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Abstract: In this study, a small leak detection method based on variational mode decomposition
(VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors
were decomposed using the VMD, and numerous components were obtained. According to the
probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for
noise component processing and de-noised components reconstruction. Furthermore, the ambiguity
function image was employed for analysis of the reconstructed signals. Based on the correlation
coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage
signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small
leak accurately and effectively. Moreover, the experimental results have shown that the proposed
method achieved better performances than support vector machine (SVM) and back propagation
neural network (BP) methods.

Keywords: pipeline small leakage detection; variational mode decomposition; adaptive de-noising
method; ambiguity correlation classification

1. Introduction

Due to increasing demands for natural gas, gas pipeline construction has developed rapidly.
However, for a variety of natural and artificial reasons small leakage accidents happen occasionally in
pipelines, which cause tremendous economic losses and casualties [1,2]. In order to provide for the
safe operation of pipelines, small leak detection in pipelines should be studied [3,4]. Nowadays,
pipeline leak detectors mainly determine the occurrence of leaking accidents based on delivery
pressure and flow rate changes, which are influenced by various factors, such as transporting
materials and transporting conditions [5,6]. When a leak occurs, there is an air-structure coupling
between the high-velocity escaping gas and the tube wall surrounding the leak location, thereby
causing stress waves that propagate along the body of the pipe on both sides of the leak hole.
This phenomenon is known as stress wave emission and is considered to be a general acoustic
emission. The acoustic emission (AE) technique realizes dynamic non-destruction testing according to
AE source characteristics (e.g., defect type, size and position), which has advantages of high sensitivity
and all-weather real-time detection [7–9]. Therefore, in this paper the AE technique was used for small
leak detection in natural gas pipelines.

The complicated surrounding environment, big noise disturbances and non-stationary
characteristics of collected signals in small pipeline leaks, require a signal de-noising method in
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order to extract the weak signal characteristics [10]. Traditional de-noising methods are based on
noise frequency removal by a filter. However, this method has obvious limitations for signals with
wideband noise, non-stationary signals and short-time transient signals [11,12]. The wavelet threshold
de-noising method is superior to traditional de-noising methods, but it still cannot provide an ideal
effect because of overlapping frequencies in the wavelet decomposition and the difficult selection
of an accurate threshold [13,14]. Empirical mode decomposition (EMD) can reduce vibration signal
noise, but EMD still has some theoretical problems, such as inadequate enveloping, over-enveloping,
and mode mixing [15]. Vibrational mode decomposition (VMD) is a new non-stationary signal
processing method proposed in 2014 [16]. VMD determines the frequency center and bandwidth of
decomposed components by iteratively searching for the optimal solution for the variation mode, thus
enabling an adaptive decomposition of the non-stationary signals [17]. Compared to EMD recursive
“screening”, VMD decomposes signals into non-recursion and variation modes, and controls the
convergences condition. Therefore, it can effectively eliminate the mode mixing in the decomposition
process [18,19]. With respect to the non-stationary signals collected by sensors, this paper proposes
the VMD adaptive de-noising method to process collected signals, extract noiseless component and
eliminate noise disturbances.

