applicable to sensors designed by a full-custom flow, we usually
do not compare area cost between cell-based ASICs and full-custom ones. For cell-based digital
signal processing IC implementations, we usually express area cost in terms of number of arithmetic
operations or in terms of basic components such as gates in ASIC or slices in FPGA. Traditional digital
curve-fitting circuits require much more arithmetic operations especially when we were exploiting
higher-degree polynomials for better accuracy. Due to a large amount of transistor counts, high degree
curve fittings or interpolations are few implemented by full-custom design flow. In this paper, we
recruit linear approximation which has successfully enhanced the accuracy using a small number of
slices. It is possible to further improve the accuracy by using higher degree polynomial approximations.
However, the number of arithmetic operations will also increase exponentially. The optimization of
high order interpolation is another challenge.

3. Experimental Results

To evaluate the performance, a Xilinx XC3S200AN FPGA board with a low reference clock
frequency of 40 MHz was used to realize the sensor, as shown in Figure 11. A total of eight FPGA chips
for the simple smart temperature sensor with 16 output bits (i.e., simple version without uncalibration
and unlinearizion) were implemented to examine the influence of process variations, and the logic
utilization for a single sensor is 50 slices. The measurements were performed in 10 ˝C steps in a range
of´20 ˝C to 100 ˝C by using a programmable temperature and humidity chamber (MHG-120AF). The
operating range was limited to 100 ˝C because the plastic devices on the board are easily damaged when
the temperature is above 100 ˝C. The measured transfer curves of the simple version are presented
in Figure 12a. The gain and offset errors caused by process variations are evident. Thus, two-point
calibration was adopted to derive an acceptable inaccuracy. The temperature resolution ranges from
0.028 to 0.033 ˝C, and the large inaccuracy of ´2.5–3.5 ˝C from ´20 ˝C to 100 ˝C is exhibited, as
presented in Figure 12b. As mentioned previously, to reduce test costs and time, a calibration technique
for one-point calibration support was adopted in this study.
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Figure 11. Photograph of the test FPGA board.
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Figure 12. (a) Measured transfer curves of the simple smart temperature sensor for eight FPGA chips;
(b) Inaccuracies of the simple smart temperature sensor after two-point calibration.

To verify the calibration performance, the logic utilization of 75 slices for a calibrated sensor (i.e.,
unlinearized version) is implemented on the same FPGA board. Excluding the simple version, 25 slices
were used for the calibration circuit. The measured transfer curves of the N(T) for the eight FPGA chips
and the ideal curve are shown in Figure 13a for comparison. The N(T) of these chips nearly coincided
at TC and changed linearly with the stable resolution as the temperature varied. Compared with the
simple version, the gain and offset errors of the calibrated version decreased substantially, showing
that the influence of process variations was effectively reduced to support one-point calibration. After
one-point calibration, the corresponding inaccuracies are 5 ˝C in a range of ´20 ˝C to 100 ˝C, as
shown in Figure 13b. The curvature is apparent in the error curves, which conforms to Equation (6).
Because of the curvature, greater inaccuracy is expected for wider temperature ranges [13,18]. If the
curvature can be reduced or linearized, then the accuracy improves correspondingly. Therefore, this
paper proposes the first all-digital on-chip linearity enhancement technique for reducing the curvature
and improving accuracy.
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Figure 13. (a) Measured transfer curves of the N(T) for eight FPGA chips after calibration and ideal
curve for comparison; (b) Inaccuracies of the calibrated (unlinearized) sensor after one-point calibration.

To determine the feasibility of the proposed technique, the proposed sensor was realized using
118 slices in eight FPGA chips without employing any full custom devices, increasing flexibility,
portability, and simplicity. The calibration circuit, which is useless after calibrating a sensor, can be
implemented off-chip to reduce the circuit cost. Only 43 slices were used for the linearity-enhanced
circuit. After linearization, the measurement results and the ideal curve are presented in Figure 14a
for comparison. Compared with the unlinearized sensor, lower inaccuracies of ´1.6–0.9 ˝C from
´20 to 100 ˝C were achieved, as presented in Figure 14b. The measured error curves were similar to
the expected curves, E(N1), and the estimated results from theoretical modeling using MALTAB and
ISE simulation. The measurement results demonstrated that the proposed method, which features a
fully digital CMOS design, functions favorably. The sensor had a resolution of 0.03 ˝C, and its power
dissipation was measured as 95 µW at 1 kHz sampling rate and 3.3 V supply. A comparison among
the measured performances of the simple version, the unlinearized version, and the proposed work is
summarized in Table 1.Sensors 2016, 16, 176 11 of 13 
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Figure 14. (a) Measured transfer curves of the N'(T) for eight FPGA chips after linearization and ideal
curve for comparison; (b) Inaccuracies of the linearized sensor for eight FPGA chips.
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Table 1. Measured performances of the three versions for easy comparison.

