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Abstract: Localization of machine type communication (MTC) devices is essential for various types
of location-based applications. In this paper, we investigate a distributed localization problem in
noisy networks, where an estimated position of blind MTC machines (BMs) is obtained by using
noisy measurements of distance between BM and anchor machines (AMs). We allow positioned BMs
also to work as anchors that are referred to as virtual AMs (VAMs) in this paper. VAMs usually have
greater position errors than (original) AMs, and, if used as anchors, the error propagates through the
whole network. However, VAMs are necessary, especially when many BMs are distributed in a large
area with an insufficient number of AMs. To overcome the error propagation, we propose a greedy
successive anchorization process (GSAP). A round of GSAP consists of consecutive two steps. In the
first step, a greedy selection of anchors among AMs and VAMs is done by which GSAP considers
only those three anchors that possibly pertain to the localization accuracy. In the second step, each
BM that can select three anchors in its neighbor determines its location with a proposed distributed
localization algorithm. Iterative rounds of GSAP terminate when every BM in the network finds its
location. To examine the performance of GSAP, a root mean square error (RMSE) metric is used and
the corresponding Cramér–Rao lower bound (CRLB) is provided. By numerical investigation, RMSE
performance of GSAP is shown to be better than existing localization methods with and without an
anchor selection method and mostly close to the CRLB.

Keywords: distributed localization; successive anchorization; positioning error; Cramér–Rao
lower bound

1. Introduction

Machine type communication (MTC) services with location-based information are becoming
popular such as combat zone surveillance, health monitoring, fire detection and wild habitat
monitoring [1–3]. MTC devices (in this paper, we use the term “devices” and “machines”
interchangeably) with which sensors are equipped as a basic component are usually distributed
randomly, accessed from far-away and configured automatically. Thus, location information in MTC
services is crucial. One way to get position information is to fit each MTC device with global positioning
system (GPS) that enables it to get its position by interacting with GPS satellites. However, this method
may not be cost-effective for large scale implementation and is not even possible for indoor or space
applications, where MTC devices cannot receive GPS signals [4].

When GPS is not available, each MTC device will estimate its location based on its relative
distances to some of the other MTC devices that already have acquired their positions, which are
so-called anchor machines (AMs). Localization algorithms that are used to determine the unknown
location of devices are computationally complicated in radar and sonar systems [5,6]. However,
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MTC devices are usually small, and, hence, the localization algorithms should be simple and
distributed [7–11].

In [7], a distributed and range-free centroid localization (CL) method is proposed on the
assumption that every blind machine (BM that needs to determine its location) should be in the
neighbor of three or more AMs. The CL is extremely simple but a little bit inaccurate and requires
uniformly distributed AMs near BM. Weighted centroid localization (WCL) improves CL by giving
different weights to AMs on the basis of noisy distance information between BM and AMs [8].
WCL gives more importance to the nearer AMs. However, giving how much or finding an optimal
weight is the underlying difficulty. In [9], computing an optimal weight in WCL is considered with
received signal strength (RSS), which is effective only when AMs are densely distributed.

In practice, it is not easy for blind MTC devices to hear from a sufficient number of AMs since
the range of MTC communication is usually limited due to the battery capacity. To overcome this
problem, we investigate a method of using BMs that have determined their positions as new anchors,
referred to as virtual AMs (VAMs) in this paper. Compared with ordinary (original) AMs, VAMs could
have relatively high position errors but if no AM is found (for example, in indoor environments),
using VAMs to determine the location BM is acceptable. Though AM itself can have position error,
most of the works in this field have assumed that the location information is perfectly accurate [12,13].
However, in a few works [14,15], the position error in AMs is modeled as Gaussian noise and a gradual
refinement of the localization error is also proposed [16]. In this paper, we assume that every VAM
estimates its position error during its localization process and broadcasts the estimation on its beacon.
The position error in VAMs is due to the noise in measurement as well as the error in the location
of AMs used in determining its location. In the localization method proposed in this paper, BM can
change into and be used as VAM after determining its position, which is referred to as a successive
anchorization process (SAP). With SAP, the localization errors propagate through the whole network.
One of the objectives of this paper is to propose an efficient localization method that minimizes the
localization errors over the whole MTC network. To achieve this goal, every BM chooses VAMs
(usually three VAMs are enough) with the smallest localization error in the proposed algorithm, which
is referred to as a greedy SAP (GSAP).

