
sensors

Article

Integrated Fault Diagnosis Algorithm for Motor
Sensors of In-Wheel Independent Drive
Electric Vehicles
Namju Jeon 1 and Hyeongcheol Lee 2,*

1 Department of Electrical Engineering, Hanyang University, Seoul 133-791, Korea; sohorain@hanyang.ac.kr
2 Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791, Korea
* Correspondence: hclee@hanyang.ac.kr; Tel.: +82-2-2220-1685

Academic Editor: Xue Wang
Received: 13 October 2016; Accepted: 7 December 2016; Published: 12 December 2016

Abstract: An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent
drive electric vehicles is presented. This paper proposes a method that integrates the high- and
low-level fault diagnoses to improve the robustness and performance of the system. For the high-level
fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the
longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation
between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault
of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state
equation of an interior permanent magnet synchronous motor is developed, and a parity equation is
used to diagnose the fault of the electric current and position sensors. The validity of the high-level
fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level
fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according
to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the
basis of this information, an integrated fault-diagnosis strategy is proposed.

Keywords: high-level fault diagnosis; low-level fault diagnosis; integrated fault diagnosis; residual;
fault table; fault-detection flag

1. Introduction

Following the recent increase in international oil prices and environmental issues, studies
on the introduction of environment-friendly vehicles such as fuel-cell and electric vehicles have
increasingly become popular. Among these vehicles, the in-wheel independent drive electric vehicles
contain motors installed inside the wheels, which feature enhanced system efficiency and driving
performance [1–4].

However, because the motor is installed inside the wheel, it is vulnerable to numerous faults due
to exposure to harsh conditions such as physical impact, rapid temperature change, and variation
in humidity. Therefore, to improve vehicle safety, fault diagnosis of the drive motor has become
increasingly important.

The fault-detection methods can be mainly classified into hardware and analytic redundancies.
Hardware redundancy uses an identical sensor or actuator to easily cope with the fault, which is an
advantage over analytic redundancy. However, additional costs and installation space are required.
In automobiles, analytic redundancy, which considers the information and system dynamics with
respect to the system, is often adopted instead of hardware redundancy. Furthermore, in the present
study, analytic redundancy is used to perform fault diagnosis without additional sensors [5].

Numerous studies regarding fault diagnosis of the drive motor are currently being conducted.
In some studies, the position sensor value of the motor is estimated using a sensor-less method and
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is compared with the actual sensor value for fault diagnosis and fault tolerance [6,7]. The current
sensor value of the motor is estimated for fault diagnosis using the proportional–integral [8] and the
sliding-mode [9,10] observers. In other studies, the parity equation was used to diagnose the faults in
electric current and position sensors [11,12]. In other studies, optimal design, including the number
of motor slots and coil arrangement, was conducted to enhance reliability and fault tolerance [13,14].
In some works, the switch fault of a motor system and the detection and tolerance of an electric-sensor
fault as well as that of the resolver/encoder through additional configuration were investigated [15–17].
Another research used frequency analysis of the electric current to diagnose a fault while the vehicle
was not running [18]. Similarly, the drive motor fault diagnosis was mainly conducted at a low level
of the system. However, when low-level fault diagnosis is conducted using a single model, a false
alarm could occur because external noise and system uncertainty can be unnecessarily detected [19,20].
Therefore, to increase robustness, an additional high-level fault diagnosis is required [21].

Numerous fault diagnosis control strategies for vehicles have been suggested in ref. [22–25].
However, most of these research works dealt with conventional vehicles, but not in-wheel independent
drive electric vehicles.

Several studies regarding fault diagnosis of the in-wheel independent drive electric vehicles are
being conducted using a planar two-track non-linear model [26–31]. This planar two-track non-linear
model, which can realize the longitudinal and lateral forces in each wheel, is widely used considering
the characteristics of the in-wheel system in that each wheel drives independently. In one study,
an actuator-grouping sliding mode controller was used for fault tolerant control [26], but it is assumed
that the location of the specific faulty wheel is known. In other works the references [27–31] assumed
that the vehicle dynamics sensors, such as the yaw-rate, longitudinal and lateral acceleration, and
wheel-speed sensors, are at a non-fault state. However, if dynamic sensors fail, the fault diagnosis
algorithm proposed in previous research [27–31] cannot diagnose the motor sensor fault.

Accordingly, in the present study, the diagnosis system integrates both the high-level fault
diagnosis of the vehicle dynamics and low-level fault diagnosis of the motor system by considering
the vehicle dynamic sensor faults to propose a method that increases the robustness and stability of
the system.

