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Abstract: Noise and constant empirical motion constraints affect the extraction of distinctive
spatiotemporal features from one or a few samples per gesture class. To tackle these problems,
an adaptive local spatiotemporal feature (ALSTF) using fused RGB-D data is proposed. First, motion
regions of interest (MRoIs) are adaptively extracted using grayscale and depth velocity variance
information to greatly reduce the impact of noise. Then, corners are used as keypoints if their depth,
and velocities of grayscale and of depth meet several adaptive local constraints in each MRoI. With
further filtering of noise, an accurate and sufficient number of keypoints is obtained within the desired
moving body parts (MBPs). Finally, four kinds of multiple descriptors are calculated and combined
in extended gradient and motion spaces to represent the appearance and motion features of gestures.
The experimental results on the ChaLearn gesture, CAD-60 and MSRDailyActivity3D datasets
demonstrate that the proposed feature achieves higher performance compared with published
state-of-the-art approaches under the one-shot learning setting and comparable accuracy under the
leave-one-out cross validation.

Keywords: gesture recognition; one-shot learning; spatiotemporal feature; adaptive; optical flow;
motion region of interest

1. Introduction

Vision-based gesture recognition is a critical interface for non-intrusive human-robot interaction
(HRI) systems, for which many natural and convenient recognition methods have been proposed [1–3].
In a traditional HRI system, a user usually needs to memorize a predefined gesture language or
a set of instructions before interaction. Although users can learn new gesture motions, they may
not enjoy learning the predefined gesture language or instructions. In particular, when a user plans
to define and use arbitrary interaction gestures, existing HRI systems require labour-intensive and
time-consuming procedures to collect and label all the training samples. This is because most of the
traditional methods based on supervised learning require many training samples and long training
times. All of these factors render a typical HRI system unsuitable for adding user-defined gestures
easily and hence, motivate the current research of one-shot learning gesture recognition in solving the
above mentioned problems.

One-shot learning is a concept cognition and learning method that models after a human’s innate
learning ability. For example, humans can learn and generalize a new concept from one or very few
samples [4]. Unlike tradition methods, one-shot learning gesture recognition is a small sample size
learning problem, which means that every gesture has only one or very few training samples [5–9].
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When learning a new gesture, the user needs to perform the gesture only once or a few times without
the need to collect a large number of training samples. Meanwhile, simple classification methods,
which do not need a lot of time for offline learning, can satisfy well the identification requirements.
One-shot learning gesture recognition not only greatly improves the ease-of-use of HRI, but also makes
the robot learn and recognize interaction gestures with the cognition mechanism conforming to the
expectation of a human user.

One important challenge of one-shot learning gesture recognition is to accurately extract
distinctive features from a small number of training samples. These features should represent
well the between-class differences and within-class similarities of gestures [1,5]. Some recently
published approaches use the color or depth information to detect spatiotemporal interest points
(STIPs), i.e., keypoints, from which to build the feature descriptors. The spatiotemporal feature
approaches (keypoints + feature descriptors) do not need any preprocessing steps, such as human
detection, segmentation or skeleton extraction. Hence, they are highly flexible for applying to different
environments. In fact, a user can perform gestures in 3D space. If the features are extracted from
a single channel (color or depth), the loss of information in the other channel will greatly reduce
the representative and discriminative ability of gesture features, so the study of RGB-D data-based
spatiotemporal feature approaches has received much attention from researchers.

Hernandez-Vela et al. [10,11] detected keypoints using the Harris 3D detector [12,13] on RGB
and depth volumes. Then, Histogram of Oriented Gradients (HOG) [14], Histogram of Optical Flow
(HOF) [15], HOG/HOF [15] and Viewpoint Feature Histogram Camera Roll Histogram (VFHCRH)
feature descriptors are calculated for each keypoint. The 3D motion scale invariant feature transform
(3D MoSIFT) [16], 3D enhanced MoSIFT (3D EMoSIFT) [6] and 3D sparse MoSIFT (3D SMoSIFT) [1]
spatiotemporal feature approaches, which are extensions of the MoSIFT method [17] using RGB-D data,
can be referred to as 3D MoSIFT-based methods. All the 3D MoSIFT-based methods detect the initial
interest points in whole frames. Then, these interest points of 3D MoSIFT whose grayscale velocities
satisfy certain motion constraints are treated as keypoints. 3D EMoSIFT increases the depth-dependent
constraints on the basis of 3D MoSIFT. 3D SMoSIFT extracts keypoints from the initial interest points
by applying the grayscale or depth absolute velocity constraints, which are constant and determined
by trial-and-error. Finally, the 3D MoSIFT-based methods use fused RGB-D data to construct SIFT-like
feature descriptors. The Mixed Features Around Sparse Keypoints (MFSK) method [9] uses a strategy
similar to that of 3D SMoSIFT to detect keypoints. The difference between them is that the MFSK
method [9] detects Speeded Up Robust Features (SURF) corners [18] as initial interest points while
3D SMoSIFT uses Shi-Tomasi corners [19]. Then 3D SMoSIFT, HOG, HOF and motion boundary
histogram (MBH) feature descriptors [20] are calculated from the RGB-D data. These one-shot learning
gesture recognition approaches have achieved good performance using the 2011/2012 ChaLearn
One-shot-learning Gesture Dataset (CGD) [21].

Besides the motion caused by the moving body parts (MBPs), motion may also exist in the
background and the remaining body parts (non-MBPs). These motions may be caused by illumination
changes, moving shadows, inaccurate or lost depth values (black block in a depth frame) or clothes
movements (moving together with the MBPs), all of which can be collectively referred to as noise.
The above mentioned spatiotemporal feature approaches directly detect keypoints in the whole frame,
according to some predefined empirical motion constraints, which can incorrectly label some noise
points with larger motion as keypoints. Because the speeds of different MBPs are not the same, constant
motion constraints cannot guarantee correct detection of accurate and a sufficient number of keypoints
in every MBP. If the constraint thresholds were set too high, features with relatively small movements
would be ignored. On the contrary, if the constraint thresholds were set too low, many noise points
would be detected. Different users or even the same user performing the same gesture at different
times may exhibit different speeds and also the actual hardware execution environment of HRI varies.
Hence, constant empirical motion constraints will not work in all situations.
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To address the above problems, an adaptive local spatiotemporal feature (ALSTF) which combines
both the appearance and the motion information is proposed. First, variances of grayscale and depth
optical flows are used to adaptively extract motion regions of interest (MRoIs) which mainly contain
MBPs, and to remove regions of the background and of the remaining body parts which contain a lot
of noise. Then, Harris-Affine corners [22] are used as the initial interest points in MRoIs. The initial
interest points with depth values and velocities of grayscale and depth that satisfy new local adaptively
determined motion constraints in each MRoI, are regarded as the keypoints. Finally, multi-feature
descriptors, computed in the new extended gradient and motion spaces, are combined to represent
gestures. The major contributions of our new method include:

• A new adaptive MRoIs extraction approach is proposed to reduce the effect of noise on the
accuracy of extracting spatiotemporal features.

• In each MRoI, new local depth and motion constraints are adaptively determined to detect
keypoints. By this, not only the influence of noise can be reduced, but also the accuracy of
detecting keypoints can be improved and more features can be extracted in the MBPs with large
speed differences.

