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Abstract: With the wide deployment of Wi-Fi networks, Wi-Fi based indoor localization systems that
are deployed without any special hardware have caught significant attention and have become a
currently practical technology. At the same time, the Magnetic, Angular Rate, and Gravity (MARG)
sensors installed in commercial mobile devices can achieve highly-accurate localization in short time.
Based on this, we design a novel indoor localization system by using built-in MARG sensors and
a Wi-Fi module. The innovative contributions of this paper include the enhanced Pedestrian Dead
Reckoning (PDR) and Wi-Fi localization approaches, and an Extended Kalman Particle Filter (EKPF)
based fusion algorithm. A new Wi-Fi/MARG indoor localization system, including an Android
based mobile client, a Web page for remote control, and a location server, is developed for real-time
indoor pedestrian localization. The extensive experimental results show that the proposed system is
featured with better localization performance, with the average error 0.85 m, than the one achieved
by using the Wi-Fi module or MARG sensors solely.

Keywords: indoor pedestrian localization; Wi-Fi; MARG; PDR; EKPF

1. Introduction

The maturation and popularization of wireless communication technology has led to the
emergence and development of various Location-Based Services (LBSs). LBSs are significantly
required by the pedestrian in indoor environments, especially for emergency applications. In outdoor
environments, the Global Position System (GPS) has been widely used and is able to provide
high-enough localization accuracy. Unfortunately, due to the serious signal attenuation from the
satellites, the localization performance in indoor environments becomes greatly degraded and even
unavailable. Although various indoor localization systems, such as the Wi-Fi Received Signal Strength
(RSS) [1,2], ZigBee [3], ultra-wideband [4], radio frequency identification [5], Bluetooth [6], and inertial
sensors [7] based indoor localization systems, have been significantly studied, the design of the
highly-accurate and low-cost indoor localization system still forms an interesting topic.

Wi-Fi RSS based indoor localization has been recognized as one of the most popular and
representative indoor localization technologies. In the indoor Wi-Fi environment, commercial mobile
devices can be used to collect the Wi-Fi RSS with the built-in Wi-Fi module. The signal propagation
model based indoor localization approach generally requires the precise modelling of the RSS and
physical distance, which is difficult to obtain [8]. The location fingerprint based indoor localization
approach does not require foreknowing the locations of Access Points (APs), and thereby it adapts
to the environmental well. This approach involves two phases: the offline and online phases. In the
offline phase, the Wi-Fi RSS from APs is collected at each Reference Point (RP), and then a radio map is
constructed based on the Wi-Fi RSS, MAC addresses, and location coordinates. Then, in the online
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phase, the new Wi-Fi RSS is collected in a real-time manner to be matched against the pre-constructed
radio map for the localization. However, this method often leads to large localization errors and
location jumps due to the irregular fluctuation of the RSS which is caused by the complex indoor
environment. Besides, the computation cost involved in fingerprint matching generally increases with
the increase of the dimensions of the target environment.

At the same time, with the rapid development of the Micro-Electro-Mechanical System (MEMS)
technology, the Magnetic, Angular Rate, and Gravity (MARG) sensors have been embedded in
various handheld devices such as the smartphones. By using the MARG sensors, the Pedestrian Dead
Reckoning (PDR) approach, which relies on the previous locations, stride length, and walking direction
to calculate the current location of the pedestrian, has become very popular for pedestrian localization.
Some previous studies use the empirical models about the walking state to estimate the stride length [9],
meanwhile the existing heading estimation approaches [10–13] usually rely on the gyroscope solely
or the fusion of the gyroscope and magnetometer to calculate the user heading. However, the stride
length cannot be accurately estimated in each step when the pedestrian walks in changing scenarios
and the heading calculation may also not be accurate when the measurement data suffer from magnetic
interference and gyroscope drift. Although the PDR approach is able to achieve high localization
accuracy in short time, the drift of the estimated locations will occur as the time goes on, since the
inertial measurement unit easily suffers from the accumulative errors of the estimated stride length
and walking direction. On the contrary, the Wi-Fi RSS based localization approach estimates the
absolute locations of the pedestrian, which can help to mitigate the accumulative errors of the PDR.
These two localization approaches are complementary to each other for the sake of improving the
indoor localization accuracy.

Although a large number of fusion algorithms have been studied for integrating the PDR and
Wi-Fi localization, many critical issues are still open. The current fusion algorithms mainly focus on
deploying the Particle Filter (PF) [14,15], Kalman Filter (KF) [16], and the improved algorithm based
on the previous two algorithms. The PF helps a lot in improving the localization accuracy, especially
for the nonlinear and non-Gaussian systems, but it involves high computation cost. In addition,
it is difficult to obtain the optimal Importance Density Function (IDF) which is used for generating
the high-quality particles. The KF is based on the assumption that the noise obeys the Gaussian
distribution with zero mean, which cannot be easily satisfied in the actual indoor environment.

In summary, the most important contribution of this paper is to design a novel indoor localization
system by using built-in MARG sensors and Wi-Fi module. To improve the robustness and effectiveness
of our system, we accomplish the design and optimization of three main modules, including the
enhanced Wi-Fi localization, enhanced Pedestrian Dead Reckoning, and Extended Kalman Particle
Filter (EKPF) based fusion algorithms. We propose integrating the map information and the results
of the PDR and Wi-Fi localization by using the EKPF, which depends on the EKF to optimize the
IDF with the purpose of reducing the number of particles and approximating the true posterior
distribution. In the PDR, by considering magnetic interference and gyroscope drift, the complementary
filter auxiliary Extended Kalman Filter (EKF) is used to integrate the tri-axial accelerometer, tri-axial
gyroscope, and tri-axial magnetometer for the sake of estimating the heading of the pedestrian.
In addition, we adopt a neural network to estimate the parameters of the stride length model as well
as calculating the velocity per each second. For the Wi-Fi localization, we apply the improved affinity
propagation clustering to save the computation time of fingerprint matching and reduce the number
of large localization errors. This process is shown in Figure 1 and the detailed steps will be discussed
in the following sections.

