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Abstract: In array signal processing systems, the direction of arrival (DOA) and polarization of signals
based on uniform linear or rectangular sensor arrays are generally obtained by rotational invariance
techniques (ESPRIT). However, since the ESPRIT algorithm relies on the rotational invariant structure
of the received data, it cannot be applied to electromagnetic vector sensor arrays (EVSAs) featuring
uniform circular patterns. To overcome this limitation, a fourth-order cumulant-based ESPRIT
algorithm is proposed in this paper, for joint estimation of DOA and polarization based on a uniform
circular EVSA. The proposed algorithm utilizes the fourth-order cumulant to obtain a virtual extended
array of a uniform circular EVSA, from which the pairs of rotation invariant sub-arrays are obtained.
The ESPRIT algorithm and parameter pair matching are then utilized to estimate the DOA and
polarization of the incident signals. The closed-form parameter estimation algorithm can effectively
reduce the computational complexity of the joint estimation, which has been demonstrated by
numerical simulations.

Keywords: electromagnetic vector sensor array (EVSA); DOA and polarization estimation; ESPRIT
algorithm; fourth-order cumulant; uniform circular array; rotation invariant

1. Introduction

In the past few decades, the direction of arrival (DOA) estimation of incident signals has been
demonstrated to play a significant role in array signal processing [1–4]. Electromagnetic vector sensor
arrays (EVSAs) can receive the incident electromagnetic waves in the form of vectors, which include
both the polarization domain and the spatial domain information [5,6]. EVSAs have some inherent
advantages [7–11] over traditional arrays. Firstly, EVSAs have superior system performances, which
the signals can be distinguished based on their polarization characteristics. Secondly, more accurate
models of direction finding systems can be established within EVSAs. Finally, EVSAs have stronger
ability of anti-fuzzy than scalar sensor arrays, etc.

As a potential solution, EVSA-based techniques have been widely used in many fields, such
as radar [12,13], communication [14], sonar [15,16], etc. Various DOA and polarization joint
estimation algorithms have been developed recently, including MUSIC [17,18], ESPRIT [19–23],
pencil-MUSIC [24,25], Root-MUSIC [26], etc. An enhanced MUSIC algorithm, proposed by
Hua, et al. [24], can effectively improve the estimation accuracy. It is quite applicable to arrays
with arbitrary geometries. This algorithm, however, involves the spectrum function construction in
four dimensions, leading to fairly high computational complexity. ESPRIT algorithm was initially
applied to a uniform linear vector sensor array composed of crossed dipoles for multiple-signal
joint DOA and polarization parameters estimation in [20–22]. Since the ESPRIT-based algorithm is
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a closed-form estimation method based on eigen-structure, the computational cost is lower than that
of MUSIC-based algorithms. However, ESPRIT-based algorithms require the data to possess certain
“invariant” structures, inapplicable to the uniform circular EVSAs.

In recent years, characteristics of vector sensors within hypercomplex frameworks, such as
quaternions [27], biquaternions [28], and quad-quaternions [29], etc., have been studied extensively.
These frameworks retain the vector characteristic of vector sensor arrays, with advantages of
a more compact form and better estimation performance for signal subspace. However, quaternions,
biquaternions or quad-quaternions can only deal with four-dimensional (4D), eight-dimensional (8D)
and sixteen-dimensional (16D) algebras, respectively. Tensors [10,30], however, can be used to deal with
arbitrary dimensional algebras meanwhile keep corresponding vector information. It is worth noting
that the advanced algebraic theories, such as multivariate algebra and tensor, are typically utilized to
establish new models for the output of the array. In general, two types of representative algorithms
are still MUSIC-based algorithms (such as Q-MUSIC [31], BQ-MUSIC [32,33], QQ-MUSIC [34],
tensor-based MUSIC [35] etc.) and ESPRIT-based algorithms (such as quaternion-ESPRIT [36],
tensor-ESPRIT [37] etc.). Therefore, the advantages and disadvantages of the traditional MUSIC and
ESPRIT algorithm exist inherently in these MUSIC-based algorithms and ESPRIT-based algorithms.

The selection of array geometry is significant to estimate the DOA and polarization
information [38], which determines the estimation accuracy, the computation complexity and the
implementation possibility. In general, the EVSAs have the forms of uniform linear patterns [39],
uniform rectangular patterns [40,41], L-shaped patterns [42] and uniform circular patterns [43], etc.,
all of which can be classified into concurrent EVSAs [31,33,34,36] and spatially separated EVSAs
(SS-EVSAs) [44,45]. Various constraints such as the carrier profile, the electromagnetic and aerodynamic
compatibility, however, should be taken into account comprehensively in practical systems. Uniform
circular EVSAs are easier to keep conformal with carriers, and possess the characteristics of smaller
radar cross section (RCS) and scan-angle-independent beam width, etc. However, rotation invariant
structures cannot be constructed from the array steering matrices, which causes that the ESPRIT
algorithm is unfeasible here. In order to estimate the DOA and polarization information by ESPRIT
algorithm based on the uniform circular array, a fourth-order cumulant-based ESPRIT algorithm is
proposed in this paper.

Since the fourth-order cumulant results in a larger array aperture and is blind to Gaussian
processes, conventional array processing techniques generally utilize it to increase the number of
localizable sources and improve the estimation accuracy [46]. Here, the proposed algorithm utilizes
the fourth-order cumulant to construct the rotation invariance structure and then combine the ESPRIT
algorithm to estimate the DOA and polarization information of the incident signals based on uniform
circular EVSAs. The proposed algorithm utilizes only part of the fourth-order cumulant matrix which
contains non-redundant information to reduce the computational cost, other than the whole matrix.