For the high-level fault diagnosis of the vehicle dynamics, a planar two-track non-linear model
is selected, and using a non-linear tire model, the longitudinal and lateral forces are calculated.
By utilizing the motor drive torque and wheel velocity, the wheel dynamics is configured in
determining the residual. To increase the redundancy of the system, the correlation between the sensor
and residual in the vehicle dynamics is analyzed to detect and separate the fault in the drive motor
system in each wheel and the vehicle dynamic sensors such as the yaw-rate, longitudinal and lateral
acceleration, and wheel-speed sensors. The low-level fault diagnosis of the motor system is performed
by configuring the state equation of an interior permanent magnet synchronous motor (IPMSM) to
detect and separate the faults of the electric current and position sensors. Finally, by preparing a dual
fault monitoring structure combined with the high- and low-level fault diagnoses, the robustness and
stability of the diagnosis are reinforced while allowing the system to perform a specified classification
of the fault.

This paper is divided into the following sections: In Section 2, the high-level fault diagnosis
of vehicle dynamics is proposed, and the validity of the algorithm is verified by Carsim and
Matlab/Simulink co-simulation. In Section 3, the low-level fault-diagnosis method of a motor system
is proposed, and the validity of the algorithm is verified through Matlab/Simulink simulation and
experiments. In Section 4, the high- and low-level fault-diagnosis systems are integrated to propose
detailed detection and diagnosis methods.
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2. High-Level Fault Diagnosis

For the high-level fault diagnosis of the vehicle dynamics, a planar two-track non-linear
model, which can realize the longitudinal and lateral forces in each wheel, is used considering
the characteristics of the in-wheel system that each wheel drives independently. By analyzing the
influence of the drive motor fault on the entire vehicle, a correlation between each sensor and the
realized residual is derived.

2.1. Planar Two-Track Model

A planar two-track non-linear model, which displays the longitudinal and lateral forces of each
wheel, is shown in Figure 1. From the center of gravity, the dynamics of various two-track non-linear
models in a single coordinate system is developed [32,33]. However, in the current study, the dynamic
equations of the longitudinal, lateral, and yaw directions are used. They are expressed as follows:

.
vx =

.
ψ · vy +

1
m

{(
Fx f l + Fx f r

)
cosδ f +

(
Fy f l + Fy f r

)
sinδ f + (Fxrl + Fxrr)

}
(1)

.
vy = −

.
ψ · vx +

1
m

{(
Fx f l + Fx f r

)
sinδ f +

(
Fy f l + Fy f r

)
cosδ f +

(
Fyrl + Fyrr

)}
(2)

Iz
..
ψ = l f

{(
Fy f l + Fy f r

)
cosδ f +

(
Fx f l + Fx f r

)
sinδ f

}
− lr

(
Fyrl + Fyrr

)
+t f

{(
Fy f l − Fy f r

)
sinδ f +

(
−Fx f l + Fx f r

)
cosδ f

}
+ tr(−Fxrl + Fxrr)

(3)

where vx is the longitudinal vehicle speed, vy is the lateral vehicle speed,
.
ψ is the yaw rate, Fx is the

longitudinal force, Fy is the lateral force, m is the vehicle mass, l f ,r is the distance between the mass
center and each axle (front and rear), t f ,r is the vehicle tread, δ f is the front tire steering angle, and Iz is
the yaw inertia.
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2.2. Non-Linear Simple Tire Model

In this study, to calculate the longitudinal and lateral forces of the two-track model, the linear
and non-linear intervals are simulated to be as close as possible to the actual condition while using
the non-linear simple tire model, which is relatively easy to tune. The non-linear simple tire model
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is realized using the hyperbolic tangent function, and the mathematical equations describing the
longitudinal and lateral forces are expressed as follows:

Fx = kxFztanh(εxκ) (4)

Fy = kxFztanh
(
εyα
)

(5)

where kx,y and εx,y refer to the tuning factors whereas κ and α refer to the longitudinal slip and tire-side
slip angle, respectively.

The longitudinal slip and tire-side slip angle for each wheel are expressed as follows [34]:

κ f l =
rωw f l

vx−t f
.
ψ
− 1, κ f r =

rωw f l

vx+t f
.
ψ
− 1,

κrl =
rωw f l

vx−tr
.
ψ
− 1, κrr =

rωw f l

vx+tr
.
ψ
− 1

(6)

α f l = δ f −
vy+l f

.
ψ

vx−t f
.
ψ

, α f r = δ f −
vy+l f

.
ψ

vx+t f
.
ψ

,

αrl = −
vy−lr

.
ψ

vx−tr
.
ψ

, αrr = −
vy−lr

.
ψ

vx+tr
.
ψ

(7)

where ωw is the wheel velocity.
In addition, vertical force Fz is obtained using weight transfer, which is calculated using the

longitudinal and lateral accelerations. The results are expressed as follows [34]:

Fz f l =
mglr

2l −
msaxhs

2l − k f
msayhs

t f
, Fz f r =

mglr
2l −

msaxhs
2l + k f

msayhs
t f

,

Fzrl =
mgl f

2l + msaxhs
2l − kr

msayhs
tr

, Fzrr =
mgl f

2l + msaxhs
2l + kr

msayhs
tr

(8)

where ms is the vehicle sprung mass, l is the wheel base, hs is the sprung mass height, t f ,r is the vehicle
tread, ax is the longitudinal acceleration, ay is the lateral acceleration, k f is the lateral weight-shift
distribution on the front wheel, and kr is the lateral weight-shift distribution on the rear wheel.

