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Abstract: Flexible pressure sensors are essential components of electronic skins for future attractive
applications ranging from human healthcare monitoring to biomedical diagnostics, robotic skins,
and prosthetic limbs. Here we report a new kind of flexible pressure sensor. The sensors
are capacitive, and composed of two Ag wrinkled electrodes separated by a carbon nanotubes
(CNTs)/polydimethylsiloxane (PDMS) composite deformable dielectric layer. Ag wrinkled electrodes
were formed by vacuum deposition on top of pre-strained and relaxed PDMS substrates which were
treated using an O2 plasma, a surface functionalization process, and a magnetron sputtering process.
Ultimately, the developed sensor exhibits a maximum sensitivity of 19.80% kPa−1 to capacitance,
great durability over 500 cycles, and rapid mechanical responses (<200 ms). We also demonstrate that
our sensor can be used to effectively detect the location and distribution of finger pressure.
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1. Introduction

As a key component in the next generation of flexible electronics, flexible pressure sensors have
drawn more attention in human-oriented future technologies such as electronic skins [1,2], wearable
healthcare monitors [3,4], robotic skins [5], and touch interfaces [6] in recent years. In the meantime,
much effort has been made toward improving the sensitivity of a flexible pressure sensor in the range
of less than 10 kPa to realize the most of the aforementioned technologies that mimic human skin or
human tactile receptors. A variety of pressure-sensing technologies have been categorized in these
patterns, including piezoelectric [7], piezoresistive [8], and capacitive-types [9,10]. No matter which
sensory model is chosen, those with high sensitivity and flexibility and low cost are desirable in
this field.

Up to now, various nanomaterials, including nanowires [11,12], carbon nanotubes [13,14], polymer
nanofibers [15,16], metal nanoparticles [17], and graphene [18] have been used for the design of novel
flexible pressure sensors. To solve the problem of the poor sensitivity of the flexible pressure sensors,
some methods of introducing micro-or nano-structures on the surface of a thin dielectric layer (e.g.,
micro-pyramids and nano-needles [19]) have been suggested. In addition, various metals have been
used as flexible substrate for capacitive pressure sensors [20,21], including polyethylene terephthalate,
indium tin oxides, and poly(3,4-ethylenedioxythiophene). However, the proposed techniques face
similar problems: the fabrication of complicated micro/nano-structures, challenging scalability, high
cost, demanding materials, and poor adhesion between the metal materials and the substrate.

Herein, we demonstrate a simple process for the development of a flexible capacitive pressure
sensor based on ultrasensitive carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) composite
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elastomers dielectric layer and Ag wrinkled electrodes on the PDMS substrate. In order to enhance the
adhesion between the metal materials and the substrate, we have followed a combined approach to
the surface modification of the PDMS surface by both O2 plasma and sodium dodecyl sulfate (SDS)
solution. The constructed flexible pressure sensor will be characterized by its mechanical-capacitance
response with different sizes of the sensing area and applied loading values. The result shows that
the sensor presents high sensitivity, rapid mechanical response, a large working pressure range, and
great durability and repeatability. In addition, this pressure sensor will demonstrate the capability to
effectively detect the location and distribution of finger pressure. Moreover, the entire preparation and
fabrication process of such a pressure sensor is easy to fabricate and compatible with conventional
micro/nanofabrication technology, which permits scalable production at a significantly lower unit-cost.

2. Experimental

2.1. Material Preparation

For the preparation of CNTs/PDMS nanocomposites, first the hydrocarbonyl CNTs
(diameter = 10–20 nm, length = 0.5–2 µm, purity > 95%, CheapTubes Inc., Cambridge, MA, USA)
and absolute ethanol were homogenized by sonication at 30 ◦C for 2 h to obtain well-dispersed CNTs
suspension. Second, a PDMS base (Sylgard 184, Dow Corning, Midland, MI, USA), a 1:40 ratio for
curing agent to base) was added to the above mixture and blended using a glass rod for 15 min, and then
heated on the baking at 150 ◦C until almost all of the absolute ethanol was evaporated. After cooling, air
bubbles in the mixture were removed under mild vacuum for 1 h. For the preparation of the dielectric
layer, the as-prepared CNTs/PDMS mixture was transferred to a square mold (8 × 8 mm2 × 800 µm)
and moved into a vacuum chamber for 2.5 h at 70 ◦C. Finally, the cured square CNTs/PDMS composite
with a size of 8 mm × 8 mm × 800 µm was obtained.