In order to speed up the computation for GSAP through the network, each BM takes a linearization
of its non-linear distance error-function by using the first-order Taylor expansion. The proposed GSAP
is essentially distributed in a sense that each BM determines its location only with the location
information of AMs or VAMs from its neighbour, starting from an arbitrary initial position. To have
fast convergence of distributed GSAP, a decentralized method of finding a good initial position is
provided, which is based on a multidimensional scaling (MDS) technique [17]. Using a good initial
position is, however, optional in implementing GSAP. We numerically investigate the effect of using
this good initial position in GSAP. The Cramér–Rao lower bound (CRLB) of the overall error is also
investigated and the performance of the proposed method is numerically compared with CRLB and
other existing methods such as CL, WCL, LLS (linear least square) [10] and the subspace technique [11].
The results show that the proposed GSAP significantly improves the BM position accuracy, and it can
also attain the performance mostly close to CRLB.

The rest of the paper is organized as follows. In Section 2, a system model used in this paper is
provided. Section 3 provides GSAP that consists of a greedy anchor selection, a linearized iterative
localization algorithm and (optional) initial position search. In Section 4, CRLB of the overall position
error is investigated. In Section 5, numerical investigation is provided for evaluating the proposed
GSAP, for which the root mean square error (RMSE) results of existing localization methods are
compared with that of GSAP. Section 6 concludes the paper. The main notations used in this paper are
listed in Table 1.
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Table 1. Symbols and notations. AMs: anchor machines; BMs: blind machines; VAMs: virtual
anchor machines.

Symbol Description

N Total number of AMs and BMs
n Total number of BMs at the start of localization process
m Total number of AMs
nv Total number of VAMs

nb = n− nv Total number of BMs
a = m + nv Total number of anchors (i.e., AMs plus VAMs)

φ Actual position vector of machines
φb Actual position vector of BMs
φv Actual position vector of VAMs
φ̂v Estimated position of VAMs
SA Set of AMs
SV Set of VAMs
SU Set of BMs
SS Set of selected anchors who will participate in localization
ϑp Expected position error (scalar)
ϑr Expected error in measurement (scalar)
P Transmitted power (scalar)
ς Power loss in dB (scalar)
η RSS noise (scalar)
β Distance-power gradient (scalar)
d Actual distance (scalar)
d̃ Observed range (scalar)
ζ Weight for anchors based on ϑp and ϑr which is used in anchor selection (scalar)
p Observed path loss in dB (vector)
Π Jacobian matrix
φ̃ Initial position vector for BMs
R Wieghting matrix used in weighted least square formulation
φ̃∗ Final estimated position vector for BMs
D Proximity information matrix
Ω Double centered matrix
$ Actual position vector of all BMs

Qφv
Covariance matrix for error in φ̂v which we assume a white Gaussian process

b Bias of an estimator (vector)
f Covariance matrix of an estimator
Ψ Mean square error matrix
E Expectation operator
Γ Fisher information matrix

XD(.) Stress function used in multidimensional scaling
L(.) Log-likelihood function
g(.) Probability density function
(.)−1 Inverse of a matrix
(.)T Transpose of a vector or matrix
Tr(.) Trace of a matrix

2. System Model

We consider an MTC network that consists of n BMs and m AMs or VAMs in a two-dimensional
space (this work also can be straightforwardly applied for localization in a three-dimensional space).
Let N = n + m and φi = [xi, yi]