Figure 2 shows the comparison of the CarSim and simple tire models described in Equation
(5). CarSim is a commercially available simulation tool that predicts the performance of vehicles in
response to driver controls in a given environment [35–37].
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2.3. Wheel Dynamics

Using the motor drive torque and wheel velocity, we can express the wheel dynamics as follows:

.
ωwi =

1
Iω

(
Tmi − re f f Fxi −Myrri

)
, i = f l, f r, rl, rr (9)

where Tm refers to the motor drive torque, Myrr refers to the rolling resistance, re f f refers to the effective
rolling radius, and Iω refers to the tire inertial moment.

2.4. Residual

Residual is a model error. In an ideal case, the residual should only be influenced by the faults to
be detected.

The residual, which includes the target for diagnosis Tm, can be expressed as follows:

ri : 0 = 1
Iω

(
Tmi − re f f Fxi −Myrri

)
− .

ωwi,measure, i = 1, 2, 3, 4 = f l, f r, rl, rr . (10)

Myrr is practically difficult to calculate. However, Myrri can be ignored using an adaptive residual
threshold under the assumption that the size of Myrr is less than the other components when the motor
is driven.

2.5. Longitudinal Force Estimation

When Equation (10) is examined in terms of the residual, Fx, which is calculated from the model,
is used. However, in the linear interval of Fx, the gradient differs depending on the terrain type.
Therefore, calculation of an exact value is difficult. Hence, using the longitudinal dynamics and the
non-linear simple tire model, gradient coefficient kx in the linear interval of Fx can be estimated to
calculate Fx more accurately.

Henceforth, we assume that the signs of the longitudinal slips of each wheel while driving are the
same and that the longitudinal force is larger than the lateral force.

The expanded longitudinal dynamics without considering lateral force is expressed as follows:

Fx,total =
(

Fx f l + Fx f r

)
cosδ f + (Fxrl + Fxrr) = m

( .
vx −

.
ψ · vy

)
. (11)

Using the non-linear simple tire model, expanded Fx,total in Equation (11) can be expressed
as follows:

m
( .

vx −
.
ψ · vy

)
= kx

{
Fz f ltanh

(
εxκ f l

)
cosδ f + Fz f rtanh

(
εxκ f r

)
cosδ f

+Fzrltanh(εxκrl) + Fzrrtanh(εxκrr)

}
. (12)

In the linear interval of Fx, gradient coefficient kx can be expressed as follows by rearranging the
terms in Equation (12):

kx =
m
( .

vx −
.
ψ · vy

)
{

Fz f ltanh
(

εxκ f l

)
cosδ f + Fz f rtanh

(
εxκ f r

)
cosδ f

+Fzrltanh(εxκrl) + Fzrrtanh(εxκrr)

} . (13)
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With kx, a more accurate longitudinal force can be estimated to increase the accuracy of the
residual fault diagnosis. Hence, the longitudinal force can be written as

Fxi = kxFzitanh(εxκi), i = f l, f r, rl, rr. (14)

2.6. Analysis of the Correlation between Each Sensor and the Residual

To configure the fault-diagnosis algorithm and to confirm the possibility of fault separation, the
correlation between each sensor and residual needs to be analyzed.

The sensor information used for estimating the longitudinal force is expressed as follows:

c1 : Fxi = c1

(
δ f ,

.
ψ, vx, vy, Fz, κi

)
, i = 1, 2, 3, 4 = f l, f r, rl, rr

κi = c′1(
.
ψ, vx, ωwi)

. (15)

Equation (15) indicates that Fx is obtained using sensor signals δ f ,
.
ψ, vx, vy, Fz, and ωw.

vy in Equation (15) can be obtained using Equations (2) and (5), whereas Fz can be obtained using
Equation (8), i.e.,

c2 : vy = c2

(
δ f ,

.
ψ, vx, Fx, Fy

)
(16)

c3 : Fy = c3(αi, Fz) (17)

c4 : Fz = c4
(
ax, ay

)
(18)

Finally, the correlation between each sensor and the residual can be expressed as follows using
Equation (10):

ri : 0 = ri(Tmi, Fxi, ωw) = ri

(
Tmi, ax, ay, δ f ,

.
ψ, vx, ωw

)
, i = f l, f r, rl, rr = 1, 2, 3, 4 (19)

Figure 3 shows the correlation between each sensor and the residual.
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The residuals obtained from Equation (19) and Figure 3 can be independently configured for each
wheel and are listed as follows Table 1.

Table 1. Fault table of high-level fault diagnosis residual.

ax ay δf
.