Conventional pattern recognition methods, like the back propagation neural network (BP) and
support vector machine (SVM), are widely applied in the non-destructive testing field. Riahi et al.
distinguished signals of different corrosion stages by a BP neural network in the acoustic emission
testing of a tank bottom [20]. Qu et al. classified three anomalous events of pipelines (leaking, digging
and walking) using SVM and realized a pipeline leak detection method [21]. Nevertheless, the BP
neural network has the disadvantages of abundant parameter settings, slow convergence and easily
getting caught in a local minimum, which restricts its diagnosis accuracy and wide applicability [22].
Compared to the BP neural network, the SVM generalization performance has been improved greatly,
but it requires artificial assignment of kernel functions and kernel function parameters, thus restricting
SVM applications significantly. Ambiguity function is a traditional time-frequency analysis tool that
has an important role in non-stationary signal analysis and processing theory. In addition, it has
been widely used in radar signal analysis and processing, optical information processing, etc. [23].
However, the ambiguity function has problems with cross terms and difficulties extracting signal
time-frequency characteristics. In order to solve these problems, the ambiguity correlation classifier
(ACC) is constructed based on the correlation coefficient, which can reduce the computational load and
avoid disturbances from cross terms, without parameter setting. ACC recognizes different signal types
according to internal relationships of eigenvalues and provides a method for small leak detection in
pipelines. In this paper, a pipeline leak detection method based on VMD and ACC is proposed for small
leakage accidents in natural gas pipelines. Firstly, the collected signals were decomposed by VMD
and the adaptive de-noising method was proposed for the de-noising process. Afterwards, noiseless
components were reconstructed and de-noising signals were obtained. Finally, according to the signal
ambiguity characteristics, ACC was proposed to train and test different types of reconstructed signals.
Experimental results demonstrated that this method can detect small pipeline leak accidents accurately.

The paper is organized as follows: in Section 2, the proposed adaptive de-noising method based on
VMD is described, and a simulation is presented in order to illustrate the proposed method. In Section 3,
the ambiguity correlation classifier for pipe leakage detection is presented. In Section 4, the small leakage
detection method is explained. The proposed leakage-detection scheme is experimentally validated,
and compared with BP and SVM methods in Section 5. Lastly, brief conclusions are given in Section 6.

2. VMD Adaptive De-Noising Method

2.1. Variational Mode Decomposition

Variational mode decomposition is a new self-adaptive signal processing method, which was
proposed by Dragomiretskiy in 2014 [16]. This method achieves self-adaptive signal decomposition
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through construction and solution of variational problems [17]. The VMD algorithm transfers the
signal decomposition process to the variational framework. Hence, the VMD decomposition process
is an optimal-solution processing for a constrained variational process. For constrained-variation
problems, the augmented Lagrange function is introduced to transform the constrained variation
problem into an unconstrained variation problem.

In order to obtain an optimal solution, the alternate direction method of multipliers (ADMM)
is used to calculate the saddle point of the augmented Lagrange function, which is the optimal
solution of the constrained-variation equation [18]. The saddle-point problem is solved by the alternate
renewal of components and Lagrange multiplier, i.e., by solving the optimal-solution problem of the
variational problem.

The VMD algorithm continuously updates the modes in the frequency domain, and finally
transforms them to the time domain through the Fourier inversion transformation. The specific
algorithm is as follows:

(1) Initialize
{

û1
k

}
,
{

ω1
k
}

,
_
λ

1
, and n = 0. λ is the Lagrange multiplier, {uk} = {u1, . . . , uk}

represents K components set after decomposition, and {ωk} = {ω1, . . . , ωk} represents the
center frequencies set of components after decomposition.

(2) n = n + 1, execute the whole loop.
(3) Execute innermost loop, k = 1 : k, uk and ωk are renewed according to ûn+1

k and ωn+1
k :

{
ûn+1

k

}
=

f̂ (ω)− ∑
i<k

ûn+1
i (ω)− ∑

i>k
ûn

i (ω) + (λ̂n(ω)/2)

1 + 2α(ω−ωn
k )

2 (1)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(2)

where α is the penalty parameter, f (t) represents the signal, and real part of {ûk(ω)} conducting
Fourier inversion is {uk(t)}.

(4) Renew λ according to
_
λ

n+1
(ω) for ω ≥ 0.

λ̂n+1(ω) = λ̂n(ω) + τ[ f̂ (ω)−∑
k

ûn+1
k (ω)] (3)

where τ is the update parameter of the Lagrangian multiplier.

(5) If ∑
k
‖ûn+1

k − ûn
k ‖

2
2/
∥∥ûn

k

∥∥2
2 ≤ ε , end the whole loop, output the k modal components uk, otherwise,

repeat steps from Equation (2) to Equation (4).