T(∈ R2) denote the actual coordinates of machine i, and let SA, SV and
SU be index sets of AMs, VAMs and BMs, respectively. We assume that each AM or VAM knows its
position as well as its positioning error ϑ

p
j (j ∈ SA ∪ SV). It is reasonable to assume that the positioning

error of AM is less than or at least equal to that of VAM.
In the MTC environments, each machine is capable of communication with the other machines

if they are in the communication range. We use RSS measurement to determine unknown positions
of BMs. We assume that each AM and VAM broadcasts reference signals as well as its coordinates
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with the positioning error (and sometimes with a value of its transmit power). BMs that can hear
the information from three or more anchors first select the anchor nodes and then run a localization
algorithm to be provided below. It is noted that the localization algorithm is distributed in nature,
that is, each BM independently determines its position without cooperation by the other BMs.

We assume that transmit power (denoted by Pj, j ∈ SV ∪ SA) for the broadcast information is
known to BMs. Let Pij denote RSS measurement at BM i from anchor j. Then, we can use a path loss
model in [18]:

Pij = Pj + ςij(φ) + ηij, i ∈ SU , j ∈ SV ∪ SA, (1)

where ςij(φ) = −10β log dij, β is a distance–power gradient (i.e., a path loss exponent), dij is the actual
distance between machines i and j, and ηij is noisy power due to measurement errors at BM i and
unmodeled variability in the fading channel between machines i and j (for example, shadowing).
We assume that ηijs are independently distributed zero-mean Gaussian random variables with standard
deviation σij (dB). We also assume that σij is known to BMs. From the RSS measurements, each BM
can compute the expected error in measurement denoted by ϑr

ij (i ∈ SU , j ∈ SV ∪ SA). If BM i receives

L RSS samples from anchor j, ϑr
ij = 10σij/10/L since noisy power is assumed to be independent.

3. Greedy Successive Anchorization Process (GSAP)

3.1. Anchor Selection

3.1.1. Greedy Selection

BM i selects anchors to be used in the localization process by comparing

ζij =
1

(ϑ
p
j )
−1 + (ϑr

ij)
−1

, (2)

where j is an index of anchors in its communication range, from which the BM successfully receives the
broadcast information. Since three anchors are enough to determine the location of BM in two-space,
each BM selects anchors up to smallest ζij, which is referred to as greedy selection in this paper.

3.1.2. Removing Collinear Anchors

If anchors selected from Section 3.1.1 are collinear, high localization error is caused mostly due to
vertex flipping instead of the position or the measurement error [19,20]. In order to overcome such
a problem, we test a sin2 γ > dmin, where a and γ are the shortest side and the smallest angle of the
triangle built by the greedy-selected three anchors, and dmin is a predetermined constant. This test
is provided in [19] as a method of constructing a so-called robust triangle. If the three anchors fail to
pass the test, we select another anchor that has the next smallest ζij and do the same test for every
combination of the selected anchors. If the test fails for all the anchors whose information is available
at a BM, the BM detours the localization procedure for the next round in which more anchors are
possibly available since new VAMs can be added to the list of anchors.

3.1.3. Other Anchor Selection Methods in the Literature

Though all of the existing anchor selection methods do not consider the position error at an
anchor, there are some methods in the literature. In CL [7], BM selects all those anchors that are
one-hop neighbors of that BM. In [21], in order to increase the accuracy, a convex-hull anchor selection
method is proposed by considering the geometry of anchors, where only those anchors that have
the greatest distance from each other are selected. When applying the convex-hull method with RSS
measurement, possibly large measurement error is problematic since the increasing distance between
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anchors usually increases the distance between an anchor and BM, and thus the error [22]. The work
of [21] has proposed an advanced convex-hull method where BM selects those AMs that are close to
the ordinary convex-hull with the highest virtual location accuracy. The main drawback of this method
is that it assumes highly dense anchors. We will numerically compare the performance of proposed
greedy selection with that of the existing methods in Section 5.