ψ vx ωw Tmfl Tmfr Tmrl Tmrr

r1 X X X X X X X
r2 X X X X X X X
r3 X X X X X X X
r4 X X X X X X X

The term “X” in Table 1 refers to the correlation between the residual ri(i = 1 ∼ 4) and each
sensor. In other words, by assuming that the other sensor information is normal, the fault of the drive
motor Tm in each wheel can be detected and separated. If dynamic sensors such as the yaw-rate,
longitudinal and lateral acceleration, and wheel-speed sensors, fail, the residual ri(i = 1 ∼ 4) cannot
diagnose the motor sensor fault. Therefore, for the fault separation in the other sensors, fault residual
redundancy is required. In this study, Equations (2), (3) and (5) are used to add the residuals of

.
ψ and

vy while obtaining the residual of vx using the Global Positioning System (GPS). In addition, using
Equation (4), the residual of the longitudinal force can be substituted.

In order to isolate motor sensor faults and vehicle dynamics sensor faults, additional residuals
should not be affected by the fault of the drive motor Tm. Therefore, it is necessary to separate the
vehicle dynamics sensor faults using a linear model instead of a complex model.

Using the linear bicycle model [38], the estimations of
.
ψ and vy can be expressed as follows:

[ .
vy,est..
ψest

]
=

 −Cα f +Cαr
mvx

−Cα f l f +Cαr lr
mvx

− vx

−Cα f l f−Cαr lr
Izvx

−Cα f l f
2+Cαr lr2

Izvx

[ vy,est.
ψest

]
+

[ Cα f
m

l f Cα f
Iz

]
δ f (20)

where Cα f and Cαr are cornering stiffness (Fy = Cαα).
Using Equation (20), the residual can be substituted as follows:

r5 : 0 =
.
ψ−

.
ψest = r5(

.
ψ, δ f , vx) (21)

Using the acceleration sensor dynamics [39] and Equation (20), the residual can be substituted
as follows:

r6 : 0 = ax−
( .

vx −
.
ψest · vy,est

)
= r6(ax,

.
ψ, δ f , vx) (22)

r7 : 0 = ay−
( .

vy,est +
.
ψest · vx

)
= r7(ay,

.
ψ, δ f , vx) (23)

The equation substituted by the residual of vx using GPS is expressed as follows:

r8 : 0 = vx− vx,GPS = r8(vx, vx,GPS) (24)

In order to distinguish between wheel sensor failure and motor failure, the additional residual is
configured as wheel dynamics only.

Assuming kx is a known value, Equation (4) can be expressed as

c9 : Fx f l,2 = c9(Fz,
.
ψ, vx, ω f l)

c10 : Fx f r,2 = c10(Fz,
.
ψ, vx, ω f r)

c11 : Fxrl,2 = c11(Fz,
.
ψ, vx, ωrl)

c12 : Fxrr,2 = c12(Fz,
.
ψ, vx, ωrr)

(25)
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In addition, Equation (25) can also be substituted by the residuals using Equation (19), as
shown below.

r9 : 0 = r9(Tm f l , Fx f l,2, ω f l) = r9(Tm f l , c9(c1(ax, ay),
.
ψ, vx, ω f l), ω f l) (26)

r10 : 0 = r10(Tm f r, Fx f r,2, ω f r) = r10(Tm f r, c10(c1(ax, ay),
.
ψ, vx, ω f r), ω f r) (27)

r11 : 0 = r11(Tmrl , Fxrl,2, ωrl) = r11(Tmrl , c11(c1(ax, ay),
.
ψ, vx, ωrl), ωrl) (28)

r12 : 0 = r12(Tmrr, Fxrr,2, ωrr) = r12(Tmrr, c12(c1(ax, ay),
.
ψ, vx, ωrr), ωrr) (29)

When the residuals derived from the above are summarized, ri(i = 1 ∼ 4) were diagnosed using a
planar two-track model to detect the failure of each wheel motor. ri(i = 5 ∼ 8) were diagnosed using
a linear bicycle model to diagnose vehicle dynamics failure without being affected by motor failure.
ri(i = 9 ∼ 12) are additional residuals that are used to separate the wheel sensor and motor fault.

Residuals that are newly added to the list in Table 1 are listed in Table 2.

Table 2. Fault table of modified high-level fault diagnosis residual.

ax ay vx vx,gps
.

ψ ωfl ωfr ωrl ωrr Tmfl Tmfr Tmrl Tmrr

r1 X X X X X X X X X
r2 X X X X X X X X X
r3 X X X X X X X X X
r4 X X X X X X X X X
r5 X X
r6 X X X
r7 X X X
r8 X X
r9 X X X X X X
r10 X X X X X X
r11 X X X X X X
r12 X X X X X X

Table 2 confirms that the other sensors are also capable of separating the faults using
additional residuals.

2.7. Adaptive Threshold

The vehicle and tire models used in the present study show behavior similar to that of actual
models in a normal state. However, in a transient state, the inaccuracy of the models increases.
Therefore, the value of the residual, which is designed by including the inaccuracy, can be different
from zero even when no fault exists. Such residual deviation is influenced by the intensity of the
input signal and frequency. Therefore, to realize a fault-diagnosis algorithm that is robust against
model inaccuracy, the method of adaptive threshold is used. Figure 4 shows the generation of adaptive
threshold values according to the input value [40].