• 3D SMoSIFT, HOG, HOF and MBH feature descriptors are calculated in the new extended gradient
space and motion space, and employed to generate more RGB–D appearance and motion features
of gestures.

• Compared with other spatiotemporal feature approaches and with the published one-shot learning
gesture recognition approaches, the proposed method achieves a better recognition performance.

The rest of this paper is organized as follows: Section 2 briefly reviews related works on
spatiotemporal feature approaches. Sections 3–5 describe details of the proposed method. The adaptive
MRoIs extraction approach is presented in Section 3.1; Section 3.2 shows how to adaptively detect
keypoints in each MRoI. The improved feature descriptor calculation process is illustrated in Section 4.
Section 5 introduces a resolution strategy for a special case wherein the human body is maintained in
a relatively static condition during one stage of a gesture. Then the experimental results are shown
in Section 6, where the evaluations and comparisons with state-of-the-art algorithms are discussed.
Finally, Section 7 concludes this paper and includes some discussions on future work.

2. Related Works

Spatiotemporal feature approaches belong to the single-layered human gesture recognition
approach. They consider a gesture as a set of appropriate features extracted from a 3D space-time
volume and recognize the gesture from an unknown video sequence by categorizing it into one of the
known classes [23]. In the following, some spatiotemporal features used in state-of-the-art techniques
on gesture recognition and one-shot learning gesture recognition tasks are described.

Laptev et al. [12,13] proposed the Spatiotemporal Interest Point (STIP) detector, i.e., Harris 3D
corner detector, to detect interest points in the spatiotemporal domain. The Harris 3D detector is a
spatiotemporal extension of the Harris corner detector [24]. First, a spatiotemporal second-moment
matrix µ and a normalized Laplace operator ∇2

normL of each grayscale pixel are computed.
The grayscale points with local positive maxima of the corner function H = det(µ) − ktrace3(µ) and
extrema of the operator ∇2

normL are regarded as STIPs. Then, local, spatiotemporal and scale-invariant
N-jet descriptors are used to represent and classify events of interest.

The Cuboid [25] feature uses a new response function for the Harris 3D detector to detect STIPs.
Its response function is composed of a 2D Gaussian smoothing kernel for the spatial dimensions and
a quadrature pair of 1D Gabor filters for the temporal dimension. The locations of interest points
are given by the local maxima of the response function. Once detected, the cuboid around each
interest point, which contains the pixel appearance values of the interest point’s neighborhoods, is
extracted [23]. By testing various transformations to be applied to cuboids to extract the final local
features, the flattened vector of brightness gradients with the best performance is chosen as the
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descriptor, which is essentially a generalization of the Principal Components Analysis-Scale Invariant
Feature Transform (PCA-SIFT) descriptor [23,25].

Lu et al. [26] employed spatiotemporal filtering and noise suppression to construct the response
function in the spatiotemporal and scale domain from depth videos. Depth STIPs (DSTIPs) are
selected at the local maxima of the response function. The Depth Cuboid similarity feature (DCSF)
descriptor is used to encode the spatiotemporal appearances of the 3D cuboid around the DSTIP, based
on self-similarity.

The Hessian detector [27] is an extension of the Hessian saliency measure [28,29] for blob detection
in the spatiotemporal domain. The localization and scale selection of interest points are directly
implemented and selected, without iteration, by measuring saliency with the determinant of the
3D Hessian matrix. To describe interest points, an extended version of the SURF descriptor is
proposed. Descriptors are calculated in both spatial and temporal domains simultaneously. For rotation
invariance, the dominant orientation is used in the spatiotemporal domain. Meanwhile, all the
Haar-wavelets are extended over the full length of the temporal scale of the interest point [27].

Wang et al. [30] proposed representing human actions using dense trajectories and motion
boundary descriptors. First, feature points are densely sampled on a grid space and the Shi-Tomasi
detector [19] is used to remove points in the image areas that have no structure. Then, each feature
point is tracked over L frames to form a trajectory. Finally, a trajectory shape descriptor is employed to
encode local motion patterns of actions. Besides, a concatenated feature descriptor of HOG, HOF and
MBH is used to represent the appearance and motion information.

Chen et al. [17] proposed the MoSIFT method, based on RGB and optical flow information. Since it
is derived from SIFT [31], it is scale and rotation invariant. First, the Gaussian pyramids and the
Difference of Gaussian (DoG) pyramid are constructed for two consecutive grayscale frames. The local
extrema of the DoG pyramid are selected as the initial interest points. Then, the optical flow pyramids
corresponding to the grayscale pyramids are calculated, and for each interest point to be a keypoint, its
grayscale optical flow must satisfy certain empirical motion constraint thresholds. Finally, the MoSIFT
feature descriptors of the keypoints are computed using the grayscale Gaussian pyramid and the
optical flow pyramids.

Hernandez-Vela et al. [10,11] used the Harris 3D detector to detect keypoints SRGB in the RGB
volumes and keypoints SD in the depth volumes. Then, the HOG, HOF and HOG/HOF feature
descriptors for SRGB and the VFHCRH descriptors for SD are calculated to represent gestures.
This approach is an extension of the Harris 3D detector using RGB and depth data.

3D MoSIFT [16], 3D EMoSIFT [6] and 3D SMoSIFT [1] are derived from MoSIFT using RGB-D data.
3D MoSIFT and 3D EMoSIFT adopt a similar strategy to detect initial interest points. 3D SMoSIFT just
detects the Shi-Tomasi corners in grayscale scale space as initial interest points to speed up processing.
To extract keypoints from the initial interest points, different 3D MoSIFT-based methods have their
own individual strategies. In particular, 3D MoSIFT takes the grayscale motion constraints which
are the same as that used in MoSIFT. On the basis of MoSIFT and 3D MoSIFT methods, 3D EMoSIFT
includes a depth-dependent constraint to remove some noise points. 3D SMoSIFT adopts grayscale or
depth motion constraints to extract keypoints. The difference between 3D MoSIFT and 3D SMoSIFT
is that 3D SMoSIFT uses the magnitude of the velocity while 3D MoSIFT uses the magnitudes of the
horizontal and vertical velocity components. After keypoints are detected, 3D MoSIFT-based methods
construct a 3D gradient space and a 3D motion space to calculate SIFT-like feature descriptors in
these spaces. They adopt the same 3D gradient space which are constructed using the grayscale and
depth spatial information. The temporal variations of the grayscale optical flow and of the depth
information are employed for constructing a 3D motion space for 3D MoSIFT and 3D EMoSIFT. 3D
SMoSIFT improves the 3D motion space by simultaneously using the grayscale and the depth optical
flow simultaneously.

The MFSK [9] spatiotemporal features are derived from 3D SMoSIFT. The difference between the
two is that, for detecting the initial interest points, MFSK uses the SURF detector while 3D SMoSIFT
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employs the Shi-Tomasi corner detector; on the basis of 3D SMoSIFT feature descriptors, MFSK
includes the HOG, HOF, and MBH feature descriptors, which can well represent the appearance and
motion features of gestures.