2.2. VMD-Based Noise Adaptive Removal Approach

Signals collected by sensors often contain noise interference, which weakens the leakage
characteristics. In order to extract the characteristic information accurately, components after VMD
have to be de-noised, which increases the signal-to-noise ratio (SNR). Currently, most studies divide
components after VMD into noise components and noiseless components. They eliminate noise
components and reconstruct noiseless components to realize a de-noising process [24]. Sun et al.
presented a multi-wavelet block threshold method to remove the noise components [25]. Kang et al.
effectively eliminated high-level noise by exploiting a soft–threshold with adaptively estimated positive
and negative noise levels from the time domain AE signal [14,26]. As it is well known, an amplitude
is a signal characteristic, so noise information could be gained by amplitude analysis. Probability
density function (PDF) means that the probability of some random vibration signal amplitude is within
certain range [27]. Therefore, the PDF can be used to distinguish the noise signals. Hence, an adaptive
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de-noising method was proposed in this paper by combing VMD and PDF, which was used for signals
processing and de-noising signals acquisition. Specific steps of the algorithm are:

(1) For any data {xi, i = 1, . . . , n}, calculate its PDF f̂h(x):

f̂h(x) =
1

nh

n

∑
i=1

k(
x− xi

h
) (4)

where k(•) presents the Gaussian kernels function and h is the bandwidth. To prevent overlarge
of variance and deviation h is often determined 0.15 times of the prediction confidence interval of
variable x.

(2) Calculate PDFs of the original signal x(t) and component uk(t) after VMD:

P = PDF(X(t)) (5)

Qk = PDF(uk(t)) (6)

where p and Q are PDFs, and K is the number of decomposed components.
(3) Calculate distance (L(k)) between two PDFs:

L(k) = dist(PDF(x(t)), PDF(uk(t))) (7)

L(k) = ‖P−Q‖2

=

√
+∞∫
−∞

(P(z)−Q(z))2dz
(8)

(4) Choose noiseless component according to the distance:

Nth = argmax{L(k)}
1≤k≤K

(9)

It can be concluded from Equation (9) that Nth − 1 components are noiseless components and the
rest of them are noise components.

2.3. Algorithm Simulation

In order to verify the algorithm effectiveness, a simulation signal is used. The simulation signal
was composed of frequency-modulated and amplitude-modulated signals and random white noises.
The corresponding mathematical expressions are:

x1(t) = [1 + 0.3cos(10πt)]sin[200πt + sin(15πt)] (10)

x2(t) = cos[60πt + sin(10πt)] (11)

x(t) = x1(t) + x2(t) + 0.4randn (12)

t = [0, 0.4] (13)

After VMD of the simulation signal, PDFs of decomposed components and the original signal
were calculated. VMD results are shown in Figure 1 and the distance between two PDF is shown in
Figure 2.

In Figure 2, the PDF of U3 has the largest distance of the original signal. Therefore, previous
two components were chosen as the noiseless components. According to Figure 1, two previous
components are noiseless components and the third component is the noise component. The obtained
results show that the VMD adaptive de-noising method can eliminate noise interference effectively
and obtain noiseless signals.
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Figure 1. VMD results of the simulated signal.
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Figure 2. PDF distance between U components and the original signal.

Mean error square (MES) and SNR are often used to evaluate de-noising effect [28]. EMD and
VMD were used for de-nosing process, and obtained results are listed in Table 1.

Table 1. MSE and SNR of simulated signals.

Method Simulated Signals MSE SNR

Before de-noising 0.0463 13.4451
VMD After de-noising 0.004 24.0253
EMD After de-noising 0.0234 17.5643

A higher SNR and a smaller MES after de-noised signal indicate a better de-noising effect. As it
can be seen in Table 1, EMD has poor de-noising effects due to mode mixing, while VMD achieves
good de-noising effects since it can decompose non-stationary signals effectively and acquire the
correct components.
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3. Ambiguity Correlation Classifier