The rest of the paper is organized as follows: the uniform circular array composed of orthogonal
dipoles and its signal model are described in Section 2. The virtual array extension of the uniform
circular EVSA consisting of orthogonal dipoles is introduced in Section 3. Based on the virtual extended
array constructed from fourth-order cumulant in Section 3, the method of the rotation invariance
structure construction and joint estimation of DOA and polarization information of the incident
signals, is presented in details in Section 4. In Section 5, the effectiveness of the proposed algorithm is
demonstrated by numerical examples. The conclusions and possible research expectations for future
work are outlined in Section 6. Regarding the notations used in this paper, the operator ⊗ denotes
the Kronecker product; angle(·) denotes the phase of a complex number; E{·} denotes the expected
value; diag(·) denotes a diagonal matrix composed of the columns or row vectors; cum(·) denotes the
fourth-order cumulants; (·)∗, (·)T, (·)H and (·)+ represent the complex conjugate, transpose, conjugate
transpose and matrix inverse, respectively.
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2. Array Signal Model

As shown in Figure 1, K non-Gaussian, narrowband, far-field, incoherent plane wave signals
imping on a uniform circular array with M array elements, which are uniformly distributed along
a circular path with the radius of r. The element located on the positive x axis is denoted as “1”;
the remaining elements are uniformly arranged clockwise on the path, successively denoted as “2” to
“M”. The phase center of each element is always located on the xoy-plane. Each element consists of
two dipoles that are spatially co-located and orthogonal to each other, leading to the array composed
of N = 2M dipoles.
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Figure 1. Structure of the uniform circular EVSA.

In Figure 1, θ ∈ [0, 2π] and ϕ ∈ [0,π/2] are the azimuth angle and elevation angle of the incident
signal, respectively. Here we introduce another two angles, γ ∈ [0,π/2] and η ∈ [0, 2π], referred to as
the polarization auxiliary angle and polarization phase difference, respectively, to completely describe
the polarization state of the incident signal.

Here, assuming that the noise is the additive white Gaussian noise and independent of the incident
signals. In real direction finding system, in order to facilitate processing, amplitudes of received data
are always compensated and the mutual coupling between array elements [47,48] are calibrated before
they are provided to direction finding signal processor, so that the received data of each element is
regarded as uniform in term of amplitude and effect of the mutual coupling. Therefore, the output of
array can be expressed as:

x(t) =
K

∑
k=1

a(θk, ϕk, γk, ηk)sk(t) + n(t) = As(t) + n(t) (1)

where x(t) is an N × 1 received signal vector, s(t) is a K × 1 incident signal vector, n(t) is an N × 1
Gaussian white noise vector with zero mean and noise power σ2

N , and A is the N × K array manifold
matrix formed by the set of the K array manifold vectors a(θk, ϕk, γk, ηk) which can be expressed as:

a(θk, ϕk, γk, ηk) = aS(θk, ϕk)⊗ aP(θk, ϕk, γk, ηk) (2)

where aS(θk, ϕk) is the spatial steering vector and aP(θk, ϕk, γk, ηk) is the polarization-spatial domain
steering vector. The expressions of the two vectors are shown as follows:

aS(θk, ϕk) =

[
e−j2π(r sin ϕk cos(−θk))/λk , · · · , e−j2π(r sin ϕk cos( 2π(m−1)

M −θk))/λk , · · · , e−j2π(r sin ϕk cos( 2π(M−1)
M −θk))/λk

]T
(3)

aP(θk, ϕk, γk, ηk) =

[
− sin θk cos ϕk cos θk
cos θk cos ϕk sin θk

][
cos γk

sin γkejηk

]
(4)
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According to x(t), the observed output of identical polarization directions can then be obtained as:{
xx(t) = IM ⊗ eT

x x(t) = Axs(t) + nx(t)
xy(t) = IM ⊗ eT

y x(t) = Ays(t) + ny(t)
(5)

where IM is an M × M identity matrix, ex = [ 1 0 ]
T

, ey = [ 0 1 ]
T

, Ax = IM ⊗ eT
x A,

Ay = IM ⊗ eT
y A, nx(t) = IM ⊗ eT

x n(t) and ny(t) = IM ⊗ eT
y n(t), so that Ax and Ay are respectively

formed by the set of the K array steering vectors ax(θk, ϕk, γk, ηk) and ay(θk, ϕk, γk, ηk), which can be
expressed as:

ax(θk, ϕk, γk, ηk) =
[
− sin θk cos ϕk cos θk

][ cos γk
sin γkejηk

]
aS(θk, ϕk) = Px(θk, ϕk, γk, ηk)aS(θk, ϕk) (6)

ay(θk, ϕk, γk, ηk) =
[

cos θk cos ϕk sin θk

][ cos γk
sin γkejηk

]
aS(θk, ϕk) = Py(θk, ϕk, γk, ηk)aS(θk, ϕk) (7)

where Px(θk, ϕk, γk, ηk) and Py(θk, ϕk, γk, ηk) are scalars and denote the two components of
polarization-spatial domain steering vector with the polarization direction along the x-axis and y-axis,
respectively. For any incident signals, Px(θk, ϕk, γk, ηk) and Py(θk, ϕk, γk, ηk) are two different complex
numbers. The module value of them can be regarded as gains of two dipoles generated by polarization
reception, respectively, and the phase angles of them can be regarded as additional phase differences
of two dipoles generated by polarization receiving, respectively.