3.2. Iterative Localization Algorithm

Let SS be a set of selected anchors and pi = {pij = Pij − Pj, j ∈ SS} be a column vector of
augmented RSS measurement (or observed path loss) at BM i from the selected anchors. BM i (i ∈ SU)

determines (or estimates) its position φ̂i by

φ̂i = arg min Θ(φi), (3)

where

Θ(φi) = [pi − ς(φi)]
T [pi − ς(φi)]. (4)

Furthermore, ς(φi) is a column vector, the element of which is

ςj(φi) = −5β[log‖φi −φj‖
2], j ∈ SS. (5)

A general solution of Equations (3) and (4) can be obtained through a nonlinear optimization
method [23–25], which iterates to get the optimal value in the feasible region. However, its
computational complexity is usually very high [26]. In order to make the computational cost low [27],
we linearize ς(φi) by using the first-order Taylor series expansion [28]

ς(φi) ≈ ς(φ̃i) + Π(φi − φ̃i), (6)

where

Π = −10β


cos αi1
‖φi−φ1‖

∣∣∣∣
φi=φ̃i

sin αi1
‖φi−φ1‖

∣∣∣∣
φi=φ̃i

...
...

cos αij
‖φi−φj‖

∣∣∣∣
φi=φ̃i

sin αij
‖φi−φj‖

∣∣∣∣
φi=φ̃i

 (7)

and φ̃i is any initially estimated position of BM i (finding a good φ̃i will be shortly discussed in
Section 3.3). In the above expression and in the sequel, we assume that 1 to j are indexes of the selected
anchors for notational brevity. Putting Equation (6) into Equation (4), we have

Θ(φi) ≈ [pi − ς(φ̃i)−Π(φi − φ̃i)]
T [pi − ς(φ̃i)−Π(φi − φ̃i)]. (8)

In [29], it is shown that the localization accuracy can be increased by inserting a symmetric
weighting matrix R into Equation (8), and the resulting equation is defined as weighted least square
(WLS), which has the form

Θ(WLS)(φi) ≈ [pi − ς(φ̃i)−Π(φi − φ̃i)]
TR[pi − ς(φ̃i)−Π(φi − φ̃i)]. (9)

Using Equation (9), an approximate solution of Equation (3) is obtained as

φ̃
∗
i = (ΠTRΠ)−1ΠTR

[
pi − ς(φ̃i) + Πφ̃i

]
. (10)
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As a weighting matrix, we use R = diag
[
ζi1, ζi2, · · · , ζij

]
, where ζijs are the metrics used in

anchor selection in this paper.
The proposed method stops with a solution φ̃

∗
i if ‖Θ(WLS)

(
φ̃
∗
i
)
−Θ(WLS)

(
φ̃i
)
‖ < δ for a given

positive termination threshold δ. Otherwise, we update the initial estimate as φ̃i = φ̃
∗
i and find

the next solution in Equation (10) again. At the termination, BM i can estimate its position error by
ϑp = 1/Tr((ΠTRΠ)−1), which will be broadcast by BM i as a VAM after finding its position.

3.3. Initial Location Estimation

If BM has received information from a sufficient number of AMs or VAMs and starts to determine
its location, it needs a certain initial estimate of its location when the linearization provided in
Equation (6) is evoked. Though the proposed algorithm in Section 3.2 works well with any arbitrary
initial point, we describe a method of finding a good initial point in the following and will show that it
improves the convergence speed significantly in Section 5. The following method is based on MDS
in [17] and implemented in a distributed way.