3.1. Ambiguity Correlation Theory

As a non-stationary signal analysis method, the ambiguity function has been widely used due to
its advantages in delay-frequency shift plane analysis [23]. Like Cohen’s time-frequency distribution,
the ambiguity function suffers from a serious cross terms interference in signal analysis and has a
heavy computational load. Interference disturbs effective analysis and signal explanation, as well
as component parameters extractions, thus causing difficult extraction of the time-frequency signal
characteristics. Hence, there must be an internal relationship between eigenvalues of different signal
types. Such an internal relationship varies significantly among different types. Correlation coefficients
can be used as the internal relationship measure. Different absolute values of correlation coefficients
indicate different correlation degrees between signal eigenvalues [29]. According to that, the ambiguity
correlation method was proposed in order to avoid interference from cross terms and to reduce the
computation load of a time-frequency analysis. Specific steps are as follows:

(1) Calculate ambiguity function of signal x(t):

A(τ, θ) =
1

2π

∫
rx(t, τ)ejθtdt (14)

rx(t, τ) = x(t + τ/2)x ∗ (t− τ/2) (15)

where rx(t, τ) is the autocorrelation function of signals, A(τ, θ) is the ambiguity function of
signal x(t).

(2) Calculate the correlation function of ambiguity function images of signals x(t) and y(t):

Rxy(τ, θ) = max
τ0,θ0

∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣∣ (16)

In Equation (16), Rxy(τ, θ) is the correlation function.
(3) Calculate normalized correlation coefficient ρxy(τ, θ):

ρxy(τ, θ) =

max
τ0,θ0

∣∣∣∫ ∞
−∞

∫ ∞
−∞ Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣
[
∫ ∞
−∞

∫ ∞
−∞ A2

x(τ, θ)dτdθ
∫ ∞
−∞

∫ ∞
−∞ A2

y(τ, θ)dτdθ]
1
2

(17)

(4) Select correlation coefficient when τ = 0 or θ = 0:

ρxy(0, θ) =

max
τ0,θ0

∣∣∣∫ ∞
−∞

∫ ∞
−∞ Ax(0, θ)Ay(0− τ0, θ − θ0)dτdθ

∣∣∣
[
∫ ∞
−∞

∫ ∞
−∞ A2

x(0, θ)dτdθ
∫ ∞
−∞

∫ ∞
−∞ A2

y(0, θ)dτdθ]
1
2

(18)

ρxy(τ, 0) =
max
τ0,θ0

∣∣∣∫ ∞
−∞

∫ ∞
−∞ Ax(τ, 0)Ay(τ − τ0, 0− θ0)dτdθ

∣∣∣
[
∫ ∞
−∞

∫ ∞
−∞ A2

x(τ, 0)dτdθ
∫ ∞
−∞

∫ ∞
−∞ A2

y(τ, 0)dτdθ]
1
2

(19)

(5) Calculate the ambiguity correlation coefficient ρ:

ρ =

√
ρ2

xy(0, θ) + ρ2
xy(τ, 0)

2
(20)
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Providing the reliable theoretical basis and method to build the identification system based on the
ambiguity correlation coefficient of leakage signals.

3.2. Basic Principle of Classifier

The ambiguity correlation classifier (ACC) represents a one-to-one classifier. ACC has advantages
of low computational load and no parameter setting. Firstly, two types of signals were processed by
the VMD-based adaptive de-noising method in order to get the de-noised signals. Ambiguity functions
of de-noised signals A and B, as well as the test signal C, were calculated. The correlation coefficient,
I, between the ambiguity function of A and the ambiguity function of C was calculated. Similarly,
the correlation coefficient, II, between the ambiguity function of B and the ambiguity function of C
was calculated. Afterwards, I and II were compared. In the case that I > II, then C is equal to A;
otherwise, C is equal to B. If A is a de-noised signal of a 1 mm leak, B is de-the noised signal of the
non-leak situation, and C is an unknown signal. Next they are input into ACC to identify, and C can be
determined to be a 1 mm leakage signal or no leakage signal. If C is neither a 1 mm leakage signal nor
a non-leak signal, then C continues to be classified as described above. The principle of the ambiguity
correlation classifier is shown in Figure 3.
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4. Small Leak Detection Method