Then, a renewed received signal vector can be obtained as:

x̃(t) = ex ⊗ xx(t) + ey ⊗ xy(t) = Ãs(t) + ñ(t) (8)

where Ã = ex ⊗ Ax(t) + ey ⊗ Ay(t), ñ(t) = ex ⊗ nx(t) + ey ⊗ ny(t). Ã is formed by the set of the K
array steering vectors ãk(θk, ϕk, γk, ηk), which can be expressed as:

ãk(θk, ϕk, γk, ηk) = ex ⊗ IM ⊗ eT
x a(θk, ϕk, γk, ηk) + ey ⊗ IM ⊗ eT

y a(θk, ϕk, γk, ηk)

= ex ⊗ (Px(θk, ϕk, γk, ηk)aS(θk, ϕk)) + ey ⊗ (Py(θk, ϕk, γk, ηk)aS(θk, ϕk))
(9)

3. Virtual Array Extension of the Uniform Circular EVSA Consisting of Orthogonal Dipoles

Assuming that the signal is a zero-mean, non-Gaussian, stationary random process, the
fourth-order cumulant can be defined as:

C4x(k1, k2, k3, k4) = cum{xk1 , xk2 , x∗k3
, x∗k4
}

= E{xk1 xk2 x∗k3
x∗k4
} − E{xk1 x∗k3

}E{xk2 x∗k4
}

−E{xk1 x∗k4
}E{xk2 x∗k3

} − E{xk1 xk2}E{x
∗
k3

x∗k4
}

(10)

The results of Equation (10) can be collected in the form of matrixand denoted by the cumulant
matrix R4 as:

R4((k1 − 1)N + k2, (k3 − 1)N + k4) = C4x(k1, k2, k3, k4) (11)

where R4 is the fourth-order cumulant matrix. If the incident signals are independent of each other,
R4 can be written as:

R4 = E{(x⊗ x)(x⊗ x)H} − E{(x⊗ x)}E{(x⊗ x)H}
−E
{
(xxH)

}
⊗ E

{
(xxH)

}
= B(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η)

(12)
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where CS = diag(γ4sk ), and the steering vector matrix B(θ, ϕ, γ, η) is expressed in the following form:

B(θ, ϕ, γ, η) = [ b(θ1, ϕ1, γ1, η1) · · · b(θK, ϕK, γK, ηK) ]

= [ ã(θ1, ϕ1, γ1, η1)⊗ ã(θ1, ϕ1, γ1, η1) · · · ã(θK, ϕK, γK, ηK)⊗ ã(θK, ϕK, γK, ηK) ]
(13)

Based on the equations above, it can be inferred that the fourth-order cumulant matrix of the
received data can be considered as the covariance matrix of the data received by a virtual extended
array, and the corresponding array steering vector of the kth signal can be expressed as follows:

b(θk, ϕk, γk, ηk) = ã(θk, ϕk, γk, ηk)⊗ ã(θk, ϕk, γk, ηk) (14)

The coefficients of the virtual array steering vector can be regarded as the gains and additional
phase differences of the elements in the virtual extended array. By separating the elements of the
array steering vector according to different coefficient from vector b(θk, ϕk, γk, ηk), four vectors can be
obtained as follows:

cxx(θk, ϕk, γk, ηk) = (IM ⊗ eT
x ⊗ IM)(eT

x ⊗ I2M2)b(θk, ϕk, γk, ηk)

= P2
x (θk, ϕk, γk, ηk)aS(θk, ϕk)⊗ aS(θk, ϕk)

(15)

cxy(θk, ϕk, γk, ηk) = (IM ⊗ eT
y ⊗ IM)(eT

y ⊗ I2M2)b(θk, ϕk, γk, ηk)

= Px(θk, ϕk, γk, ηk)Py(θk, ϕk, γk, ηk)aS(θk, ϕk)⊗ aS(θk, ϕk)
(16)

cyx(θk, ϕk, γk, ηk) = (IM ⊗ eT
x ⊗ IM)(eT

y ⊗ I2M2)b(θk, ϕk, γk, ηk)

= Py(θk, ϕk, γk, ηk)Px(θk, ϕk, γk, ηk)aS(θk, ϕk)⊗ aS(θk, ϕk)
(17)

cyy(θk, ϕk, γk, ηk) = (IM ⊗ eT
y ⊗ IM)(eT

y ⊗ I2M2)b(θk, ϕk, γk, ηk)

= P2
y (θk, ϕk, γk, ηk)aS(θk, ϕk)⊗ aS(θk, ϕk)

(18)

where P2
x (θ, ϕ, γ, η), Px(θ, ϕ, γ, η)Py(θ, ϕ, γ, η), Py(θ, ϕ, γ, η)Px(θ, ϕ, γ, η) and P2

y (θ, ϕ, γ, η) are the
coefficients of the virtual array steering vector, respectively.

Separating the rows of the fourth-order cumulant matrix R4, which follows the same order of
Equations (15)–(18), we obtain:

R4xx = (IM ⊗ eT
x ⊗ IM)(eT

x ⊗ I2M2)R4 = cxx(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (19)

R4xy = (IM ⊗ eT
y ⊗ IM)(eT

x ⊗ I2M2)R4 = cxy(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (20)

R4yx = (IM ⊗ eT
x ⊗ IM)(eT

y ⊗ I2M2)R4 = cyx(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (21)

R4yy = (IM ⊗ eT
y ⊗ IM)(eT

y ⊗ I2M2)R4 = cyy(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (22)

Then, a new fourth-order cumulant matrix
_
R4 can be expressed as:

_
R4 = ex ⊗ ex ⊗ R4xx + ex ⊗ ey ⊗ R4xy + ey ⊗ ex ⊗ R4yx + ey ⊗ ey ⊗ R4yy

=
_
B(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η)

(23)

_
B(θ, ϕ, γ, η) = [ c(θ1, ϕ1, γ1, η1) · · · c(θK, ϕK, γK, ηK) ] (24)

c(θk, ϕk, γk, ηk) = cP(θk, ϕk, γk, ηk)⊗ cS(θk, ϕk) (25)
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where, cS(θk, ϕk) = aS(θk, ϕk)⊗ aS(θk, ϕk) is the spatial steering vector of the virtual array and then
the polarization-spatial domain steering vector cP(θk, ϕk, γk, ηk) can be written as:

cP(θk, ϕk, γk, ηk) =


sin2 θk − sin θk cos θk cos ϕk − sin θk cos θk cos ϕk cos2 θk cos2 ϕk

− sin θk cos θk cos2 θk cos ϕk − sin2 θk cos ϕk sin θk cos θk cos2 ϕk
− sin θk cos θk cos2 θk cos ϕk − sin2 θk cos ϕk sin θk cos θk cos2 ϕk

cos2 θk sin θk cos θk cos ϕk sin θk cos θk cos ϕk sin2 θk cos2 ϕk




cos2 γ

sin γ cos γejη

sin γ cos γejη

sin2 γej2η


(26)