It can be inferred that the above feature-based approaches detect keypoints from whole frames
in the spatiotemporal domain. Some approaches rely on grayscale or depth cues to detect keypoints,
which include keypoints due to noise. Although other approaches add motion information to filter
out noise, constant global empirical motion constraints are not very good to adapt to various possible
scenarios. Therefore, the adaptive local spatiotemporal feature is worth studying.

3. Keypoint Detection

Firstly, to reduce the effect of noise, MRoIs are adaptively extracted on the basis of variance
information of grayscale and depth optical flows. Then, a sufficient number of accurate keypoints are
detected using adaptive local motion and depth constraints in each MRoI.

To introduce the proposed approach more intuitively, two pairs of consecutive frames are used
to illustrate every stage, as shown in Figure 1. The grayscale frames Gt, Gt+1 (converted from RGB
frames) and the depth frames Dt, Dt+1 are captured by Kinect at time t and t + 1, respectively. The
frame resolution is N ×M, where M is the number of rows, and N the number of columns.
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caused by gesture alone, but noise as well. For example, there are relatively large st,c,j
G in intervals A

and B (Figure 3b), which are caused by the obvious vertical motions of shadow in regions A1, A2 and
B1, B2 (Figure 1a,b), respectively. The corresponding grayscale vertical velocities are shown in regions
A3 and B3 of Figure 2b. The larger depth horizontal velocities in region C3 (Figure 2c) are caused by
the loss of depth values in regions C1 and C2 (Figure 1c,d), and shown as row interval C in Figure 3c,
in which all the st,r,i

D are larger. If keypoints are detected within the whole frame according to constant
empirical motion constraints, as the 3D MoSIFT-based and MFSK methods, numerous noise points
will be falsely detected as keypoints in the larger motion regions.
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Usually, the motion of MBPs would cause changes in both grayscale and depth. But the depth
of regions with moving shadow or illumination change remain nearly unchanged; the grayscale of
regions with larger motion caused by depth value loss are mostly stable. Although clothes movements
would cause changes in grayscale and depth, the changes of these regions are generally small. So, the
grayscale and depth velocity magnitude variances are combined to extract MRoIs by eliminating noise
to the extent possible.

After normalizing St,r
G and St,r

D , the weighted combined vector St,r
G,D of the St,r

G and St,r
D is given by:

St,r
G,D =

{
st,r,i

G,D

∣∣∣st,r,i
G,D = k1 exp(st,r,i

G ) + (1− k1) exp(st,r,i
D ), 1 ≤ i ≤ M

}
, (1)

where k1 = st,r,i
D /(st,r,i

G + st,r,i
D ) is the weight of exp(st,r,i

G ), then:

st,r,i
G,D =

st,r,i
D exp(st,r,i

G ) + st,r,i
G exp(st,r,i

D )

st,r,i
G + st,r,i

D

. (2)

If the ith row of Gt or Dt contains a larger horizontal noise motion, then one of st,r,i
G or st,r,i

D is much
larger than the other. To reduce the influence of noise, a small weighted value st,r,i

G,D can be obtained
by Equations (1) and (2) where a smaller weight is assigned to the larger magnitude variance and
vice versa. But when st,r,i

G and st,r,i
D are both larger or smaller, the combined st,r,i

G,D varies similarly. The
weighted combined vector St,c

G,D of the normalized St,c
G and St,c

D is calculated according to Equation (3):

St,c
G,D =

{
st,c,j

G,D

∣∣∣∣∣st,c,j
G,D =

st,c,j
D exp(st,c,j

G ) + st,c,i
G exp(st,c,j

D )

st,c,j
G + st,c,j

D

, 1 ≤ j ≤ N

}
. (3)

The weighted combination can well suppress the larger variances caused by noise, but preserve the
large variances intervals including MBPs, as shown in Figure 3e,f. The St,r

G,D and St,c
G,D are normalized.

Accordingly, the ith row or the jth column of Gt and Dt can be treated as a part of the horizontal
or vertical MRoI, while st,r,i

G,D or st,c,j
G,D satisfies constraints (4) or (5):

st,r,i
G,D ≥ α1, 1 ≤ i ≤ M, (4)

st,c,j
G,D ≥ α2, 1 ≤ j ≤ N, (5)

where α1 and α2 are adaptively determined from St,r
G,D and St,c

G,D, respectively. α1 can be obtained
using the following steps: (1) Calculate the binarization threshold th1 of St,r

G,D according to the Otsu
algorithm [33], and the elements of St,r

G,D with values less than th1 constitute a set H1; (2) Calculate the
threshold th2 of H1 also according to the Otsu algorithm, then α1 = th2. α2 is calculated according to
the same method.

The intersections of the horizontal and the vertical MRoIs are the final MRoIs. As indicated in
Figure 4, the extracted MRoIs contain complete MBPs, while the background and the non-MBPs are
removed effectively, so the next step is focused on detecting keypoints in each MRoI.

3.2. Adaptive Keypoint Detection

For one-shot learning gesture recognition, the limited number of training samples requires that
the detected keypoints are affine invariant, besides being scale, rotation and illumination invariant.
The Harris-Affine corners are chosen as the candidate keypoints. Using the Harris-Affine corners can
potentially increase the number of keypoints, which can improve the quality of the representation of
the hand appearance and of its shape.
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(c,f) The final MRoIs.

To detect Harris-Affine corners, a Gaussian scale space is constructed first. The grayscale and
depth Gaussian scale spaces Pt

G, Pt
D are constructed using Equation (6) at time t [22]:

Pt,l
G = g(kl−1σ) ∗Gt, 1 ≤ l ≤ L, Pt,l

D = g(kl−1σ) ∗Dt, 1 ≤ l ≤ L, (6)

where L is the number of levels of scale space; Pt,l
G and Pt,l

D are the lth level of Pt
G and Pt

D, respectively;
k is a scale factor; σ is an initial smoothing parameter of the Gaussian function g(·); and ∗ is the
convolution operator. At time t + 1, the Gaussian scale spaces Pt+1

G , Pt+1
D for Gt+1 and Dt+1 are also

constructed using Equation (6). Pt
G, Pt

D, Pt+1
G and Pt+1

D together form the final Gaussian scale space.
Although the method of extracting MRoIs from Gt and Dt has been described in the section above, the
extracted MRoIs are also applicable to all the levels of scale space. Harris-Affine corners are detected
as the initial interest points in the mth MRoI of different levels of Pt,l

G and Pt,l
D (2 ≤ l ≤ L− 1). Assume

that Nm initial interest points are detected. Because MRoIs may still include parts of the background
and the torso, some noise points could be falsely detected, which need further filtering. On the one
hand, the noise points in the background can be removed based on the adaptive depth constraint.
On the other hand, the corners in the torso region need to be screened on the basis of grayscale and
depth motion information to obtain accurate keypoints.