Sensor Resolution (˝C) Error (˝C) Calibration Area (Slices) Range (˝C) Technology (µm)

Simple 0.028 ~ 0.033 ´2.5 ~ 3.5 Two-point 50 ´20 ~ 100 0.09
Calibrated

(Unlinearized) 0.03 0 ~ 5 One-point 75 ´20 ~ 100 0.09

Linearized 0.03 ´1.6 ~ 0.9 One-point 118 ´20 ~ 100 0.09

Basically, we exploit signal processing technique to ease the design of accurate temperature
sensors. Traditionally, to design an accurate temperature sensor, some sophisticated techniques either
based on analog or digital circuit design principles are required. Then, the trimming would also
become challenging. If we further consider the yield of manufacturing, the cost would be more
uncertain. In this paper, the linearity-enhanced circuit is part of the sensor producing the linearized
output N1(T), and it occupies a small area. We successfully avoid costly curvature compensation or
other complex accuracy improvement techniques such that the sensor is fully synthesizable for future
VLSI integration. According to the results of simulation and experiment, we can see the accuracy of
the temperature sensor is much improved by the linearity-enhanced circuit. Moreover, the on-chip
enhancement enables online field calibration which was difficult for traditional sensors since deployed.
If we were applying off-chip enhancement, we have to additionally record each sensor’s data for
individual calibration. On the other hand, since FPGAs are usually used for fast prototyping of ASIC
designs, the linearity-enhanced circuit is applicable not only to sensors realized by FPGAs but also to
those realized by ASICs or custom ICs.

For the accuracy comparison between the sensor in this FPGA and the one in [19], the primary
difference is the process technology. Therefore, the initial inaccuracy caused by the process technology
is also different. In this paper, we improve the accuracy from 0–5 ˝C to ´1.6–0.9 ˝C, while, in [19],
we improved the 0.35-µm full-custom sensor from 0–3 ˝C to ´0.85–0.65 ˝C. Both of the linearizations
have achieved 50% enhancement. Thus, we prove that the on-chip linearity enhancement works well
even we are calibrating an ASIC prototype, an FPGA manufactured with 90-nm process. Generally,
calibrating a sensor of high-end process technology is much more difficult than calibrating one of
traditional process technology.

4. Conclusions

An all-digital CMOS smart temperature sensor featured with on-chip calibration and linearity
enhancement has been proposed. After calibration, the sensor can support one-point calibration for
test-cost and time reduction. To enhance accuracy, the all-digital linearity enhancement technique
is proposed. Only one sensor must be measured for designing the linearity-enhanced circuit. When
linearization was applied, the measurement results showed that the maximal inaccuracy of 5 ˝C
was improved to 2.5 ˝C from ´20 to 100 ˝C, and a twofold improvement in accuracy was achieved.
The proposed sensor was developed without adopting a time-consuming full custom design for
performance estimation or function certification. It occupied 118 slices in FPGA chip, achieved a
robust resolution of 0.03 ˝C, and consumed 95 µW at 1 kHz. The measured performances of the
related time-domain sensors is listed in Table 2 for comparison. With one-point calibration and fully
digital CMOS design, the sensor exhibited the acceptable inaccuracy without requiring the off-chip
second-order master curve fitting. Future studies will focus on a more effective all-digital on-chip
linearity enhancement technique for time-domain smart temperature sensors.
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Table 2. Performance comparisons among related works.

Sensor Type Resolution
(˝C) Error (˝C) Calibration Power

Consumption (µW) Area (mm2) Range (˝C) Technology
(µm)

[9] Analog 0.12 ~ 0.16 ´0.7~0.9 Two-point 9 @5 Hz 0.175 0~100 0.35
[10] Analog 0.3 ´1.6~3.0 Two-point 0.22 @100 Hz 0.05 0~100 0.18
[11] Analog 0.3 ´0.8~1 Two-point 0.4 @1k Hz 0.032 0~100 0.18
[12] Digital 0.058 ´1.5~0.8 Two-point 8.4 @2 Hz 140 LEs 0~75 0.22/0.18
[13] Digital 0.133 ´0.7~0.6 #1 One-point 175 @1k Hz 48 Les #2 0~100 0.22/0.18
[14] Digital 0.139 ´5.1~3.4 One-point 150 @10k Hz 0.01 0~60 0.065
[15] Analog 0.043 ´2.7~2.9 One-point 400 @366k Hz 0.0066 ´40~110 0.065
[16] Analog 0.18 ˘1.5 One-point 500 @ 465k Hz 0.008 0~110 0.065
[17] Analog 0.088 ~ 0.093 ´0.25~0.35 Two-point 36.7 @10 Hz 0.6 0~90 0.35
[18] Analog 0.043 ~ 0.047 ´0.2~1.2 Two-point 23 @10 Hz 0.07 ´40~120 0.35

This
work Digital 0.03 ´1.6~0.9 One-point 95 @1k Hz 118 Slices ´20~100 0.09

#1 with off-chip second order curve fitting; #2 without one-point calibration circuit.
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