Let N − 1 be the number of AMs or VAMs, the signals from which BM can hear, and let index 1
denote the current BM that wants to have its initial location. In addition, 2, 3, · · · , N indicate the AMs
and the VAMs for notational simplicity. Let d̃ij be the distance estimate between machine i and j. Since
BM 1 can measure RSS from the anchors, we can have, from Equation (1),

d̃1j ≈ 10
Pj−P1j

10β , for j = 2, 3, · · · , N. (11)

Since the BM can see the position of anchors in the broadcast information, letting (x̃j, ỹj) be the
broadcast coordinate from anchor j, it can estimate the distance between those anchors by

d̃ij =
[
(x̃i − x̃j)

2 + (ỹi − ỹj)
2
]0.5

for i, j = 2, 3, · · · , N and i 6= j. (12)

If we further let d̃jj = 0, then we can construct a so-called proximity information matrix (PIM)
D=[D]ij = d̃2

ij. It is noted that D is an N × N square symmetric matrix.
Using PIM D, an objective of MDS is to find relative coordinates Φ̃ of the machines in the

hearing range of BM 1, such that dij(Φ̃) = ‖φ̃i − φ̃j‖matches d̃ij as well as possible. For this purpose,
an optimization problem to be solved is

Φ̃ = arg min
Φ
XD(Φ), (13)

where

XD(Φ) =

√
N
∑

i=1
∑
j>i

(d̃ij − dij(Φ̃))2

N
∑

i=1
∑
j>i

d̃ij

(14)

is a so-called stress function provided in [30]. A solution is obtained by decomposing a double centered

matrix Ω so as to have Ω
∆
= Φ̃

T
Φ̃ [31], where each element of Ω is constructed by

ωij = −0.5

(
1

N2

N
∑

i=1

N
∑

j=1
d̃2

ij −
1
N

N
∑

i=1
d̃2

ij + d̃2
ij −

1
N

N
∑

j=1
d̃2

ij

)
. (15)
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It is noted that the rank of Ω is 2. Let Λ = diag(λ1, λ2, · · · , λN) be a diagonal matrix of the
eigenvalue λjs of Ω. In addition, let C = [c1, c2, ..., cN ] be a matrix of the eigenvectors cj corresponding
to λj. Then, taking eigendecomposition of Ω gives Ω = CΛCT , and we have a solution

Φ̃ = CΛ0.5 = {φ̃j}
N
j=1 (16)

and can use φ̃1 as an initial position of BM.

4. Cramér–Rao Lower Bound

In this section, we derive a CRLB of the localization error for multiple nb BMs that commonly
use m AMs and nv VAMs. Let φb denote the position vector of BMs. We assume that AMs have their
locations without position error and without loss of generality. Let us denote actual and estimated
positions of VAMs by φv and φ̂v, respectively. The errors in measurement p as well as position
φ̂v are Gaussian-distributed and mutually independent. The log-likelihood function of data vector

x =
[
pT , φ̂

T
v

]T
is then

L(x; $) = ln g(p; $) + ln g(φ̂v; $)

= K− 0.5

{
a

∑
j=1

nb

∑
i=nv+1

1
σ2

ij
(pij − ςij(φ))2 + (φ̂v −φv)

TQ−1
φv

(φ̂v −φv)

}
,

(17)

where $ =
[
φT

b , φT
v
]T represents the unknown vector, K is a constant that is independent of the

unknowns, and Qφv
is a covariance matrix of position errors in φ̂v.

Let $̂ = $̂(x) denote a position estimator. Then, the error performance can be determined
by its bias b($̂) = E[$̂]− $, its covariance f($̂) = E

[
($̂−E[$̂])($̂−E[$̂])T] and its mean square

error Ψ($̂) = f($̂) + b($̂)bT($̂) [28,32]. When RSS noise is sufficiently small, an estimator could be
unbiased b($̂) = 0 and Ψ($̂) = f($̂). In this case, the following inequality also holds

E
[
($̂−E[$̂])($̂−E[$̂])T

]
≥ Tr{Γ−1}, (18)

where Γ is the fisher information matrix (FIM) [32]. For multiple BMs, equivalent FIM (EFIM) is
developed in [33] and has a form of

Γ($) =

[
Υ Ξ

ΞT Σ

]
, (19)

where

Υ = −E
[

∂2L(x; $)

∂φb∂φT
b

]
,

Ξ = −E
[

∂2L(x; $)

∂φb∂φT
v

]
,

Σ = −E
[

∂2L(x; $)

∂φv∂φT
v

]
.