According to the Equations (25) and (26), it can be observed that R4xy and R4yx have
identical expressions, thus both of them can be regarded as the output of the same dipole.
Therefore, each element of the virtual array consists of three spatially co-located dipoles, and the
polarization-spatial domain steering vector of the virtual array has three components (P2

x (θ, ϕ, γ, η),
Py(θ, ϕ, γ, η)Px(θ, ϕ, γ, η) and P2

y (θ, ϕ, γ, η)) along the corresponding polarization direction.
The spatial steering vector of the virtual array cS(θk, ϕk) can be rewritten in the following

matrix form:

D =


aS1(θk, ϕk)aS1(θk, ϕk) aS2(θk, ϕk)aS1(θk, ϕk) · · · aSM(θk, ϕk)aS1(θk, ϕk)

aS1(θk, ϕk)aS2(θk, ϕk) aS2(θk, ϕk)aS2(θk, ϕk) · · · aSM(θk, ϕk)aS2(θk, ϕk)
...

...
. . .

...
aS1(θk, ϕk)aSM(θk, ϕk) aS2(θk, ϕk)aSM(θk, ϕk) · · · aSM(θk, ϕk)aSM(θk, ϕk)

 (27)

where D(i, j) = cS((i− 1)M + j), i.e., the (i− 1)M + jth element of cS(θk, ϕk) as the ith row and jth
column of matrix D. Based on the above derivation, the characteristics of the virtual extended array
are summarized as follows:

1. When the array element number is odd (M = 2n + 1), the element number of the virtual extended
array is 2n2 + 3n + 1, where each element consists of three co-located dipoles. The virtual array
consists of n + 1 concentric uniform circular arrays with the same element number of 2n + 1. The
elements of the virtual array corresponding to the elements on the main diagonal of matrix D,
constitute the largest uniform circular array with the radius of 2r, and the elements located on
the i-th and M− i-th diagonals which are parallel to the main diagonal of matrix D, constitute
a uniform circular array with the radius of 2r|cos(πi/M)|.
For example, the matrix D5 and the virtual array of uniform circular array consisting of five
elements are illustrated in Figure 2. D(i, j) is equal to D(j, i), so that only the 15 upper triangular
elements in matrix D5 are shown (Figure 2, left). The right part of Figure 2 shows the virtual array
which is equivalent to the matrix D5. To show the relation of D5 to the virtual array, the elements
of D5 and the corresponding antenna elements of the virtual array are marked with the same
color. The virtual array is composed of three concentric uniform circular arrays, each of which
consists of five elements. The radii of the uniform circular arrays are R0 = 2r, R1 = 2r|cos(36◦)|
and R2 = 2r|cos(72◦)|, respectively.

2. When the array element number is even (M = 2n), the element number of the virtual extended
array is 2n2 + 1, where each element consists of three co-located dipoles. The virtual array consists
of one element located at the origin of the coordinate system and n concentric uniform circular
arrays with the same element number of 2n. The elements of virtual array corresponding to the
elements on the main diagonal of matrix D, constitute the largest uniform circular array of radius
2r, and the elements located on the i-th and M− i-th diagonal which are parallel to the main
diagonal of matrix D, constitute a uniform circular array of radius 2r|cos(πi/M)|. The elements
located on the n + 1-th diagonal of matrix D correspond to the virtual elements located at the
origin of the coordinate system. In order to express this situation more clearly, an example of a
uniform circular array composed of 6 elements is illustrated in Figure 3, where the matrix D6

(left) and the corresponding virtual array (right) are shown.
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As before, the corresponding elements of D6 and the elements of the virtual array have the same
color. The virtual array is comprised of one element located at the origin of the coordinate system and
three concentric uniform circular arrays. Each uniform circular array has six elements. The radii of the
uniform circular arrays are R0 = 2r, R1 = 2r|cos(30◦)| and R2 = r, respectively.

It can be inferred that the cross-dipole uniform circular array can be extended to a set of uniform
circular arrays (or a set of uniform circular arrays with one additional element located at the origin
of the coordinate system), whose elements consist of three co-located dipoles, by constructing the
fourth-order cumulant of the received data. Thus, some pairs of sub-arrays with rotational-invariance
can be obtained, and then the DOA and polarization of the incident signals can be jointly estimated
based on the ESPRIT algorithm.

4. Proposed Algorithm

For the purposes of discussion, a uniform circular array equipped with eight elements is analyzed
as an example in this section. However, the concepts presented in this section are also applicable to
uniform circular array with arbitrary element number. The corresponding virtual extended array is
drawn as a diagram as shown in Figure 4.
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Figure 4. The corresponding virtual extension array of the uniform circular EVSA with eight elements.

In Figure 4, the black elements represent the actual array and the white ones represent the virtual
arrays derived from the actual array. The element located at the origin of the Cartesian coordinate
system is labeled as A1, and the other elements located on four concentric uniform circular paths are
labeled as Bi, Ci, Di and Ei (i = 1, 2, · · · , 8) , where the array elements B1, C1, D1 and E1 correspond
to the elements D(1, 4), D(1, 3), D(1, 2) and D(1, 1) of the matrix D, respectively.

4.1. Selection of Rotational Invariant Sub-Array Pairs

In order to avoid peak searching and reduce the computational complexity, we develop an
ESPRIT algorithm based on the fourth-order cumulant to exploit the property of rotational invariance.
It is therefore necessary to search for those pairs of sub-arrays that are provided with rotational
invariance. In order to estimate the two-dimensional DOAs, at least two pairs of sub-arrays are required.
The idea behind searching for sub-array pairs available for DOA and polarization estimation is
proposed as follows.