The greyscale and depth optical flows of an initial interest point p(xl , yl) are calculated from Pt,l
G ,

Pt+1,l
G and Pt,l

D , Pt+1,l
D using the Lucas-Kanada algorithm [34]. If the depth and the optical flow of point

p satisfy the adaptive constraints, Equation (7), p is deemed as a keypoint:
dp

t ≤ θ∣∣∣vt,p
G

∣∣∣ = √(vt,r,p
G )

2
+ (vt,c,p

G )
2
≥ β1∣∣∣vt,p

D

∣∣∣ = √(vt,r,p
D )

2
+ (vt,c,p

D )
2
≥ β2

, (7)

where vt,r,p
G and vt,c,p

G are the horizontal and vertical velocities of point p, respectively, of the grayscale
image; vt,r,p

D and vt,c,p
D are the horizontal and vertical velocities of point p, respectively, of the depth

image; |vt,p
G | and |vt,p

D | are the velocity magnitudes of point p, respectively, of the grayscale and depth
image; dp

t is the depth value of point p; θ is the local depth constraint threshold adaptively determined
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in the mth MRoI; β1 and β2, are, respectively, the local grayscale and depth motion constraint thresholds
adaptively determined in the mth MRoI.

The purpose of determining θ is to adaptively search for the optimal threshold, which can
accurately distinguish between large and small depth values. The purpose of determining β1 and β2 is
to adaptively search for the optimal thresholds, which can accurately distinguish between high and
low velocities. These processes are actually binarization, so θ, β1 and β2 can be determined using the
Otsu algorithm in the mth MRoI.

The extracted MRoIs, which have different depth and speed, can obtain their own local depth
and motion constraints. For each MRoI, by its own depth and motion constraints, the initial interest
points detected in the background and the torso regions are filtered well and in the MBP regions are
retained as keypoints. Figure 5 shows the keypoints detected by 3D EMoSIFFT, 3D SMoSIFT4, 3D
SMoSIFT2, MFSK and the proposed method. All keypoints detected at different levels of grayscale
or depth scale space are mapped into the original grayscale image Gt or depth frame Dt. Red points
denote the keypoints detected from MBPs. Falsely detected keypoints are marked as green asterisks.
In the second, third and fourth columns, a large number of noise points are falsely detected in the
regions where shadow moving, depth value loss and clothes movements exist. That is because 3D
SMoSIFT4, 3D SMoSIFT2 and MFSK detect keypoints from the whole grayscale images or depth
frames according to empirical grayscale or depth motion constraints which are specified by constant
values. On the contrary, only few noise points are detected in the last column. In the first column,
there are also a small amount of noise points. That come out of 3D EMoSIFT using the grayscale
optical flow and depth-dependent constraints simultaneously to detect keypoints. Although there are
fewer noise points, the keypoints are sparse and nonuniform in the two hands and arms in Figure 5a.
When compared with the proposed method, it is observed that the keypoints of 3D EMoSIFT, 3D
SMoSIFT2/4 and MFSK methods are less dense than that of the proposed method, particularly for 3D
EMoSIFT. Dense keypoints are essential to achieving better feature descriptors to represent gestures.
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Figure 5. Keypoints detected by different spatiotemporal feature approaches. (a,f) The keypoints
detected by 3D EMoSIFT; (b,g) The keypoints detected by 3D SMoSIFT4; (c,h) The keypoints detected
by 3D SMoSIFT2; (d,i) The keypoints detected by MFSK; (e,j) The keypoints detected by the proposed
approaches. Red points denote the keypoints detected from MBPs. Falsely detected keypoints are
marked as green asterisks.

4. Feature Descriptor

The single or combined application of 3D SMoSIFT, HOG, HOF and MBH feature descriptors
achieves excellent performance in one-shot learning gesture recognition, which has been demonstrated
by some state-of-the-art approaches [1,9–11,35–37], and is also widely used for human activity
recognition [15,30,38]. In this paper, 3D SMoSIFT, HOG, HOF and MBH feature descriptors are
concatenated to represent gestures. Contrast with the 3D SMoSIFT and MFSK methods, the gradient
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space and motion space are extended to calculate these descriptors, which are useful for obtaining
more representative RGB-D appearance and motion features of gestures.

Suppose that keypoint p is detected from the lth level of Pt
G or Pt

D (i.e., Pt,l
G or Pt,l

D ). To calculate
the feature descriptors, eight local patches Γ1 − Γ8 (32× 32) around p are extracted. Γ1 and Γ2 are
extracted from Pt,l

G and Pt,l
D , respectively. Γ3 and Γ4 are extracted from Pt+1,l

G and Pt+1,l
D , respectively. Γ5,

Γ6, Γ7 and Γ8 in turn contain the grayscale horizontal, depth horizontal, grayscale vertical, and depth
vertical velocity information. The Lucas-Kanada algorithm is adopted to calculate these grayscale and
depth velocities from two pairs of local patches Γ1 − Γ2 and Γ3 − Γ4.

As indicated in Figure 6a, 3D SMoSIFT constructs the 3D gradient space with three 2D gradient
planes (xy, xz1, yz2 plane) based on Γ1 − Γ2. For a neighborhood (32 × 32) point p1(i, j) of the
keypoint p, its horizontal gradient Ix(i, j) and vertical gradient Iy(i, j) are calculated from Γ1. Dx

z1
(i, j)

and Dy
z2(i, j) are the horizontal and vertical gradients of p1 calculated from Γ2. Ix(i, j), Iy(i, j), Dx

z1
(i, j)

and Dy
z2(i, j) are given as [1]:

Ix(i, j) = Γ1(i, j + 1)− Γ1(i, j),
Iy(i, j) = Γ1(i + 1, j)− Γ1(i, j),

Dx
z1
(i, j) = Γ2(i, j + 1)− Γ2(i, j),

Dy
z2(i, j) = Γ2(i + 1, j)− Γ2(i, j).

(8)

Ix(i, j) and Iy(i, j) form plane xy; Ix(i, j) and Dx
z1
(i, j) form plane xz1; Iy(i, j) and Dy

z2(i, j) form
plane yz2.
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Figure 6. Extended gradient space and motion space. (a) 3D gradient space with xy, xz1 and yz2 planes;
(b) 3D motion space with xy, xz1 and yz2 plane; (c) z1z2 plane made of Dx

z1
(i, j) and Dy

z2 (i, j); (d) z1z2

plane made of Vx
z1
(i, j) and Vy

z2 (i, j). (a,c) form the extended gradient space; (b,d) form the extended
motion space.

Three pairs of gradient magnitude and orientation of p1 can be calculated in planes xy, xz1 and
yz2, respectively. For all the neighborhood (32× 32) points of keypoint p, we calculate their three pairs
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of gradient magnitude and orientation by the same method. Then, we generate three new patches Γxy,
Γxz1 and Γyz2 . The size of Γxy, Γxz1 and Γyz2 are 32× 32. For each point with coordinate (i, j) in the
patch Γxy, Γxz1 or Γyz2 , it has two values: the gradient magnitude and orientation which are calculated
in the plane xy, xz1 or yz2. Finally, a SIFT-like feature descriptor with 128 dimensions is calculated in
each new patch. So the dimensionality of the feature descriptor vector, calculated in the 3D gradient
space is 384 (128 × 3). On this foundation, we add a new plane z1z2, which is formed by Dx

z1
(i, j) and

Dy
z2(i, j). Using the above strategy, a new patch Γz1z2 is generated, as shown in Figure 6c. A SIFT-like

feature descriptor, calculated from Γz1z2 , also has 128 dimensions. Therefore, a 512-dimension (128× 4)
feature descriptor vector of keypoint p can be obtained from the extended gradient space with four
planes (xy, xz1, yz2 and z1z2).