(20)

By using a formula of partitioned matrix inversion similarly in [28], we can obtain

CRLB(φb) = Υ−1 + Υ−1Ξ(Σ− ΞTΥ−1Ξ)−1ΞTΥ−1. (21)



Sensors 2016, 16, 2115 8 of 13

Υ−1 is similar to the CRLB of φb given in [34] when an exact value of φv is known. Consequently, the
second term in Equation (21) is the cost in CRLB when φv is not known or known with errors. In [35],
CRLB when nb = 1 is provided, which is a special case of Equation (21).

5. Numerical Results

For numerical investigation, we assume 17 AMs, and 120 BMs are randomly distributed inside
a square-region: {(x, y) : 0 ≤ x ≤ S, 0 ≤ y ≤ S}, where S = 15 unit of length. We use two
different configurations of AM distribution: (a) uniformly distributed over the whole area (as shown
in Figure 1a) and (b) uniformly distributed in the lower left corner (in Figure 1b). We assume a
distance–power gradient of β = 2, a standard deviation of measurement of σij = 2 dB and transmit
power of Pj = 40 dBm for all of the transmitting machines. We also assume that BMs can hear the
signals from those AMs or VAMs, the actual distance to which is not greater than R, which is referred
to as a communication range.

x-position 
0 5 10 15

y-
po

si
tio

n 

0

5

10

15

BMs

AMs

(a)
x-position

0 5 10 15

y-
po

si
tio

n

0

5

10

15

BMs

AMs

(b)

Figure 1. Distribution of anchor machines (AMs). (a) AMs uniformly distributed over the whole area;
(b) AMs distributed uniformly in the lower left corner.

As a performance metric, we use a normalized RMSE

RMSE =
1

Qn

Q

∑
i=1

n

∑
j=1
‖φ̂(i)

j −φ
(i)
j ‖, (22)

where Q is the number of Monte Carlo runs, φ̂
(i)
j is the estimated coordinate of BM j in the i-th run

whose actual coordinate is φ
(i)
j and n is the total number of BMs. For each result in the figures below,

Q = 10, 000 runs were done. The performance of proposed GSAP is compared with that of existing
methods CL [7], WCL [8], LLS [10], subspace [11], and the CRLB provided in Equation (21). For a
termination criterion of the localization algorithm, we have used δ = 10−4.

We have suggested an algorithm of determining a good initial position of BMs using MDS.
Figure 2 compares convergence speeds of the localization algorithm provided in this paper when
a random initial position or a good initial position is used. For the test, an actual location of BM
φ = [4.0211, 6.5256]T is investigated and R is assumed to be 2. A randomly generated initial point is
φ̃ = [0.40171, 2.3843]T and an initial point obtained from MDS is φ̃ = [3.3503, 5.7309]T . From Figure 2,
we can see that the convergence is faster if the initial point from MDS is used. When we take δ = 10−4

for a stopping criterion of the algorithm, a good initial point terminates the localization at nine
iterations compared to 20 iterations with the random initial point. Both are convergent at the same
position [4.0178, 6.5206]T .
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Figure 2. Estimate of blind machines (BM) vs. number of iterations using Equation (10).

In Figure 3a,b, the effect of AM distributions on the localization speed is investigated. They plot
the number of machines marked as anchors (AMs or VAMs) and BMs at the start of each round in
GSAP. In Figure 3a, at round 5, all of the 120 BMs can determine their locations when R = 2. If R = 4,
only three rounds are enough. If AMs are located in the lower left corner, seven and four rounds
are needed to determine the location of 120 BMs when R = 2 and R = 4, respectively. It is seen
that a biased-distribution of AMs can severely degrade the localization speed, especially when the
communication range is relatively small.
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Figure 3. Number of rounds needed to localize the whole machine type communication (MTC)
network. (a) AMs uniformly distributed over the whole area; (b) AMs distributed uniformly in the
lower left corner.