First, the spatial phase factors between the virtual elements A1 and B1, A1 and B3 are defined as
the rotation invariant factors, which can be expressed as:

uB1 = aS4(θ, ϕ)aS1(θ, ϕ)

= exp(−j2π((do4 + do1)
→
r )/λ)

= exp(−j2πr((1−
√

2/2) sin ϕ cos θ +
√

2/2 sin ϕ sin θ)/λ)

(28)

uB3 = aS6(θ, ϕ)aS3(θ, ϕ)

= exp(−j2π((do6 + do3)
→
r )/λ)

= exp(−j2πr(−
√

2/2 sin ϕ cos θ + (1−
√

2/2) sin ϕ sin θ)/λ)

(29)

Based on these two rotation invariant factors, two pairs of sub-arrays with the property of
rotational invariance can be obtained as

Pair 1:
Sub-array 1:A1, B2, B5, B8, C3, C5, C6, C8, D4, D5, D7, D8, E5, E8
Sub-array 2:B1, C2, A1, C1, D3, B4, B6, D1, E4, C4, C7, E1, D4, D8

Pair 2:
Sub-array 3:A1, B2, B4, B7, C2, C5, C7, C8, D1, D2, D6, D7, E2, E7
Sub-array 4:B3, C3, C4, A1, D3, D5, B6, B8, C1, E3, E6, C6, D2, D6
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In order to display the pairs of sub-arrays clearly, the four sub-arrays (Sub-array 1, 2, 3 and 4) are
drawn in four different colors, as shown in Figure 5. It is obvious that Sub-array 1 and Sub-array 2
have the property of rotational invariance, and uB1 is the rotation invariant factor. It’s the same case
for Sub-array 3 and Sub-array 4, where uB3 is the rotation invariant factor.
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It can be observed that all of the elements in the virtual array are contained within the two pairs
of sub-arrays shown above. As each element consists of three virtual dipoles, the algorithm efficiently
takes advantages of all non-redundant spatial information of the fourth-order cumulant matrices.
The DOA estimation can be accomplished by using one of the three groups of dipoles, which has
the same gain and additional phase difference. In general, to improve the estimation accuracy,
the algorithm usually uses more dipoles consequently resulting in higher computation complexity.
In order to reduce the computational complexity effectively, dipoles of one group are only used in the
proposed algorithm while ensuring the estimation accuracy.

In addition, any two elements of Bi separated by one array element can be selected as the spatial
phase factor, and the two corresponding pairs of sub-arrays then can be used to realize two-dimensional
DOA estimation.

4.2. Two-Dimensional DOA Estimation

The relationships between the elements of the virtual sub-arrays and the elements of matrix D are
listed in Table 1.

Table 1. Relationships between the elements of the virtual sub-arrays and the elements of matrix D.

Sub-Array 1 Element of D Sub-Array 2 Element of D Sub-Array 3 Element of D Sub-Array 4 Element of D

A1 D(5, 1) B1 D(4, 1) A1 D(5, 1) B3 D(6, 3)
B2 D(5, 2) C2 D(4, 2) B2 D(5, 2) C3 D(5, 3)
B5 D(8, 5) A1 D(5, 1) B4 D(7, 4) C4 D(6, 4)
B8 D(8, 3) C1 D(3, 1) B7 D(7, 2) A1 D(5, 1)
C3 D(5, 3) D3 D(4, 3) C2 D(4, 2) D3 D(4, 3)
C5 D(7, 5) B4 D(7, 4) C5 D(7, 5) D5 D(6, 5)
C6 D(8, 6) B6 D(6, 1) C7 D(7, 1) B6 D(6, 1)
C8 D(8, 2) D1 D(2, 1) C8 D(8, 2) B8 D(8, 3)
D4 D(5, 4) E4 D(4, 4) D1 D(2, 1) C1 D(3, 1)
D5 D(6, 5) C4 D(6, 4) D2 D(4, 2) E3 D(3, 3)
D7 D(8, 7) C7 D(7, 1) D6 D(7, 6) E6 D(6, 6)
D8 D(8, 1) E1 D(1, 1) D7 D(8, 7) C6 D(8, 6)
E5 D(5, 5) D4 D(5, 4) E2 D(2, 2) D2 D(4, 2)
E8 D(8, 8) D8 D(8, 1) E7 D(7, 7) D6 D(7, 6)
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Based on the equation D(i, j) = cS((i− 1)M + j), and the corresponding relationships between

the elements of the virtual extended array and the rows of matrix
_
R4, the corresponding selection

matrices E1, E2, E3 and E4 can be constructed as follows:

E1 =
[

e(isub11−1)M+jsub11
e(isub12−1)M+jsub12

· · · e(isub1N′−1)M+jsub1N′

]T
(30)

E2 =
[

e(isub21−1)M+jsub21
e(isub22−1)M+jsub22

· · · e(isub2N′−1)M+jsub2N′

]T
(31)

E3 =
[

e(isub31−1)M+jsub31
e(isub32−1)M+jsub32

· · · e(isub3N′−1)M+jsub3N′

]T
(32)

E4 =
[

e(isub41−1)M+jsub41
e(isub42−1)M+jsub42

· · · e(isub4N′−1)M+jsub4N′

]T
(33)

where the matrix element corresponding to the n-th element of the m-th sub-array appears as the
isubmn-th row and jsubmn-th column of matrix D. N′ denotes the total number of sub-arrays, which is 14
for the eight-sensor array. e(isubmn−1)M+jsubmn

denotes a M2× 1 vector with its ((isubmn− 1)M+ jsubmn)th
element as the only non-zero item.