The fault-diagnosis algorithm uses vehicle models that do not fully correspond with the real
processes due to model uncertainties. The generated residual then deviates from zero even without
a fault. If the threshold is not well set, it may generate false alarms through normal fluctuations of
the variable. Obviously, setting Th too high reduces the sensitivity to faults, and setting Th too low
increases the false alarm rate. Usually, Th is empirically set by considering the maximum influence of
the model uncertainties. In particular, in the transient state, these model uncertainties more frequently
occur. Therefore, adaptive threshold is introduced to avoid these problems. The deviation in the
residual depends on the amplitude and frequencies of the input excitation. The adaptive threshold
method uses its variation. It uses a high-pass filter to enlarge the threshold (where the deviation and
amplitude of the input have an effect) and a low-pass filter to smoothen the threshold, as shown in
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Figure 3. Time constants T1 and T3 are selected according to the dominant time constant of the system
process. T1/T2 depends on the model uncertainty of the dynamics [40].
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2.8. Simulation Result

To verify the proposed fault-diagnosis algorithm, Carsim and Matlab/Simulink are used. Among
the vehicle models available in Carsim, “E-Class sedan” is considered as the subject. The simulation is
conducted at a starting velocity of 20 km/h on a straight line with the throttle set at constant values of
0.2 and 0.5.

During the simulation, the Motor fault signal is applied at an interval of 5–7 s. The fault signal
triggers reduction in the torque in the rear right (RR) wheel drive motor by 30%.

From the simulation results shown in Figure 5, we can confirm that the estimated longitudinal
forces of each wheel, derived from the longitudinal force equation and simple tire model, are almost
similar to the actual Carsim value. As the longitudinal wheel slip increases, the residual also
increases; therefore, the threshold value can also be set high, which proves the robustness of the
model. The fault-diagnosis results according to a fault application from 5 to 7 s can also be separated.
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Figure 5. Simulation result (Initial speed 20 km/h, throttle = 0.2 acceleration).

The following simulations were performed by adding vehicle dynamics sensors faults.
The fault signal is applied from 1 to 1.5 s to the yaw rate sensor with an offset of 0.05 rad/s. An

offset of g (=9.8 m/s) for the longitudinal dynamics sensor is applied from 2 to 2.5 s, and an offset of g
for the lateral dynamics sensor is applied from 3 to 3.5 s. The fault signal of the front left-wheel speed
sensor is applied from 4 to 4.5 s with an offset of 1 km/h.

From the simulation results shown in Figure 6, when vehicle dynamic sensors fail, the estimated
longitudinal forces of each wheel are influenced by faults. Similarly, the residual ri(i = 1 ∼ 4) of
fault diagnosis algorithm in [30,31] cannot diagnose faults. However, the additional residuals enable
diagnosis even in the case of vehicle dynamics sensor faults through Table 2.
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sensor faults).

3. Low-Level Fault Diagnosis

The drive motor for an electric vehicle should satisfy various performance requirements,
including structural robustness, high power and torque density, wide operating velocity range,
excellent environmental resistance (seismic, heat, and corrosion), and highly efficient driving control,
considering the driving characteristics. IPMSM is one of the motors that satisfy the above requirements.
The IPMSM is structurally stable because a permanent magnet is built inside the rotor, and it has
excellent magnetic saliency, thus possessing a weak field control for a wide range of operating velocities.
In addition, its power and torque density are excellent, which enable highly efficient driving [41,42].
Therefore, in the present study, the IPMSM is chosen as the drive motor of the in-wheel independent
drive electric vehicle used in the fault-diagnosis experiments.

3.1. IPMSM Model

Figure 7 shows the d–q axis equivalent circuit of the IPMSM, whereas Equation (30) expresses the
voltage equation of the d–q axis of the rotating coordinate system of the IPMSM.

vd = Rid + Ld
did
dt − npωrLqiq

vq = Riq + Lq
diq
dt + npωrLdid + npωrφm

(30)

where vd and vq are the d–q axis applied voltages, id and iq are the d–q axis currents, ωr is the rotor
speed, R is the armature winding resistance, Ld and Lq are the d–q axis inductances, and φm is the
magnetic flux linkage.
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Equation (31) shows the conversion of the three-phase fixed coordinate system into a two-phase
rotating coordinate system.

[
id
iq

]
=

[
sinθ −cosθ

cosθ sinθ

]
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] ia

ib
ic

 (31)
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In a three-phase motor system, in most cases, owing to their costs, two-phase electric current sensors are
used instead of three-phase electric current sensors. Using the current balance equation ia + ib + ic = 0
to delete term ic from Equation (31) yields the following result:[

id
iq

]
=

[
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

][
ia

ib

]
. (32)

3.2. Current and Position Sensor Fault Diagnosis

The fault of the electric current sensor can be diagnosed using the parity equation [43]. The space
equation to obtain the parity equation is expressed by Equation (33).