2.2. Device Fabrication

The ultra-thick SU-8 UV photolithography process adopted in this paper is similar to the one
reported in [22,23]. A 4-inch Si wafer was cleaned using acetone, isopropyl alcohol (IPA), and deionized
water, sequentially. After dehydration at 180 ◦C for about 20 min, SU-8 100 photoresist was spin-coated
on the silicon wafer at 800 rpm for 30 s to obtain a 400 µm thick SU-8 layer. It was then soft-baked
on a well-leveled hot plate for 1 h at 65 ◦C and 4 h at 95 ◦C. In order to reduce internal stress in the
thick SU-8 layer, a soft bake process consisting of multiple ramping and dwelling steps was used.
The wafer was exposed to an EVG-610 mask aligner for a dose of 3 × 500 mJ/cm2 with a 30 s interval.
A post-bake was performed in controlled temperature slope to form a strong crosslink. Finally, the
wafer was immersed into SU-8 developer for development to obtain the SU-8 mold with a thickness of
400 µm, as in Figure 1(a1).

For the preparation of the stretchable Ag electrodes, first a PDMS prepolymer was prepared with
a Sylgard 184:curing agent weight ratio of 10:1. The PDMS prepolymer was then degassed in a vacuum
desiccator for 15 min to remove air bubbles. The degassed PDMS prepolymer was poured onto the
SU-8 mold (with a thickness of 600 µm attained by controlling the spinning speed) and degassed
again. Thirdly, it was cured at 70 ◦C for 3 h. Finally, the PDMS layer was carefully peeled off the SU-8
master mold. The PDMS layer (as in Figure 1(a3)) will be used as the substrate of the stretchable Ag
electrodes process.

As illustrated in Figure 1(a4), the PDMS film was firstly pre-strained up to 160% [24] by utilizing
a self-made clamp. Then oxygen plasma treatment was used to modify the hydrophobic PDMS with
hydrophilic functionalities. A SiOx layer and hydrophilic groups (e.g., –OH) were thus formed on
pre-strained PDMS substrates by the O2 plasma, as reported in our previous work [25]. When the strain
of PDMS exceeds a critical value, the PDMS film self-assembles to form folded grating structures after
strain relaxation [26], as in Figure 1(a5). What you should note here is that only the grating structures
on the square plates (8 × 8 mm2) was described. The PDMS films were then immersed in an SDS
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solution with concentration of 1% for 60 s to introduce –SO3
− groups at the surface of the wrinkled

PDMS grating, which can ensure a tight contact between Ag+ and PDMS through condensation
reactions of hydrophilic functionalities. Finally, as shown in Figure 1(a7), an Ag film was coated on
the PDMS films surface via a magnetron sputtering process (60 W, 8.0 × 10−3 Torr) to obtain the Ag
wrinkled electrodes based on PDMS substrate. Meanwhile, a metal mask layer was used to produce
the electrode-lead in this process. As illustrated in Figure 1(a10), the pressure sensors were fabricated
by pouring CNTs/PDMS dielectric layer at the middle of the two layers of the parallel-plate capacitor
cavity with a Ag wrinkled electrodes on the PDMS substrate and curing at 95 ◦C for 2 h to complete
hot-press bonding and obtain the capacitive pressure sensor. Finally, each electrode was connected
with copper wires using silver paste. More details can be seen in Figure 1a. A typical flexible pressure
sensor with 3 × 3 detecting units is shown in Figure 1d.

Figure 1b shows the optical image obtained using a Laser Confocal Microscope (OLS4100,
Olympus, Tokyo, Japan), the wrinkled electrode structure has sine-like periodic grating structures.
The sine-shaped grating can be stretched in the grid line direction without tearing, and consequently,
this is an important mechanism for the manufacture of electrode structures of the stretchable capacitor.
The SEM image in Figure 1c shows that the wrinkled electrode structure has a smooth surface, uniform
lines, and a period of about 1 µm.
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Figure 1. (a) Schematic diagrams of the fabrication procedure for the flexible pressure sensor: (1) SU-8
mold; (2) Polydimethylsiloxane (PDMS) casting; (3) PDMS mold; (4) Pre-strain PDMS; (5) Pre-strain
relax after O2 plasma treatment; (6) Sodium dodecyl sulfate (SDS) surface functionalization; (7) Ag
wrinkled electrodes on the PDMS substrate after Ag sputtering; (8) Carbon nanotubes (CNTs)/PDMS
elastomer dielectric layer; (9) Ag wrinkled electrodes on the PDMS substrate; (10) Flexible pressure
sensor; (b) Laser confocal image of the electrode pattern; (c) Cross-section of the fabricated electrode
from an SEM image; (d) digital image of a typical flexible pressure sensor with 3 × 3 detecting units.
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3. Results and Discussion