The small leak detection method based on VMD and ACC can eliminate noise interference, extract
characteristic components from weak and input reconstructed signals into the classifier in order to
realize a small leak detection. The flowchart of this detection method is shown in Figure 4. Specific
steps are as follows:

(1) Collect experimental data by sensors and get series of U components of collected data from VMD.
(2) Select noiseless components according to VMD adaptive de-noising method.
(3) Reconstruct chosen noiseless components and input using the ACC.
(4) Collect several groups of data for training and testing, and realize the pipeline small

leak detection.
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5. Experimental Results and Analysis

5.1. Experimental Apparatus and Instrumentations

The experimental setup was composed of sensors, data acquisition cards, bearing pipelines
and computer. The pipe was a seamless steel pipe with an outer diameter of 108 mm and wall
thickness of 4.5 mm; and the leak testing was implemented based on 1 mm and 2 mm holes. Under
the test pressure of 1.0–2.0 MPa, pipeline deflation was conducted at a flow rate of 3.1 m/s through
internal decompression. The sensitivities of the YD-82 piezoelectric acceleration transducers used
were 167.2 pC/ms2 165.8 pC/ms2, 160.4 pC/ms2, 189 pC/ms2 and the frequency response is from
0 KHz to 10 KHz. The output was converted to a voltage signal by the charge amplifier. Experimental
data were collected by a NI USB-6259 data acquisition card at a rate of 5 Ks/s. The experimental setup
is shown in Figure 5.
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Using the experimental platform, 1 mm leak signals, 2 mm leak signals and the signals under
normal conditions (non-leak) were collected, and they are presented in Figure 6.
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5.2. Acoustic Emission Signal De-Noising

The signal collected by one sensor under 1 mm leak was taken as an example. The obtained VMD
results of that signal are shown in Figure 7.
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Moreover, the signal components after VMD were processed by VMD adaptive de-noising method.
The distances between the probability density function of the original signal and the probability density
function of components were calculated (Figure 8).
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Figure 8. PDF distance between U components and the 1 mm leak signal.

As it can be seen in Figure 8, the probability density function of U5 has the largest distance of the
original signal. Therefore, the first four components were chosen as the noiseless components and the
remaining three were chosen as the noise components. The first four components were reconstructed,
forming a reconstruction signal. Ambiguity function of the reconstructed signal was calculated and
the result is presented in Figure 9.
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Figure 9. Ambiguity function images of de-noised signals.

In Figure 9, the ambiguity functions of three signals have similar delays and frequency shifts,
so they could not be distinguished effectively. As a result, the ACC was proposed for extraction of
these three signals’ characteristics and realization of small leak detection in pipelines.
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5.3. Small Leakage Detection with ACC

For comparison purposes, mean values and standard deviations (SD) of the ambiguity correlation
coefficients of de-noised signals based on VMD and EMD were calculated, and the obtained values are
presented in Tables 2 and 3, respectively.

Table 2. Mean values and SD of ambiguity correlation coefficients using EMD method.

Data Group
1# 2# 3#

1 mm Leak Non-Leak 2 mm Leak

1 mm leak
mean value 0.4074 0.3664 0.3042

SD 0.0530 0.0629 0.0969

Non-leak
mean value 0.3664 0.2415 0.3650

SD 0.0629 0.0340 0.0534

2 mm leak
mean value 0.3042 0.3650 0.2789

SD 0.0969 0.0534 0.0452

Table 3. Mean values and SD of ambiguity correlation coefficients using VMD method.