Therefore, we can get:

R4xx1 = E1R4xx = B1(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (34)

R4xx2 = E2R4xx = B2(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (35)

R4xx3 = E3R4xx = B3(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (36)

R4xx4 = E4R4xx = B4(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η) (37)

where B1(θ, ϕ, γ, η), B2(θ, ϕ, γ, η), B3(θ, ϕ, γ, η) and B4(θ, ϕ, γ, η) denote the steering vectors of
sub-array 1, sub-array 2, sub-array 3 and sub-array 4, respectively. The relationships between
B1(θ, ϕ, γ, η), B2(θ, ϕ, γ, η), B3(θ, ϕ, γ, η) and B4(θ, ϕ, γ, η) can be expressed as follows:

B2(θ, ϕ, γ, η) = B1(θ, ϕ, γ, η)Φ1 (38)

B4(θ, ϕ, γ, η) = B3(θ, ϕ, γ, η)Φ2 (39)

where Φ1 = diag(uB1(θ1, ϕ1, γ1, η1), uB1(θ2, ϕ2, γ2, η2), · · · , uB1(θK, ϕK, γK, ηK)),
Φ2 = diag(uB3(θ1, ϕ1, γ1, η1), uB3(θ2, ϕ2, γ2, η2), · · · , uB3(θK, ϕK, γK, ηK)).

Furthermore, we have:{
R4xx1 = B1(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η)

R4xx2 = B1(θ, ϕ, γ, η)Φ1CSBH(θ, ϕ, γ, η)
(40)

{
R4xx3 = B3(θ, ϕ, γ, η)CSBH(θ, ϕ, γ, η)

R4xx4 = B3(θ, ϕ, γ, η)Φ2CSBH(θ, ϕ, γ, η)
(41)

Then, matrices C1 and C2 are constructed based on Equations (40) and (41) as:

C1 =

[
R4xx1

R4xx2

]
=

[
B1(θ, ϕ, γ, η)

B1(θ, ϕ, γ, η)Φ1

]
CSBH(θ, ϕ, γ, η) (42)

C2 =

[
R4xx3

R4xx4

]
=

[
B3(θ, ϕ, γ, η)

B3(θ, ϕ, γ, η)Φ2

]
CSBH(θ, ϕ, γ, η) (43)
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When using singular value decomposition (SVD), C1 and C2 can be denoted as:

C1 =
[

US1 UN1

][ ΣS1
ΣN1

][
VH

S1
VH

N1

]
(44)

C2 =
[

US2 UN2

][ ΣS2
ΣN2

][
VH

S2
VH

N2

]
(45)

The subspace spanned by array steering vector is included in the signal subspace, hence there
exists a nonsingular matrix T expressed as:[

B1(θ, ϕ, γ, η)

B1(θ, ϕ, γ, η)Φ1

]
T1 = US1 =

[
US11

US12

]
(46)

[
B3(θ, ϕ, γ, η)

B3(θ, ϕ, γ, η)Φ2

]
T2 = US2 =

[
US21

US22

]
(47)

Consequently, we have:
US12 = US11 T−1

1 Φ1T1 = US11 Ψ1 (48)

US22 = US21 T−1
2 Φ2T2 = US21 Ψ2 (49)

so, the total least square solutions of Equations (48) and (49) are:

Ψ1 = U+
S11

US12 (50)

Ψ2 = U+
S21

US22 (51)

B1(θ, ϕ, γ, η) and B3(θ, ϕ, γ, η) are of full rank, thus:

Φi = TiΨiT−1
i (i = 1, 2) (52)

This implies that the diagonal elements of the diagonal matrices Φi can be estimated by obtaining
the K eigenvalues of each matrix Ψi, where the corresponding eigenvectors are the column vectors
of Ti.

4.3. Polarization Estimation

It can be inferred from Equations (15) and (16) that:

cxy(θ, ϕ, γ, η) = cxx(θ, ϕ, γ, η)Px(θ, ϕ, γ, η)/Py(θ, ϕ, γ, η) (53)

The rotation invariant matrix can then be constructed by the above equation as:

Φ3 = diag(Px(θ1, ϕ1, γ1, η1)/Py(θ1, ϕ1, γ1, η1), · · · , Px(θK, ϕK, γK, ηK)/Py(θK, ϕK, γK, ηK)) (54)

The matrix C3 can be constructed using Equations (19) and (20) as:

C3 =

[
R4xx
R4xy

]
=

[
cxx(θ, ϕ, γ, η)

cxx(θ, ϕ, γ, η)Φ3

]
CSBH(θ, ϕ, γ, η) (55)

By using SVD, C3 can be represented as:

C3 =
[

US3 UN3

][ ΣS3

ΣN3

][
VH

S3
VH

N3

]
(56)
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Based on the relationship between the subspace spanned by array steering vector and the signal
subspace, we have: [

cxx(θ, ϕ, γ, η)

cxy(θ, ϕ, γ, η)Φ3

]
T3 =

[
US31

US32

]
(57)

The total least square solution of Equation (57) is:

Ψ3 = U+
S31

US32 (58)

In the same way, Φ3 can be calculated by eigen-decomposition of Ψ3.

4.4. Pair Matching

According to the discussion above, it is observed that the three eigen-decompositions of Ψi are
independent of each other. Therefore, pair matching is required when multiple signals impinge on
the array. The matching process can be understood as the problem that whether any two parameters
are successfully matched. Here we firstly consider the matching between Φ1 and Φ2. Parameters of
one signal correspond to the same signal subspace, and the eigen-vector corresponding to different
eigenvalues are mutually orthogonal. Therefore, a matrix can be constructed for ranking based on the
following principle:

H = TH
1 (i)T2 (59)

where T1(i) denotes the i-th column of T1. Therefore:

j = min
j
{H(1), H(2), · · · , H(j), · · · , H(K)} (60)

The pair matching between Φ1 and Φ3 is also similarly conducted. At the same time, K groups of
values uB1k, uB3k and (Px/Py)k are obtained , where k = 1, 2, · · · , K. The values of the azimuth angles,
elevation angles, polarization auxiliary angles and polarization phase differences can be estimated
as follows:

ϕk = arcsin
(

λ

2πr

√
(angle2(uB1) + angle2(uB3))/(2−

√
2)
)

(61)

θk = arctan

(
2−
√

2 +
√

2angle(uB1)/angle(uB3)√
2 + (

√
2− 1)angle(uB1)/angle(uB3)

)
(62)

γk = arctan

(∣∣∣∣∣ sin θk + angle((Px/Py)k) cos θk

cos ϕk cos θk − angle((Px/Py)k) cos ϕk sin θk

∣∣∣∣∣
)

(63)

ηk = angle

(
sin θk + angle((Px/Py)k) cos θk

cos ϕk cos θk − angle((Px/Py)k) cos ϕk sin θk

)
(64)

4.5. Steps of the Proposed Algorithm

The steps of the proposed algorithm are executed as follows:

Step 1: Construct the fourth-order cumulant based on Equations (19) and (20).
Step 2: Select two pairs of sub-arrays which display rotational invariance based on the theory

introduced in Section 4.1.
Step 3: Construct the rotational invariance matrices C1, C2 and C3.
Step 4: Obtain Ψ1, Ψ2 and Ψ3 based on the total least squares ESPRIT algorithm.
Step 5: Perform pair matching among Ψ1, Ψ2 and Ψ3 and estimate the DOA and polarization

information of the incident signals.
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4.6. Computational Complexity

In the following discussion, we first derive the computational complexity of the proposed
algorithm, and then compare the computational complexity with that of the LV-MUSIC algorithm. The
main computational complexity of the proposed method is discussed as follows: (1) The calculation of
the fourth-order cumulant slices requires C1 = 9L(M2 + 2) complex multiplications. The calculation of
one fourth-order cumulant requires 9L complex multiplications, and M2 + 2 fourth-order cumulants
are required for DOA and polarization estimation in the proposed algorithm; (2) SVD of matrices C1, C2

and C3 requires C2 = C3 = 14(M2 + 2)(K + 2) and C4 = (M2 + 2)2
(K + 2)/2 complex multiplications,

respectively; (3) Solving Ψ1, Ψ2 and Ψ3 using the total least squares requires C5 = C6 = 14K2 and
C7 = (M2 + 2)K2/2 complex multiplications, respectively; (4) Eigen value decomposition (EVD) of
matrices Ψ1, Ψ2 and Ψ3 requires C8 = 3K2(K + 2) complex multiplications; (5) Pair matching of the
parameters requires C9 = 2K3 complex multiplications.

The main contributors of computational complexity of LV-MUSIC method are discussed as
follows: (1) The structure of the covariance matrix requires C′1 = LN2 = 4LM2 complex multiplications;
(2) The EVD of the covariance matrix requires C′2 = 4M2(K + 2) complex multiplications; (3) Assuming
that peak searching with all identical parameters, the construction of the spectrum function requires
C′3 = (1 + 360/n)2(1 + 90/n)2(4M2 + 2M) complex multiplications, where each searching point of
the spectrum function requires C′31 = N2 + N = 4M2 + 2M complex multiplications. 1 + 360/n is the
number of searching points along the azimuth angle and polarization phase difference, 1 + 90/n is the
number of searching points along the elevation angle and polarization auxiliary angle, and n is the
searching step with respect to every parameter.

When the array structure, source number and snapshots are definite, it can be inferred from the
analysis above that the computational complexity of the proposed algorithm is a fixed number, but
that of the LV-MUSIC algorithm changes with searching steps. In this paper, we assume that the
source number is 2 and the number of snapshots is 100. The computational complexity of the proposed
algorithm and that of the LV-MUSIC algorithm using different searching steps are shown in Figure 6.
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From Figure 6, it can be observed that the computational complexity of the LV-MUSIC algorithm
is higher than that of the proposed algorithm when the searching step is less than 60◦. The estimation
accuracy of the LV-MUSIC algorithm is known to converge to half of the searching steps, and therefore
the LV-MUSIC algorithm becomes invalid when the searching step is too large. In other words,
though the LV-MUSIC algorithm can be used to estimate DOA and polarization jointly in theory, its
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computational complexity is not acceptable, mainly because the LV-MUSIC algorithm requires four
dimensional peak searching. Fortunately, the proposed algorithm are not limited to these problems
with a fixed computational complexity. The estimation accuracy and the performance of the proposed
algorithm are discussed in the following section.

5. Simulation Results

In this section, several numerical simulation results are presented to illustrate the performance
of the proposed algorithm. A uniform circular array with eight crossed dipoles elements and array
radius of 0.087m is used in the simulations. Complex additive Gaussian white noise is added into the
system and the number of Monte Carlo trials is 200.

The root mean square error (RMSE) for the estimated parameters is defined as:

RMSE =

√√√√ 1
M

M

∑
m=1

(χ̂im − χi)2 (65)

where M is the number of Monte Carlo trials, χi is the perfect value of the estimated parameter
corresponding to the i-th incident signal, and χ̂im is the estimated value of the m-th time Monte
Carlo trials.

5.1. The Simulation Results Distribution Scatter Diagram of the Proposed Algorithm

Figure 7 shows the simulation results for two signals whose DOAs and polarization parameters
(θ, ϕ, γ, η) are (60◦, 40◦, 30◦, 40◦) and (50◦, 50◦, 40◦, 60◦), respectively. The proposed algorithm is
carried out here, and the number of Monte Carlo trials is 200. Figure 7 shows the simulation result
of all trials with the signal to noise ratio(SNR) of 20 dB, while the number of snapshots is 200.
The red points in each figure represent the perfect value of the estimated parameter, while the blue
points represent the estimated ones. The small windows inside the figures are the enlarged versions of
the dotted box. Figure 7 shows that the points which represent the results of the proposed algorithm
always cluster around the true value of the estimated parameters. From Figure 7a, it can be seen that
the maximum evaluated error of elevation and azimuth angles are both less than 2◦. From Figure 7b,
we can see that the maximum evaluated error of polarization auxiliary angles and polarization phase
differences are less than 2◦ and 3◦, respectively. It can be observed that the proposed algorithm shows
excellent performance.
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5.2. Performance under Different SNR