3.1. Material Preparation

As mentioned in [27], material sensitivity plays a vital role in optimal device performance. Herein,
CNTs were used to prepare PDMS-based composite elastomers and dielectric layer. Microscopic
analysis was used to analyze these results in Figure 2b. It can be found that CNTs have a uniform
dispersion in the PDMS matrix, and even a single CNT can be distinguished. The results also show
that the amount of CNTs increased, with its concentration increasing from 0.5%, 1%, 1.5%, and 2%,
to 5%.

Mechanical-capacitance response tests of square CNTs/PDMS composite were also investigated
to optimize their dynamic capacitance sensitivity, as seen in Figure 2a. In this detecting section, the
double-tape conductive copper has been pasted on both sides of the square CNTs/PDMS composite
film, and a shielding wire was welded to one side of it, which was used as a connecting link connected
to the external measurement device. As is shown in Figure 2a, when the concentration of CNTs is
between 0.5% and 3%, the fastest change rate of capacitance can be observed. It shows that the prepared
CNTs/PDMS composite with different CNTs concentrations exhibited large capacitance variation
under the external loading from 0 Pa to 8 kPa−1. Especially when the CNTs concentration is 2%, the
results demonstrated their ultrasensitive properties. Specifically, when the external loading is 4 kPa,
the capacitance variation is up to 18%. This value is about 1.6 times of that of square CNTs/PDMS film
(1.5%, CNTs concentration). The square CNTs/PDMS film exhibits small capacitance variation until
the CNTs concentration is up to 5%. The reason is that the distance between the CNTs particles will
decrease with increasing CNTs concentration, and once the concentration increased to a certain degree,
a connection phenomenon between particles will occur. Meanwhile, the capacitance characteristic will
be destroyed between the CNTs particles. This phenomenon demonstrates that the piezocapacitance
effect is very crucial in the capacitance variation of the compressed CNTs/PDMS film, as well as in the
sensitivity of the final device. Conclusively, a square CNTs/PDMS film with a CNTs concentration of
2% was used in the following test.
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capacitance response of square CNTs/PDMS film (8 mm × 8 mm × 0.5 mm); (b) SEM images of
CNTs/PDMS elastomers with different CNT concentrations.

3.2. Characterization of the Sensitivity

The capacitive pressure sensor was characterized by using the experimental setup shown in
Figure 3. Pressure was applied to the capacitive sensor to test its pressure sensitivity. A pressure
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controller (PACE5000, GE Sensing & Inspection Technologies, Billerica, MA, USA) was used as the
pressure application tool. To enhance the stability of the pressure sensor, a conductive copper was used
as a connecting link between pressure leads and the impedance analyzer (Agilent 4284A, Santa Clara,
CA, USA) during capacitance output testing. An external pressure ranging from 0 to 10 kPa−1 was
applied, and the capacitance of 2.17 pF at the 0 Pa pressure was defined as the base capacitance C0.
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The pressure sensitivity of the pressure sensor (S) can be defined as the slope of the relative
capacitance change–pressure (S = δ(∆C/C0)/δp; ∆C = C − C0, where C and C0 denote the capacitance
without and with applied pressure, respectively) over the external pressure loading (P) [28] as shown
in Figure 4a.
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different sensing area (size = 4 × 4 mm2, 6 × 6 mm2, and 8 × 8 mm2, respectively); (b) Capacitance–time
curve for the detection of pressure (100 Pa) according to the loading and unloading of a little stone
(0.7 g); (c) Bending stability of pressure response after 500-cycle bending test; (d) Multi-cycle tests
of dynamic loading/unloading pressure with different values; (e) Fast response and relaxation time
(<200 ms) of the sensor; (f) The curve of thermal drift of the sensor.