Figure 6b is the 3D motion space with three 2D gradient planes (xy, xz1, yz2 plane) based on
Γ5 − Γ8. Vx(i, j), Vy(i, j), Vx

z1
(i, j) and Vy

z2(i, j) are given by Γ5(i, j), Γ7(i, j), Γ6(i, j) and Γ8(i, j) of
neighborhood point p1(i, j). Vx(i, j) and Vy(i, j) form plane xy; Vx(i, j) and Vx

z1
(i, j) form plane xz1;

Vy(i, j) and Vy
z2(i, j) form plane yz2. 3D SMoSIFT uses the same method as the feature descriptor

calculated in the 3D gradient space to get a 384-dimension descriptor vector in the 3D motion space.
The same strategy continues to be adopted to extend the 3D motion space. A new plane z1z2 is formed
by Vx

z1
(i, j) and Vy

z2(i, j), as shown in Figure 6d; so, the extended motion space includes four planes (xy,
xz1, yz2 and z1z2) as well. Thus, a feature descriptor vector with 512 (128× 4) dimensions for keypoint
p can be calculated in the extended motion space. Finally, these two feature descriptor vectors of
keypoint p are concatenated into a vector with 1024 (512+ 512) dimensions. The extended 3D SMoSIFT
feature descriptor contains more depth appearance and motion information to represent gesture.

The MFSK method calculates the HOG and HOF feature descriptors in Γ1 and Γ2 [9]. The local
patch is divided into γ× γ cells. The gradient orientations are quantized into η bins [9]. The MFSK
method calculates the grayscale and depth HOG descriptors in the xy and z1z2 planes of the extended
gradient space. They can also be calculated in the xz1 and yz2 planes. The HOG feature descriptor
vector, calculated in each plane, has γ × γ × η dimensions; thus, a HOG feature descriptor with
4× γ× γ× η dimensions is obtained. Similarly, a HOF feature descriptor can be computed from the
extended motion space. The HOF descriptor vector also has 4× γ× γ× η dimensions.

Optical flow includes horizontal and vertical velocity components; so, there are two classes of
MBH feature descriptors, i.e., MBHx and MBHy [20]. The MFSK method calculates the MBHx feature
descriptors in patches Γ5 − Γ6 and the MBHy feature descriptors in patches Γ7 − Γ8. Different from
the HOF feature descriptor, MBHx and MBHy represent the gradient of optical flow; so, they are
calculated in the extended gradient space which has four planes (xy, xz1, yz2 and z1z2). For the MBHx
feature descriptor, the extended gradient space is constructed in Γ5 and Γ6. Ix(i, j), Iy(i, j), Dx

z1
(i, j) and

Dy
z2(i, j) are calculated by Equation (8) where Γ1 and Γ2 are replaced by Γ5 and Γ6, respectively. Then,

the MBHx descriptors are separately computed in the four planes, according to the calculation strategy
of the original MBHx descriptor; so, each MBHx feature descriptor has 4× γ× γ× η dimensions,
whereas the one calculated by the MFSK method has only 2× γ× γ× η dimensions. This is because
the MFSK method calculates the MBHx descriptor in the xy and z1z2 planes only. Similarly, the MBHy
feature descriptor with 4× γ× γ× η dimensions also can be calculated in Γ7 and Γ8 by the same
method as the one used for the MBHy descriptor. The extended gradient space is also constructed by
Equation (8) where Γ7 and Γ8 replace Γ1 and Γ2, respectively.

5. Special Case

Sometimes, when the motion speed of the user is very small in several frames, the user can be
considered to be in a relatively static state at that moment. Relatively static frames do not contain
useful motion features, and the appearance features of the human body cannot be extracted using the
proposed method. When the motion speed of the user becomes larger, the last relatively static frame
turns into the first motion frame. From this frame onwards, following the proposed method, not only
the motion features of MBPs, but also the same appearance features as those of the relatively static
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frames can be extracted, so relatively static frames can be ignored. That does not result in loss of the
motion and appearance features of gesture; instead, it improves the processing efficiency.

If Gt is static relative to Gt+1, the grayscale information of the two consecutive images does
not differ much. Hence, the grayscale correlation coefficient ρt,t+1 of Gt and Gt+1 is larger than a
predetermined threshold τ, so relatively static frames can be determined using the criterion ρt,t+1 ≥ τ.

6. Experimental Results and Discussion

The proposed method are compared with the current state-of-the-art approaches using
the 2011/2012 ChaLearn One-shot-learning Gesture Dataset (CGD) [21], the Cornell Activity
Dataset-60(CAD-60) [39] and the MSRDailyActivity3D Dataset [40]. There is only one training sample
per gesture category. Each training or test sample includes two videos, i.e., a grayscale video (converted
from RGB video) and a depth video, both of which are captured by Kinect simultaneously. L = 5,
k = 1.4 and σ = 1.6 are used to construct the scale space [22,31].

To determine the appropriate dimension sizes for calculating feature descriptors, the effects of
using different settings of γ and η on feature extraction are analyzed. The MLD scores are calculated
with different values of γ ∈ [1, 2, 3, 4] and η ∈ [2, 4, 8, 16] on the development batch of the CGD (devel
01–devel 20). As shown in Table 1, the performance of the ALSTF features is relatively stable, and
the best performance is 0.1240 when γ = 3 and η = 8. The MLD score 0.1263 of γ = 2 and η = 8
is the second best. Although its recognition performance is slightly worse, its descriptor (HOG +
HOF + MBHx + MBHy) dimension 512 is less than half of that of the best one. Then we compare the
computational efficiency of calculating the feature descriptors (HOG + HOF + MBHx + MBHy) on the
two settings of γ and η. 47 pairs of videos (3926 grayscale and 3926 depth frames) are selected from
the development batch to form a test set. Experiments are performed on a PC with C++ programs,
CPU Intel® Core™ i7-4700MQ @ 2.4 GHZ and RAM 8 GB. The average computation time of γ = 3
and η = 8 is about 119.4 ms/f. It is obviously slower than the second place setting, which is about
64.7 ms/f. Taking into account both the computational efficiency and the comparison with the MFSK
approach using γ = 2 and η = 8, we adopt the trade-off with γ and η set to 2 and 8, respectively [9].
Consequently, the dimension of the HOG, HOF, MBHx or MBHy descriptors is 128 (4× 2× 2× 8).

Table 1. The analysis of using some different settings of γ and η to calculate feature descriptors. The
values in the brackets are feature descriptor (HOG + HOF + MBHx + MBHy) dimensions.

η

γ
1 4 8 16

1 0.1564 (32) 0.1484 (64) 0.1394 (128) 0.1420 (256)
2 0.1382 (128) 0.1439 (256) 0.1263 (512) 0.1343 (1024)
3 0.1393 (288) 0.1384 (576) 0.1240 (1152) 0.1413 (2304)
4 0.1337 (512) 0.1305 (1024) 0.1459 (2048) 0.1486 (4096)

To determine the relatively static frames, based on trial-and-error, τ = 0.995. The Bag of Word
(BoW) model is adopted to represent gestures, and the parameter setting is the same as the one used in
the literature [16]. The Nearest Neighbour (NN) classifier is used for classification and recognition.