.
x = Ax + Bu + Exd + Fx f
y = Cx + Du + Eyd + Fy f

(33)

where x ∈ <n denotes the state vector, u ∈ <m is the vector of the measured input signals, y ∈ <p is
the vector of the measured plant output signals, and d ∈ <nd and f ∈ <n f are vectors of unknown
input signals. f represents the faults one desires to detect, whereas d represents unknown disturbances
that should not be detected.

When used as a transfer equation, Equation (33) can be converted to

y(s) = Hyu(s)u(s) + Hyx(s)x(0) + Hyd(s)d(s) + Hy f (s) f (s) (34)

where


Hyu(s) = C(sI − A)−1B + D

Hyx(s) = C(sI − A)−1

Hyd(s) = C(sI − A)−1Ex + Ey

Hy f (s) = C(sI − A)−1Fx + Fy

.

The residual can be obtained by the algorithm shown in Figure 7 using the transfer function
expressed in Equation (34).

When the residual shown in Figure 8 is mathematically expressed, the result is expressed as
Equation (35). The residual can be obtained from the difference between the two vectors, which
are obtained by multiplying the input and output vectors with design vectors Vru(s) and Vry(s),
respectively. The residual r(s) is independent of the known input vector but depends on the fault
vector [32].
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r(s) = Vru(s)u(s) + Vry(s)y(s)
= Vru(s)u(s) + Vry(s)

{
Hyu(s)u(s) + Hyd(s)d(s) + Hyx(s)x(0) + Hy f (s) f (s)

}
=
[

Vru(s) + Vry(s)Hyu(s) Vry(s)Hyd(s)
][ u(s)

d(s)

]
+Vry(s)Hyx(s)x(0) + Vry(s)Hy f (s) f (s)

(35)

To create a residual that is influenced only by the fault signal, the coefficients of u(s) and d(s) should
be zero. Therefore, Vru(s) and Vry(s) that satisfy Equation (36) should be obtained.

[
Vry Vru

][ Hyu Hyd
I 0

]
= 0 (36)

When the above method is applied to the IPMSM, the basic form of Equation (35) can be expressed
as follows: .

x = Ax + Bu + Exd
y = Cx + Du + Eyd + Fy f

x =

[
id
iq

]
, u =

[
vd

vq − npωrφm

]
, y =

[
ia

ib

]
, f =

[
ia_ f
ib_ f

]

A =

 − R
Ld

npωr Lq
Ld

− npωr Ld
Lq

− R
Lq

, B =

[
1

Ld
0

0 1
Lq

]

C =

[
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

]
, D = 0

Fy =

[
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

]
. (37)

We assume that only the fault of the electric current sensor is considered and that the disturbance
is low (Ex = Ey = 0). Equation (37) is converted into the form of a transfer function similar to
Equation (35) when we assume that ωr is a pseudo constant [44].

Then, the resulting equation would be as follows:

Hyu(s) =

[
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

]
1
K

[
R + sLq npωrLq

−npωrLd R + sLq

]
Hyd(s) = 0

(38)

where K = (R + sLd)(R + sLq) + np
2ωr

2LdLq.
When Equation (38) is applied to Equation (37), Vry(s) and Vru(s) can be obtained as follows:

Vry(s) =

[
−npωrLd −R− sLq

−R− sLd npωrLq

]

Vru(s) =

[
0 1
1 0

] . (39)

Finally, the residual derivation, i.e., Equation (39), can be used to derive the following:

r(s) = Vry(s)y(s) + Vru(s)u(s)

=

[
−npωrLd −R− sLq

−R− sLd npωrLq

]
y(s) +

[
0 1
1 0

]
u(s)

=

[
−npωrLd −R− sLq

−R− sLd npωrLq

][
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

]
f (s)

. (40)
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Now, coordinate conversion will be conducted to independently separate the residual from the
faults in the electric current sensor at a and b.

r′(s) =

([
−npωrLd −R− sLq

−R− sLd npωrLq

][
sinθ −cosθ

cosθ sinθ

][
1 0√

3
3

2
√

3
3

])−1

r(s)

=

[
1 0
0 1

]
f (s)

=

[
r13

r14

] (41)

From the above mathematical expressions, we confirm that residuals r13 and r14 are influenced by the
faults of electric current sensors ia_ f and ib_ f , respectively.

Because the fault-diagnosis algorithm mentioned above considers only the fault of the electric
current sensor, to confirm the possibility of fault separation regarding the position sensor of the
residual in Equation (31), the correlation between each sensor and the residual will be analyzed.

Using Equations (40) and (41), the sensor information that influences r13 and r14 can be expressed
as follows:

r13 : 0 = r13(ia, θ) (42)

r14 : 0 = r14(ib, θ). (43)

The expressions for Equations (42) and (43) are listed in Table 3.

Table 3. Fault table of low-level fault diagnosis residual.

ia ib θ

r13 X X
r14 X X

Assuming that only a single fault occurs, Table 3 lists the possibility of separation of electric
current sensor faults ia and ib from fault θ of the position sensor using the combination of r13 and r14.