Data Group
1# 2# 3#

1 mm Leak Non-Leak 2 mm Leak

1 mm leak
mean value 0.7447 0.3134 0.1025

SD 0.0717 0.1164 0.0969

Non-leak
mean value 0.3134 0.8407 0.0685

SD 0.1164 0.0240 0.0534

2 mm leak
mean value 0.1025 0.0685 0.2253

SD 0.0969 0.0534 0.0452

According to results presented in Table 2, EMD could not acquire accurate components and
eliminate noise interference due to the mode-mixing effect, resulting in a poor differentiation of mean
values and SD of the ambiguity correlation coefficient. Thus, it is impossible to recognize different
pipeline conditions. On the other hand, the VMD adaptive de-noising method can extract natural
modes of vibration and separate noise components accurately. Therefore, the mean values and SD
of the ambiguity correlation coefficients could be distinguished clearly. Further comparison was
obtained by normal distribution curves of the correlation coefficients’ mean values and SD, presented
in Tables 2 and 3, and the obtained results are shown in Figures 10 and 11, respectively.
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Figure 11. Normal distribution curves based on VMD: (a) for 1# case; (b) for 2# case; and (c) for 3# case.

Comparing the results presented in Figures 10 and 11, it can be concluded that the normal
distribution curves can intuitively present the correlation degree and recognition degree of the three
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signals in the ambiguity domain. Using the EMD-based de-noising method, the normal distribution
curves could not be distinguished clearly because of the EMD mode mixing phenomenon, while the
VMD can eliminate the mode mixing effectively in the decomposition process, thus, the VMD-based
de-nosing method can distinguish the three states of the signals and the normal distribution curves.

Thirty groups of data were chosen for training and testing, of which twenty groups were used for
training, and ten groups were used for testing. Three classifiers, SVM, BP and ambiguity correlation
classifier, were used for data training and testing. Test results are shown in Figure 12.
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Figure 12. Classification of test figure: (a) obtained by ACC; (b) obtained by BP; and (c) obtained
by SVM.

In Figure 12, the training times of SVM, BP and ambiguity correlation classifier are 15 s,
25 s and 6 s, respectively. Compared to SVM and BP, the ambiguity correlation classifier achieves
better classification effect and requires a shorter training time, which is caused by the absence of
parameter setting and the small computational load. Test accuracies of these three classifiers for
60 groups of data, wherein 40 were used for training and 20 were used for testing, are presented in
Figure 13.
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Figure 13. Test accuracy of classifiers: (a) for 1 mm leak; (b) for non-leak; and (c) for 2 mm leak.

As it can be seen in Figure 13, all three classifiers can distinguish the different conditions of
pipelines, but compared to BP and SVM, the proposed classifier achieves the highest mean recognition
rate and realizes the best small leak detection in pipelines, because of its small computational load and
no parameter setting.

5.4. Discussion

The experimental results indicate that the proposed method can effectively detect small leaks
in noisy environments. This improvement is due to the proposed VMD adaptive de-noising and
ACC approach. Compared to the recursive “screening” mode of the EMD, VMD can non-recursively
decompose a multi-component signals into a number of components and control the decomposition
convergence conditions reasonably. Hence, the VMD adaptive de-noised method can effectively
eliminate the mode-mixing phenomenon with good noise immunity. Due to its no parameter setting
and small computational load, the ACC method achieves better classification effects and shorter
training times than the BP or SVM methods. Despite the advantages offered by the proposed scheme for
effectively detecting small leaks in natural gas pipelines, it has however certain limitations. The penalty
parameters and number of components in the VMD decomposition process need to be prioritized,
hence, our future research will focus on investigating how to adaptively set the parameters of the
VMD method.
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6. Conclusions

Due to the complicated surrounding environment, large noise disturbances, and weak signals
during the small leakage of pipelines, pipeline-leakage signals have unobvious characteristics. A small
leak detection method based on VMD and ACC is proposed in this paper. For the non-stationary signals
with strong noise, the VMD adaptive de-noising method is proposed according to the signal probability
density function in order to process the signal and to acquire the noiseless components. Noiseless
components were then reconstructed successfully, forming the de-noised signals. Furthermore,
in order to overcome the problems of traditional classifiers, such as heavy computational load and
abundant parameter settings, the ambiguity correlation classifier is proposed for training and testing
of the reconstructed signals. According to obtained experimental results, the proposed method can
detect small pipeline leakages and achieve a higher mean detection rate than the classical SVM and
BP methods.
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