6.1. Experiments on CGD Dataset

In the following experiments, four evaluation batches of CGD are used: development batch
(devel 01–devel 20), validation batch (valid 01–valid 20), final batch (round1: final 01–final 20) and final
batch (round 2: final 21–final 40). Each evaluation batch includes 20 sub-batches, and each sub-batch
has 47 pairs of RGB and depth videos (10 fps, 320× 240), which were captured by Kinect. Each pair
of videos contains one to five gestures, therefore, there are 10 training gestures (corresponding to
10 classes of gestures) and 90 test gestures in every sub-batch. Every gesture has one training sample.
For the sake of comparison, the Mean Levenshtein Distance (MLD) score [41], which was used by the
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challenge organizers, is adopted to evaluate the recognition performance. The recognition accuracy
increases as the MLD score decreases, and vice versa.

6.1.1. Evaluation of Keypoint Detection Approaches

We calculate the 3D MoSIFT, 3D EMoSIFT, 3D SMoSIFT and MFSK feature descriptors of
keypoints detected by the proposed method, and compare them respectively with the 3D MoSIFT,
3D EMoSIFT, 3D SMoSIFT and MFSK spatiotemporal feature approaches on the validation and final
(round 2) batches.

Table 2 shows that using the proposed keypoints, combined with each of the four feature
descriptors, gets higher recognition accuracy than that of the corresponding spatiotemporal feature
approach. The MLD scores decrease, on average, by 0.0313 and 0.0206 on these two batches. This is
because, on the one hand, the proposed method minimizes the noise effect on the detection of accurate
keypoints by adaptively extracting MRoIs, and on the other hand, the keypoints are detected by
determining the adaptive local depth and motion constraints in each MRoI. Because of these reasons,
the MBPs with speed differences can be covered by more spatiotemporal keypoints.

Table 2. The comparison of keypoint detection methods on the validation batch (valid 01–valid 20) and
final batch (round 2: final 21–final 40).

Approach
MLD Score

Valid 01–Valid 20 Final 01–Final 20

3D MoSIFT keypoint + 3D MoSIFT descriptor [42] 0.1824 0.1448
3D EMoSIFT keypoint + 3D EMoSIFT descriptor [6] 0.1595 0.1331
3D SMoSIFT keypoint + 3D SMoSIFT descriptor [1] 0.1740 0.1130

MFSK keypoint + MFSK descriptor [9] 0.1270 0.0925
Proposed keypoint + 3D MoSIFT descriptor 0.1412 0.1221

Proposed keypoint + 3D EMoSIFT descriptor 0.1345 0.1127
Proposed keypoint + 3D SMoSIFT descriptor 0.1294 0.0879

Proposed keypoint + MFSK descriptor 0.1125 0.0783

6.1.2. Evaluation of Feature Descriptors

To evaluate the performance of the extended feature descriptors, the MFSK method is used in
detecting the keypoints in the development batch (devel 01–devel 20) and in calculating the original
(the same as [9]) and the extended 3D SMoSIFT, HOGHOF and MBH descriptors. It can be seen from
Table 3 that, as compared with the original descriptors, the MLD scores 0.194, 0.187, and 0.181 of
the extended descriptors decreased by 0.014, 0.011 and 0.007, respectively. Compared with the 3D
SMoSIFT + HOGHOF + MBH descriptor, the accuracy of the extended 3D SMoSIFT + HOGHOF +
MBH descriptor increases by 0.016. It is an improvement of about 10.3%. This is because the extended
feature descriptors contain richer RGB-D appearance and motion information, which can represent
gestures more fully.

Table 3. The performance validation of the extended 3D SMoSIFT, HOGHOF and MBH feature
descriptors (devel 01–devel 20).

Descriptor MLD Score (Devel 01–20)

MBH [9] 0.208
HOGHOF [9] 0.198

3D SMoSIFT [9] 0.188
3D SMoSIFT + HOGHOF + MBH 0.155

Extended MBH 0.194
Extended HOGHOF 0.187

Extended 3D SMoSIFT 0.181
Extended 3D SMoSIFT + HOGHOF + MBH 0.139
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6.1.3. Comparison with Other Spatiotemporal Feature Approaches

This experiment further demonstrates the recognition performance of the proposed
spatiotemporal feature on the final batch (round 2: final 21–final 40). It is compared with Cuboid,
Harris 3D, Dense Trajectory, 3D MoSIFT, 3D EMoSIFT, 3D SMoSIFT and MFSK feature methods, and
the results are shown in Table 4. Our method achieves the lowest score 0.0737, implying that its
recognition accuracy is higher than that of the other state-of-the-art spatiotemporal feature approaches.
In Table 4, RGB denotes that feature descriptors are calculated with the RGB data; RGB-D denotes
that the RGB and depth data are simultaneously used to calculate the feature descriptors. The 3D
MoSIFT-based, MFSK and the proposed features are originally designed to use the RGB-D data, so
these features are not extracted from the RGB videos. The MLD scores of Cuboid, Harris 3D, 3D
MoSIFT and 3D EMoSIFT features are derived from [6]. The MLD scores of the 3D SMoSIFT feature
are derived from [1]. The MLD scores of Dense Trajectory and MFSK features are derived from [9].

Table 4. The performance comparison of different spatiotemporal feature approaches on the final batch
(round 2: final 21–final 40).

Spatiotemporal Feature
MLD Score (Final 21–Final 40)

RGB RGB-D

Cuboid 0.3139 0.2806
Harris 3D + HOG 0.2346 0.2268
Harris 3D + HOF 0.2906 0.2712

Harris 3D + HOGHOF 0.1886 0.1819
Dense Trajectory 0.1470 0.1365

3D MoSIFT - 0.1448
3D EMoSIFT - 0.1331
3D SMoSIFT - 0.1130

MFSK - 0.0925
Proposed feature (ALSTF) - 0.0737

Proposed keypoint + Extended MBH 0.1027
Proposed keypoint + Extended HOGHOF 0.0953

Proposed keypoint + Extended 3D SMoSIFT 0.0833

For the Cuboid, Harris 3D and Dense Trajectory approaches, the descriptors calculated from
the RGB-D data achieve higher recognition accuracy than that calculated from the RGB data alone.
It is noteworthy that all the 3D MoSIFT-based methods, based on the RGB-D data, obtain the desired
results. This, in effect, means that the use of RGB-D double channel data enhances the representation
and discrimination capability of spatiotemporal feature.