In order to demonstrate the remarkable performance of the proposed algorithm, we compare the
performance of the proposed algorithm with that of the LV-MUSIC algorithm and the Cramer-Rao
bound (CRB) with different values of SNR.As shown in Figure 6 above, the computational complexity of
LV-MUSIC algorithm is huge when DOA and polarization parameters are estimated within acceptable
searching steps. Due to limited computing power, when we focus on the DOA parameters estimation
performance of LV-MUSIC algorithm, we suppose that the polarization parameters are known or they
are estimated beforehand, and when we focus on the polarization parameters estimation performance
of LV-MUSIC algorithm, the DOA parameters are set to be known or have been estimated already.
Referring to this comparison, we assume that there are two signals with parameters (θ, ϕ, γ, η) of
(60◦, 40◦, 30◦, 40◦) and (50◦, 50◦, 40◦, 60◦), the number of snapshots is 200, and the SNR changes from
−5 dB to 40 dB. As shown in Figures 8 and 9, it can be seen that as the SNR increases, the RMSE of
the estimated parameters decreases gradually for the proposed algorithm, the LV-MUSIC algorithm
and the corresponding CRB. Meanwhile, the proposed algorithm and the LV-MUSIC algorithm both
achieve good DOA and polarization estimation performance, and the results also match with the CRB
perfectly. The estimation accuracy of the proposed algorithm is similar to the LV-MUSIC algorithm.
When the SNR increases, the RMSE of the proposed algorithm continuously decreases, and yet that of
the LV-MUSIC algorithm remains unchanged, which depends on the searching step.
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Comparison between Figures 8 and 9 show that the RMSE of polarization parameters estimation
is higher than that of DOA parameters estimation for the proposed algorithm for the same SNR. The
reason is that the estimation of polarization parameters is carried out based on the estimated values of
DOA parameters. The secondary error, thus, affects the estimation accuracy of polarization parameters.

5.3. Performance for Different Numbers of Snapshots

The performance of the proposed algorithm is compared with the LV-MUSIC algorithm and
the Cramer-Rao bound (CRB) versus different number of snapshots. Two signals with parameters
(θ, ϕ, γ, η) of (60◦, 40◦, 30◦, 40◦) and (50◦, 50◦, 40◦, 60◦) are considered here, the SNR is set as 20 dB,
and the number of snapshots changes from 10 to 2000. From Figures 10 and 11, we can see that
the RMSE values of these estimated parameters decrease gradually for the proposed algorithm, the
LV-MUSIC algorithm and the CRB as the number of snapshots increases. The RMSE of the proposed
algorithm is larger than that of the LV-MUSIC algorithm, and the two algorithms both show good
DOA and polarization estimation performance and keep agreement with the CRB perfectly. Obviously,
reducing computational complexity by using the proposed algorithm is at the expense of slightly
worse performance as shown in the figure.Sensors 2016, 16, 2109  17 of 20 
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5.4. Running Time

The running time of the proposed algorithm is compared against that of the LV-MUSIC algorithm
with two dimensional search. Two signals with parameters (θ, ϕ, γ, η) of (60◦, 40◦, 30◦, 40◦) and
(50◦, 50◦, 40◦, 60◦) are considered here, the SNR is set as 20dBand the number of snapshots is 200.
For the LV-MUSIC algorithm, the azimuth angle and the elevation angle have been searched in the
range of 0◦ to 360◦ and 0◦ to 90◦ with an interval of 0.5◦, respectively. 200 Monte Carlo simulations are
carried out. Table 2 shows the average running time of these two algorithms. The running time of the
proposed algorithm is shorter than that of the LV-MUSIC algorithm with two dimensional searching.
In addition, four dimensional search is required when the LV-MUSIC algorithm is used to jointly
estimate of DOA and polarization information. It is assumed that the polarization auxiliary angle and
the polarization phase difference of the LV-MUSIC algorithm have been achieved by searching in the
range of 0◦ to 360◦ and 0◦ to 90◦ with an interval of 0.5◦, respectively. The running time of LV-MUSIC
algorithm with four dimensional search is (360◦/0.5◦)(90◦/0.5◦) = 129, 600 times of the case of two
dimensional search. Therefore, the running time of the LV-MUSIC algorithm with four dimensional
search is unacceptable, and the proposed algorithm can obtain the four parameters quite efficiently.

Table 2. The running time of two algorithms.

Algorithm Time (s)

LV-MUSIC(two dimensional searching) 4.8942
Proposed Algorithm 3.7952

6. Conclusions

A fourth-order cumulant-based ESPRIT algorithm is proposed in this paper, which can achieve
the joint estimation of the DOA and polarization information based on a uniform circular EVSA.
The proposed algorithm overcomes the limitation of the ESPRIT algorithm of failing in uniform
circular EVSAs, and simultaneously achieves a significant reduction in terms of the computation cost.
The fourth-order cumulant has been used to virtually extend the original array, and then construct a
few sub-arrays with identical shapes. By matching two pairs of sub-arrays with the rotation-invariant
structure, the estimation of DOA and polarization information can be carried out using the ESPRIT
algorithm. As the algorithm does not require the construction of the spectrum function and does not
resort to a multidimensional peak search, the estimation results can be achieved quite efficiently and
also ensured the acceptable simulation accuracy. The reduction in computational complexity of the
proposed algorithm has been illustrated by comparing against the LV-MUSIC algorithm for different
searching steps theoretically and numerically. Numerical simulation results validate that the proposed
algorithm has higher calculation efficiency than the LV-MUSIC algorithm. Future work may focus
on utilizing a hypercomplex framework, such as a tensor, to re-establish the model of a four-order
cumulant matrix, aiming at obtaining higher estimation accuracy in the direction finding algorithm.
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