The results show that the capacitance variation increased with the increase of the external loading.
Meanwhile, sensitive curves with two segments were observed. This phenomenon can be explained by
the fact that the distance of the wrinkled electrode between the upper-plate and the bottom-plate of the
sensor and the sensitivity of the CNTs/PDMS elastomer dielectric layer will be rapidly increased with
the increased pressure; however, the higher pressure will generate a large deformation of the sensing
electrode membrane. In the meantime, the high shear force from the edge of the sensing membrane
cannot be ignored, leading to the deviation of the device sensitivity from a linear relationship with the
external pressure. Moreover, when the size of the sensing area increases from 4 × 4 mm2, 6 × 6 mm2, to
8 × 8 mm2, the sensitivity of the device increases from 11.9% kPa−1 to 15.06% kPa−1 and 19.80% kPa−1,
respectively. The deformation of the square membrane with edge clamped is not only up to the flexural
rigidity of the membrane itself, but is also in close relationship with the size of the square membrane.
So, the large size will bring large deformation of the sensing membrane under the same external
loading, showing a high sensitivity. As is illustrated in Figure 4b, the pressure sensor can detect the
loading and unloading of a little stone of weight 0.7 g. The pressure of the little stone was about 100 Pa.
The capacitance change of the sensor can detect the small pressure.

In addition, the pressure sensor also featured good flexibility because of the highly flexible Ag
wrinkled electrodes employed [24], and it could be bent freely in all directions at a very small bending
radius of 4 mm, as shown in the inset to Figure 4c. To investigate the reliability of the bending of the
flexible sensor, the relative capacitance change–pressure curves of the sensor were measured before
bending and after 500 bending cycles. From Figure 4c, it is seen that the relative capacitance changes
of the 500 cycles of bending-tested sensor at each pressure show no appreciable degradation compared
to the as-prepared sensor. The pressure sensor with the wrinkled-structured electrode is robust and
stable at repeated loading/unloading and bending cycles, based on the above results. Figure 4d shows
the multi-cycle tests of dynamic loading/unloading pressure with different values of the sensors.
The results show that every response profile with different loading cycles (100 Pa, 200 Pa, and 300 Pa,
respectively) is very regular, stable, and continuous. Figure 4e and insets show the response and
relaxation times of the sensor. When a pressure of 1 kPa−1 was loaded and unloaded to the sensor,
the response and relaxation times were less than 200 ms. The capacitance variation of the samples
have also been investigated against heating using the temperature test chamber with a temperature
step of 4 ◦C (range from 15 ◦C to 35 ◦C) under different external loading. As seen in Figure 4f, the
capacitance had a small change with the variation of temperature. This effect can be attributed to
the thermal expansion coefficient of the PDMS, which results in the micro-thermal deformations of
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the sensor. However, the change of shape under these environments is much smaller than external
loading. From the electrical characterizations, it can also be concluded that the fabricated sensors have
sufficient stability and can implement the pressure sensing.

3.3. Surface Topology Sensing

To demonstrate the efficiency of this device, the flexible pressure sensor with 3 × 3 detecting units
was used to map finger pressure (as shown in Figure 5a), in which each detecting unit (8 × 8 mm2) can
be regarded as a chip-type sensing component. When a finger was loaded on the top of our sensors, the
detected pressure signals were recorded and plotted as a color intensity map (Figure 5b). Each square
represents the relevant detecting unit. The color intensity corresponds to the capacitance variation of
this detecting unit under the external loading. The results show that this device can simultaneously
and precisely detect the amplitudes and local pressure distributions in consistency with the finger
pressures. This capability is the typical feature of the electronic skin.
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Figure 5. (a) Digital image of the fingers on the surface of the pressure sensor to test the finger
pressure-sensing capability; (b) Finger pressure distribution presented by capacitance variation of
every detecting unit.

4. Conclusions

In summary, a new kind of flexible pressure sensor based on Ag wrinkled electrodes and
CNTs/PDMS elastomer composite on the PDMS substrate was successfully designed and fabricated.
The sensitive mechanism was mainly based on the capacitance variation of Ag wrinkled electrodes
between the upper plates and the bottom one and the piezocapacitance effect of CNTs/PDMS elastomer
composite. The developed sensor exhibits a maximum sensitivity of 19.80% kPa−1, durability over
500 cycles, and rapid mechanical responses (<200 ms) with the defined parameters. Meanwhile,
problems such as sensor failure resulting from bending and deformation were effectively solved in
basic research owing to the proposed Ag wrinkled electrodes. Our flexible sensor demonstrated its
capability to accurately detect and convey the location and distribution of external loading. We believe
that the designs and operational principles of the devices present a feasible, facilitative, and robust
technology platform for the wide applications of various multifunctional electric devices with optimal
performances. Furthermore, these stretchable sensors are easy to fabricate and are compatible with
conventional micro/nano fabrication technology, which guarantees the consistency of each detection
unit of array sensor according to ultra-thick SU-8 UV photolithography process and is significant for
the future application of electronic skins in smart robotic systems.
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