The MLD scores of the proposed method, and also of the 3D MoSIFT-based and MFSK methods,
are significantly lower than that of Cuboid or the Harris 3D feature approach. This is because the
3D MoSIFT-based, MFSK and the proposed method fuse the RGB and depth information well to
represent the appearance and motion pattern of MBPs. It is difficult to extract distinctive appearance
and motion pattern from only one RGB training sample for the Cuboid and Harris 3D approaches.
When the RGB-D data is used, the recognition accuracy of the Cuboid and Harris 3D approaches
improves, but they simply calculate the feature descriptors only in the RGB and depth channel and do
not fuse the RGB-D information well. Therefore, their MLD scores are still relatively high. The Dense
Trajectory feature approach, using only the RGB data, can get a respectable accuracy of 0.1470 which is
comparable with that of the 3D MoSIFT and 3D EMoSIFT methods. This is closely related to the dense
spatiotemporal features extracted by the Dense Trajectory approach. The dense features can overcome
the effect of some noise, besides well representing the appearance and motion of the human body.
However, the effect of noise still exists; so, even after using the RGB and depth data simultaneously,
the MLD score 0.1365 of the Dense Trajectory approach is still higher than that of the 3D SMoSIFT,
MFSK and the proposed method.
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Additionally, the proposed approach should be categorized into the multi-feature-based gesture
recognition approach. It is unfair to compare it with the single feature-based ones (i.e., Cuboid, Harris
3D, Dense Trajectory, 3D MoSIFT, 3D EMoSIFT, 3D SMoSIFT). So the MLD score of each adaptive
feature approach (i.e., the extended 3D SMoSIFT, HOGHOF or MBH) is calculated on the final batch
(round 2), as shown in the last three lines of the Table 4. The MLD scores of the extended 3D SMoSIFT,
HOGHOF and feature approaches are 0.0833, 0.0953 and 0.1027, respectively, which are lower than
the single feature-based approaches. That means the recognition accuracy of each adaptive feature
approach is also superior to the single feature-based ones.

6.1.4. Comparison with Other One-Shot Learning Gesture Recognition Approaches

The proposed method is compared using the validation batch (valid 01–valid 20) and the final
batch (round 1: final 01–final 20) with five state-of-the-art one-shot learning gesture recognition
approaches: mcHMM + LDA, HOG/HOF + DTW, 3D MoSIFT, HMM-based, motion signature analysis.
The five teams corresponding to the above five approaches have made outstanding achievements in
the ChaLearn Challenge. The experimental results are shown in Table 5.

Table 5. The performance comparison with 5 state-of-the-art one-shot learning gesture recognition
approaches on the valid and final (round 1: final 01–final 20) batches.

Approach/Team
MLD Score

Vaild 01–Valid 20 Final 01–Final 20

mcHMM + LDA/Immortals 0.2488 0.1847
HOGHOF + DTW/Turtle Tamers 0.2084 0.1702

3D MoSIFT/Joewan 0.1824 0.1680
HMM-based/Pennect 0.1797 0.1652

Motion signature analysis/Alfine 0.0995 0.0734
Proposed feature (ALSTF) 0.1069 0.1156

The recognition accuracy of the motion signature analysis approach is far higher than that of other
approaches. The team Alfine is ranked first in the two rounds of the challenge. Unfortunately, the
details of their approach are not made public. Although there is a large gap in the MLD scores between
our method and the motion signature analysis approach, the MLD scores 0.1069, 0.1156 achieved by
our method are lower than those obtained by the other published approaches. The accuracies of the
five state-of-the-art approaches are derived from [42].

mcHMM + LDA, HOG/HOF + DTW and HMM-based approaches employ HOG and HOF
feature descriptors to represent gestures. Their keypoints are detected from the whole frame, and
hence some noise points are falsely detected. The larger motion caused by noise affects the accuracy
of the HOF descriptors too seriously to represent gesture motion. In addition, the HOG and HOF
feature descriptors are not scale and rotation invariant. Using them alone to represent gesture features
is unsuitable for one-shot leaning gesture recognition. So, their MLD scores 0.2084, 0.1702 are higher
than those of the proposed method.

6.1.5. MLD Score Analysis for Sub-Batches

In all of the above experiments, the MLD scores are computed at the batch level. To further verify
the performance, the MLD scores of every sub-batch of development batch (devel 01–devel 20) are
calculated using the 3D EMoSIFT, 3D SMoSIFT, MFSK methods and our method. The results are
shown in Figure 7. On most of the sub-batches, the above methods achieve good recognition results.
The MLD scores of the four approaches, on average, are 0.1943, 0.1881, 0.1552 and 0.1263. On devel
04, devel 09 and devel 13, only one or two gestures are falsely detected by our method. Especially on
devel 17, all the test gestures are correctly recognized.
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Figure 7. The results evaluated on sub-batches devel 01–devel 20 for 3D EMoSIFT, 3D SMoSIFT, MFSK
and the proposed approaches.

The MLD scores of devel 03 and devel 19 obtained by these four feature-based methods are
higher. To find the reasons, the confusion matrices (Figure 8) are calculated using our method. Devel
03 includes eight training gestures and 92 test gestures. Devel 19 includes nine training gestures
and 91 test gestures. It reveals that the gestures, which can easily be falsely recognized, have similar
trajectories in the same sub-batch.
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Their main differences are in the hand shapes and appearances, such as those shown in Figure 9.
Feature descriptors calculated in the extended motion space contain the motion magnitude and
orientation information of keypoints. We can consider that these feature descriptors represent the
trajectory features of gestures. Since these four methods detect sparse keypoints, feature descriptors
calculated in the gradient space could not well represent the shape and appearance of the hand when
its region is large.

The overall recognition accuracy 0.1263 of the proposed method is better than that of the 3D
EMoSIFT, 3D SMoSIFT and MFSK feature methods. This is because of relatively dense and accurate
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keypoints together with the corresponding extended feature descriptors, which are helpful to represent
the motion and appearance features of gestures.

Sensors 2016, 16, 2171 17 of 23 

 

Their main differences are in the hand shapes and appearances, such as those shown in Figure 9. 
Feature descriptors calculated in the extended motion space contain the motion magnitude and 
orientation information of keypoints. We can consider that these feature descriptors represent the 
trajectory features of gestures. Since these four methods detect sparse keypoints, feature descriptors 
calculated in the gradient space could not well represent the shape and appearance of the hand when 
its region is large. 

The overall recognition accuracy 0.1263 of the proposed method is better than that of the 3D 
EMoSIFT, 3D SMoSIFT and MFSK feature methods. This is because of relatively dense and accurate 
keypoints together with the corresponding extended feature descriptors, which are helpful to 
represent the motion and appearance features of gestures. 

(a)

(b)

(c)

Figure 9. (a–c) Three gestures that have similar trajectories (color curves) but different hand shapes 
and appearances. Each column shows one stage of these gestures from the start frame to the last 
frame. 

6.1.6. Comparison of Computational Efficiency 

We compare the computational efficiency of the proposed approach and related techniques. 
Forty seven pairs of videos (3926 grayscale and 3926 depth frames) are selected from the development 
batch to form a test set. The computational efficiency of 3D EMoSIFT, 3D SMoSIFT, MFSK and our 
methods are quantitatively compared using the test data. Experiments are performed on a PC with 
C++ programs, CPU Intel® Core™ i7-4700MQ @ 2.4 GHZ and RAM 8 GB. As shown in Table 6, the 
computational efficiency of MFSK and our methods is higher than that of the 3D EMoSIFT method, 
but not as good as that of the 3D SMoSIFT method. Compared with the 3D SMoSIFT method, the 
addition of HOG, HOF and MBH feature descriptors leads to a decrease in computational cost of the 
MFSK method. Our method calculates the dense optical flow to extract MRoIs before detecting 
keypoints, and extends the dimension sizes of the feature descriptors, so it costs more time than the 
MFSK method. The unoptimized code also affects the computing efficiency of our method. If the code 
is optimized and a higher performance computer is used, our method may meet the requirement for 
real-time applications. 

Table 6. The computational efficiency of 3D EMoSIFT, 3D SMoSIFT, MFSK and the proposed feature. 