Figure 4 shows the effect of σdB = σij on the performance of localization algorithms. R = 2 is
assumed. In the simulation, identical σdB is applied for each transmitter–receiver pair. For CL and
WCL, anchor selection methods (ASM) provided in [20] are used, and the greedy anchor selection
(GAS) proposed in this paper is used for LLS and Subspace techniques. The RMSE degrades (gets
greater) as σdB increases for every algorithm tested. The proposed GSAP, however, provides the best
performance regardless of the assumptions on the AM distribution. Comparing the results from the
two AM distributions, we can see that if AMs are uniformly distributed over the whole area, RMSE
gain is about 4.165 dB compared with the locally distributed case at σdB = 3. In both of the cases,
the performance gap between GSAP and CRLB increases according to the increasing uncertainty.
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Figure 4. Root mean square error (RMSE) performance vs. σdB. (a) AMs uniformly distributed over the
whole area; (b) AMs distributed uniformly in the lower left corner.

Figure 5 shows the effect of communication range R on the RMSE performance. When
the communication range increases, each BM has the reference information from more anchors.
However, since the location information from VAMs has some errors, the larger number of anchors is
not always helpful. To make the comparison fair, we also have applied similar weight matrices, which
are used in WCL, to the LLS and subspace techniques, referred to as weighted LLS and weighted
subspace in Figure 5, respectively. It can be seen that, without anchor selection, the RMSE performance
degrades though R increases in both Figure 5a,b. However, with anchor selection, it is improved with
increasing R. If R is large enough (for example, when R ≥ 10), most of the BMs can communicate with
more than two anchors at the first round, and the RMSE can be reduced though anchor selection is not
used. Comparing the performances with and without anchor selection, the localization algorithms
with certain anchor selection certainly achieve better RMSE than without the anchor selection if the
communication range is limited.
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Figure 5. RMSE performance vs. communication range, R. (a) AMs uniformly distributed over the
whole area; (b) AMs distributed uniformly in the lower left corner.

6. Conclusions

In this paper, we have proposed and investigated GSAP. In an MTC network that consists of
a certain number of AMs and many BMs, GSAP eventually estimates the location of all the BMs.
Though some BMs cannot find enough anchors in their respective neighbors in an initial round of
GSAP, they can find anchors in the following rounds by regarding positioned BMs as VAMs. In this
procedure, RMSE is, of course, increasing by the positioning error in VAMs, but it is numerically shown
that GSAP provides RMSE better than the existing methods (CL, WCL, LLS and subspace techniques).
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Specifically, the proposed method achieves about 52%–97% improvement in terms of RMSE when
AMs are uniformly distributed over the area. If AMs are located in a corner, the improvement increases
to about 57%–98%. To reduce the effect of positioning error in VAMs, GSAP selects and uses only the
three best anchors in terms of the errors. The RMSE performance of GSAP is also shown to be close to
the CRLB. GSAP is a generic procedure in finding the location of BMs in a relatively large area with
a limited number of anchors and is promising in determining the location of MTC devices in future
Internet of Things applications.
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Abbreviations

The following abbreviations are used in this manuscript:

MTC Machine type communication
AM Anchor machine
BM Blind machine
CRLB Cramér–Rao lower bound
GPS Global positioning system
CL Centroid localization
WCL Weighted centroid localization
RSS Received signal strength
VAM Virtual anchor machine
SAP Successive anchorization process
GSAP Greedy successive anchorization process
MDS Multidimensional scaling
LLS Linear least square
RMSE Root mean square error
PIM Proximity information matrix
FIM Fisher information matrix
ASM Anchor selection method
GAS Greedy anchor selection
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