3.3. Simulation Result

The proposed algorithm is implemented using Matlab/Simulink. The IPMSM control system
model is selected among the AC6 100-kW drive samples of Matlab/Simulink. The motor model
parameters of the example are listed in Table 4.

Table 4. Interior permanent magnet synchronous motor (IPMSM) model parameter.

Parameter Name Value (Unit)

Stator resistance (R) 8.296 (mΩ)
d-axis stator inductance (Ld) 0.174 (mH)
q-axis stator inductance (Lq) 0.293 (mH)

Magnet flux linkage (φm) 71.115 (mV·s)
Inertia (J) 0.089 (kg·m2)

Viscous damping (F) 0.005 (Nm·s)
Pole pairs (np) 4 (-)

Figure 9 shows the fault signals of each sensor. The fault signal is applied from 0.5 to 0.7 s to the
a-phase electric sensor with 100-A offset. From 1 to 1.2 s, the gain value of the b-phase electric sensor
doubles and an offset of 0.1 rad/s of the position sensor is applied from 1.5 to 1.7 s.
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Figure 12 shows the d–q axis electric currents of the IPMSM control system.
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According to the simulation results described above, when faults occur in the electric and positions
sensor, the faults are influenced by the electromagnetic torque, input voltage, and electric current.
Similarly, a fault in one part of the control system can influence the other parts.

Figure 13 shows r13 and r14 from the proposed algorithm during the fault simulation.
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When Figure 13 is considered as the fault table listed in Table 3, r13 significantly deviates from
zero in case of an a-phase electric current sensor fault; meanwhile, r14 significantly deviates from
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The motor parameters of the experiments are listed in Table 5.

Table 5. PMSM model parameter.

Parameter Name Value (Unit)

Stator resistance (R) 2/3 (Ω)
d-axis stator inductance (Ld) 0.51/3 (mH)
q-axis stator inductance (Lq) 0.51/3 (mH)

Magnet flux linkage (φm) 1.25 (mV·s)
Pole pairs (np) 4 (-)

Figure 15 shows the fault signals of each sensor. The fault signal is applied from 0.5 to 0.7 s to the
a-phase electric sensor with 5-A offset. From 1.5 to 1.7 s, the gain value of the b-phase electric sensor
doubles while 0.1-rad offset is applied from 2.5 to 2.7 s.
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Figure 16 shows the rotor speed of the PMSM control system according to the reference speed.
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Figure 17 shows the d–q axis input voltages of the PMSM control system.
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Figure 18 shows the d–q axis electric currents of the PMSM control system.



Sensors 2016, 16, 2106 20 of 24Sensors 2016, 16, 2106 21 of 25 

 

 

Figure 18. Speed control test results (Rotor currents). 

According to the test results described above, when faults occur in the electric and position 

sensors, the faults are influenced by the input voltage and electric current. Similarly, a fault in one 

part of the control system can influence the other parts. 

Figure 18 shows 13r  and 14r  from the proposed algorithm during the test. 

When Figure 19 is considered as the fault table listed in Table 3, 13r  significantly deviates from 

zero in case of an a-phase electric current sensor fault; meanwhile, 14r  significantly deviates from 

zero in case of a b-phase electric current sensor fault. In case of a position sensor fault, both 13r  and 

14r  significantly deviate from zero. Assuming that only a single fault occurs, residuals 13r  and 14r  

can be used to detect and separate the faults in the a- and b-phase electric current sensors and the 

position sensor. 

  

(a) (b) 

Figure 19. Speed control simulation results (Input voltage): (a) Residual ( 13r ); (b) Residual ( 14r ). 

4. Integrated Fault-Diagnosis Algorithm 

Figure 18. Speed control test results (Rotor currents).

According to the test results described above, when faults occur in the electric and position
sensors, the faults are influenced by the input voltage and electric current. Similarly, a fault in one part
of the control system can influence the other parts.

Figure 18 shows r13 and r14 from the proposed algorithm during the test.
When Figure 19 is considered as the fault table listed in Table 3, r13 significantly deviates from

zero in case of an a-phase electric current sensor fault; meanwhile, r14 significantly deviates from
zero in case of a b-phase electric current sensor fault. In case of a position sensor fault, both r13 and
r14 significantly deviate from zero. Assuming that only a single fault occurs, residuals r13 and r14
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position sensor.
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4. Integrated Fault-Diagnosis Algorithm

The purpose of the integrated diagnosis is to use the combined high- and low-level fault diagnoses
to achieve dual monitoring to specifically classify the fault factors and to distinguish the faults through
system performance analysis. The low-level fault diagnosis directly defines the target fault of the
individual systems and individually creates residuals to immediately and specifically recognize the
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fault. However, due to external noise and inaccuracy of the system, it can also trigger a false alarm.
To prevent such false alarms, the high-level fault diagnosis can be used to analyze the system control
performance while specifically classifying the fault factors using the low-level fault diagnosis.