Approach Average Time (ms/f)
3D EMoSIFT 646.4 
3D SMoSIFT 45.3 

MFSK 119.1 
Proposed feature (ALSTF) 163.7 
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6.1.6. Comparison of Computational Efficiency

We compare the computational efficiency of the proposed approach and related techniques. Forty
seven pairs of videos (3926 grayscale and 3926 depth frames) are selected from the development
batch to form a test set. The computational efficiency of 3D EMoSIFT, 3D SMoSIFT, MFSK and our
methods are quantitatively compared using the test data. Experiments are performed on a PC with
C++ programs, CPU Intel® Core™ i7-4700MQ @ 2.4 GHZ and RAM 8 GB. As shown in Table 6, the
computational efficiency of MFSK and our methods is higher than that of the 3D EMoSIFT method,
but not as good as that of the 3D SMoSIFT method. Compared with the 3D SMoSIFT method, the
addition of HOG, HOF and MBH feature descriptors leads to a decrease in computational cost of
the MFSK method. Our method calculates the dense optical flow to extract MRoIs before detecting
keypoints, and extends the dimension sizes of the feature descriptors, so it costs more time than the
MFSK method. The unoptimized code also affects the computing efficiency of our method. If the code
is optimized and a higher performance computer is used, our method may meet the requirement for
real-time applications.

Table 6. The computational efficiency of 3D EMoSIFT, 3D SMoSIFT, MFSK and the proposed feature.

Approach Average Time (ms/f)

3D EMoSIFT 646.4
3D SMoSIFT 45.3

MFSK 119.1
Proposed feature (ALSTF) 163.7

6.2. Evaluation on CAD-60 Dataset

CAD-60 includes RGB and aligned depth videos (30 fps, 640 × 480). It was captured using
a Microsoft Kinect sensor in five different environments: office, kitchen, bedroom, bathroom, and
living room. Three to four common activities are identified for each location, giving a total of twelve
unique activities and several random activities [39]. The activities were performed by two males and
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two females. To test the proposed feature, we experimented with two test settings: leave-one-out cross
validation setting and one-shot learning setting.

6.2.1. Experiments in Leave-One-Out Cross Validation Setting

For leave-one-out cross validation setting, the model was trained on three of the four people,
and tested on the fourth [39]. As can be seen in Table 7, the results of our method are comparable
with those of the state-of-the-art. Our method obtains 89.7% precision, 86.1% recall and 87.86% F1
score. Although the results, on the whole, are not the best, they are comparable with other approaches.
With the approaches described in [43–45], it is easier to locate the human’s moving parts and extract
accurate features using skeleton information, so they achieve a higher accuracy than our method.
Although the Kinect can effectively provide skeleton information, there are some cases where the
skeleton cannot be extracted correctly and hence, cannot be extracted. Because our method does not
need any preprocessing, it can still work in those cases.

Table 7. The performance comparison of several state-of-the-art approaches on the CAD-60 dataset
under leave-one-out cross validation setting.

Approach
Accuracy (%)

Precision Recall F1 Score

Hierarchical MEMM [39] 67.9 55.5 61.08
3D SMoSIFT [1] 74.8 65.8 70.01

Ni et al., 2013 [46] 75.9 69.5 72.56
Guptal et al., 2013 [47] 78.1 75.4 76.73

Zhang and Tian 2012 [48] 86.0 84.0 84.99
MFSK 2016 [9] 87.1 83.8 85.42

Zhu et al., 2014 [43] 93.2 84.6 88.69
Parisi et al., 2015 [44] 91.9 90.2 91.47

DBMM [45] 91.1 91.9 91.50
Proposed feature (ALSTF) 89.7 86.1 87.86

6.2.2. Experiment in One-Shot Learning Setting

In the other one-shot learning setting, only one sample per activity is used for training and the
rest for testing. Further, random activities are ignored and only the rest of the twelve unique activities
are used to evaluate the proposed feature.

The proposed feature is compared with the MFSK feature, as shown in Figure 10. The MFSK
feature obtains the better accuracy compared with other published approaches on CGD Dataset. The
proposed feature can obtain 60.2% precision, 59.1% recall and 58.51% F1 score, which are higher than
the results of the MFSK feature: 57%, 57.6% and 53.8% [9].
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6.3. Experiments on MSRDailyActivity3D Dataset

This dataset, which consists of 16 daily activities in the living room, was captured by a Kinect
sensor. There are ten subjects and each subject performs one activity in two different poses: “sitting”
and “standing”. So, the total number of the activity samples is 320 [40]. This dataset is particularly
challenging, because many of the daily activities involve human-object interaction.

6.3.1. Experiment in Leave-One-Out Cross Validation Setting

Table 8 shows the recognition accuracies of different state-of-the-art spatiotemporal feature
approaches in leave-one-out cross validation setting. Our method achieves a recognition accuracy of
96.8%. This result is better than other approaches, considering the difficulties in this dataset.

Table 8. The comparison of different spatiotemporal features on the MSR DailyActivity3D dataset in
leave-one-out cross validation setting.

Spatiotemporal Feature Accuracy (%)

3D MoSIFT 75.9
Hon4d [49] 80.0
RGGP [50] 85.6

Fourier temporal pyramid feature + Actionlet ensemble model [40] 85.8
3D EMoSIFT 86.0
3D SMoSIFT 93.2

MFSK 95.7
Proposed feature (ALSTF) 96.8

6.3.2. Experiment in One-Shot Learning Setting

In one-shot learning setting, two samples (standing and sitting) of each activity are randomly
selected as training samples. The recognition accuracy of 3D SMoSIFT, MFSK and the proposed
methods are compared. The results are shown in Figure 11. Compared with the other two approaches,
our method has significantly improved the recognition performance, achieving 44.5% accuracy.
The accuracies have increased by 7.2% and 3.3%, respectively.
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7. Conclusions

A distinctive adaptive local spatiotemporal feature has been developed to represent appearance
and motion information of gesture for one-shot learning gesture recognition using RGB-D data.
Adaptive extraction of MRoIs by utilizing the variance of grayscale and depth optical flows can
minimize the effect of noise. MRoIs mainly include MBPs where sparse spatiotemporal features
will be extracted. In each MRoI, Harris-Affine corners that satisfy adaptive local depth constraint,
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motion of grayscale and depth constraints are treated as keypoints. These keypoints, which are affine,
scale, rotation and illumination-invariant, are accurately and sufficiently distributed in MBPs. The 3D
SMoSIFT, HOG, HOF and MBH feature descriptors are calculated in the extended grayscale and
motion spaces to represent the rich appearance and motion features of gesture.

The experimental results on the CGD dataset show that the proposed feature can outperform
other state-of-the-art spatiotemporal feature-based approaches and the published one-shot learning
approaches. It also obtains respectable results on the CAD-60 and MSRDailyActivity3D datasets under
both leave-one-out cross validation setting and one-shot learning setting.

Future work, based on the results of this paper, will be focused on accurately detecting the hand
region to obtain more hand shape and appearance features. This will be beneficial for improving
the performance in recognizing gestures which have similar trajectories but different hand shapes.
We need to study motion estimation in dynamic 3D scene [51,52], which is to enable the robot to
recognize gestures in motion. We also plan to design a real-time HRI system for practical application.
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