Using the residual in Equation (19) in the high-level fault diagnosis and the residual in Equations
(42) and (43) in the low-level fault diagnosis, the fault-detection flags can be defined as follows:

In high− level fault diagnosis
i f |r1| > th1 &|r9| > th9 &|ri| < thi, i 6= 1, 9 then f (H1) = 1

i f |r2| > th2 &|r10| > th10 &|ri| < thi, i 6= 2, 10 then f (H2) = 1
i f |r3| > th3 &|r11| > th11 &|ri| < thi, i 6= 3, 11 then f (H3) = 1
i f |r4| > th4 &|r12| > th12 &|ri| < thi, i 6= 4, 12 then f (H4) = 1

(44)

f |r13,1| > thia then f (L1,1) = 1
i f |r13,2| > thia then f (L1,2) = 1
i f |r13,3| > thia then f (L1,3) = 1
i f |r13,4| > thia then f (L1,4) = 1

(45)

f |r14,1| > thib then f (L2,1) = 1
i f |r14,2| > thib then f (L2,2) = 1
i f |r14,3| > thib then f (L2,3) = 1
i f |r14,4| > thib then f (L2,4) = 1

(46)

where th refers to the threshold for the fault detection and its value differs according to the type
of sensor or actuator. r13,i and r14,i (i = FL, FR, RL, RR = 1, 2, 3, 4) refer to the residuals for
detecting the electric current and position sensors of the drive motor in each wheel. f (Hi) refers
to the fault-detection flag of the high-level fault diagnosis, whereas f (L1,i) and f (L2,i) refer to the
fault-detection flags of the low-level fault diagnosis. The fault-detection flags become one when the
respective residuals exceed the threshold in Equations (44)–(46). Otherwise, they are expressed as zero.

Finally, the integrated fault diagnosis, which is the integrated result of the high- and low-level
fault diagnoses of the in-wheel independent drive electric vehicle, is listed in Table 6.

Table 6. Fault table of integrated fault diagnosis residual.

Low-Level Fault Diagnosis High-Level Fault Diagnosis Fault Isolation

f (L1,1) = 1 and f (L2,1) = 0
f (H1) = 1 FL Motor

ia Current sensor
f (L1,1) = 0 and f (L2,1) = 1 ib Current sensor
f (L1,1) = 1 and f (L2,1) = 1 Position sensor

f (L1,2) = 1 and f (L2,2) = 0
f (H2) = 1 FR Motor

ia Current sensor
f (L1,2) = 0 and f (L2,2) = 1 ib Current sensor
f (L1,2) = 1 and f (L2,2) = 1 Position sensor

f (L1,3) = 1 and f (L2,3) = 0
f (H3) = 1 RL Motor

ia Current sensor
f (L1,3) = 0 and f (L2,3) = 1 ib Current sensor
f (L1,3) = 1 and f (L2,3) = 1 Position sensor

f (L1,4) = 1 and f (L2,4) = 0
f (H4) = 1 RR Motor

ia Current sensor
f (L1,4) = 0 and f (L2,4) = 1 ib Current sensor
f (L1,4) = 1 and f (L2,4) = 1 Position sensor

f
(

L1,i
)
= 0 and f

(
L2,i
)
= 0 f (Hi) = 1 Intolerable and not isolatable

f
(

L1,i
)
= 1 or f

(
L2,i
)
= 1 f (Hi) = 0 Tolerable and isolatable

Table 6 lists the final fault diagnosis derived from the simultaneous observations of the
fault-diagnosis flags of the high- and low-level fault diagnoses. When the high-level fault diagnosis
fault-detection flag f (Hi) is one, it means that the fault is finally diagnosed. Using the corresponding
low-level fault diagnosis fault-detection flags f (L1,i) and f (L2,i), specific faults can be determined.
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When f (Hi) is zero and f (L1,i) or f (L2,i) is one, because no reduction in the entire system performance
occurs, the fault is determined to be tolerable. In other words, the system does not need to be shut
down or reconfigured because it can trigger false alarm due to unexpected sensor noise or disturbance
to the low-level fault diagnosis. On the other hand, if f (Hi) is one whereas f (L1,i) and f (L2,i) are
zero, this means that an abnormality occurs from the subject, which is not defined in the low-level
fault diagnosis. In this case, we can determine that the risk factor can be recognized by the high
level-fault diagnosis. Similarly, the integrated fault-diagnosis method can provide dual monitoring of
faults between the high- and low-level fault-diagnosis systems, further enhancing the robustness and
stability of the diagnosis procedure. In addition, the integration enables more specific classification of
the triggered faults.

5. Conclusions

This paper proposed a high-level fault diagnosis of vehicle dynamics and low-level fault diagnosis
of the motor system by considering the drive motor of in-wheel independent drive electric vehicles.
Simulations were performed to confirm the usefulness of the algorithm. In addition, an integrated
fault-diagnosis algorithm, which combines both the above methods, was proposed to prevent false
alarm, ensure robustness, and perform more specific classification of faults. Such an integrated
fault-diagnosis method cannot only be applied to the drive motor of the in-wheel independent drive
electric vehicles but can also be extended to other sub-systems, further enhancing the robustness and
stability of the electric vehicle system.
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