The rest of this paper is organized as follows. Section 2 introduces the related works. Section 3
describes the proposed system including the PDR and Wi-Fi localization approaches, as well as the
related fusion algorithm. In Section 4, the extensive experiments are carried out in an actual indoor
environment. Finally, Section 5 concludes the paper and provides some future directions.
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Figure 1. Architecture of the proposed system.

2. Related Works

In recent decades, various low-cost inertial sensors have been equipped in the off-the-shelf
smartphones due to many functional requirements, and meanwhile the Wi-Fi network has also been
widely deployed in the indoor environment. Thus, the PDR and Wi-Fi localization approaches are
recognized as the two most promising approaches used for indoor localization. The earliest work
focusing on the fusion of the PDR and Wi-Fi localization is discussed in [17]. The authors achieve the
integration of the inertial sensors and Wi-Fi module by using both the PF and KF. In concrete terms,
as one of the most important parameters in the PDR, the heading of the pedestrian is estimated by
the KF, which fuses the output of the gyroscope and the angle of trajectory calculated by the Wi-Fi
localization. However, the approach is limited in terms of localization accuracy since their performance
significantly depends on the robustness of Wi-Fi localization. In [18], the authors propose an adaptive
integration frame to fuse localization information from the GPS/MARG and Wi-Fi/MARG integrated
subsystems, and meanwhile use a Sequential Importance Resampling (SIR) PF approach to integrate
the Wi-Fi RSS measurements and data from the MARG sensors. The particles are calculated by using
the velocity and attitude coming from MARG sensors, while ignoring the impact of Wi-Fi observation
data on particle sampling. In this paper, we depend on the EKF with observation data from the
Wi-Fi and MARG sensors to optimize the IDF for the sake of reducing the number of particles and
approximating the true posterior distribution.

The work studied in [19] focuses on integrating the gyroscope, accelerometer, and Wi-Fi fingerprint
by using a complementary EKF. This approach estimates the heading of the pedestrian, based on
the data from the gyroscope and the linear model between the step length and step frequency.
An auto-calibration process is introduced in [20] to reduce the measurement error of heading direction
as well as the estimation error of step length during movement.

Considering the variation of Wi-Fi RSS, computation cost involved in fingerprint matching,
and utilization of the low-cost inertial sensors built-in smartphones, the refresh rate model of the
Wi-Fi signal is introduced in [21] to optimize the Wi-Fi localization, and meanwhile the affinity
propagation clustering is discussed in [22] to reduce the computation cost for the positioning. At the
same time, an empirical model constructed from the individual height and peak-to-peak magnitude
of the acceleration in each step is developed in [23] to estimate the stride length of the pedestrian.
The quaternion based heading estimation approach [24] is capable of compensating the drift of heading
estimation with low computation cost. Different from the approaches above, in this paper, we first
rely on a new velocity calculation algorithm to reduce the error of speed estimation, and meanwhile
integrate the tri-axial gyroscope, tri-axial accelerometer, and tri-axial magnetometer by using the
complementary filter auxiliary EKF [25] to improve the accuracy of heading estimation. Second,
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we apply the improved affinity propagation clustering to reduce the number of large localization
errors, as well as achieving the low computation complexity. Finally, the extend Kalman particle filter
is applied to accomplish the Wi-Fi/MARG fusion, which is capable of eliminating the location jumps
caused by the Wi-Fi localization and the accumulative errors of the PDR.

3. System Description

3.1. Pedestrian Dead Reckoning

In the PDR, the previous location, estimated stride length, and heading are used to reckon the
current location of the pedestrian. To reduce the accumulative error, we propose an enhanced algorithm
for the estimation of the velocity and walking direction.

3.1.1. Velocity Estimation

We rely on the data from the tri-axial accelerometer to estimate the velocity of the pedestrian, as
shown in Figure 2. In the offline phase, we optimize the calibration coefficient of an empirical model
by using the Back Propagation (BP) neural network [26], and then use this model to estimate the stride
length. In concrete terms, we first calculate the relative magnitude of acceleration, which is defined as
the difference between the local and measuring acceleration, namely Accnorm, and meanwhile use
a low-pass filter to eliminate the noise involved in Accnorm. Second, we perform the step detection
to extract the gait characteristics, such as the gait frequency and statistical quantities of acceleration
magnitude, i.e., mean, variance, maximum, and minimum of Accnorm. Finally, we optimize the
calibration coefficient based on the BP neural network. In the online phase, we estimate the stride
length and velocity of the pedestrian by using the empirical model and step detection respectively in a
real-time manner.

Low-pass filter 

Gait characteristics
Calibration coefficient estimated 

by BP neural network
Step detection 

The empirical model for 

estimating the stride length

The height of 

pedestrian 

Velocity calculation

Accnorm

Velocity 

Offline phase

Online phase

Figure 2. Block diagram of velocity estimation.

• Step Detection

Due to the error of the installation of inertial instruments, we rely on the periodic variation of
Accnorm to detect the gait of the pedestrian. In Figure 3, the abnormal peaks are caused by the random
self-dithering of the human body and the noise of sensors. By setting the interval between every
two adjacent local maximum values as no smaller than the time threshold Tthreshold and the local
maximum values as larger than the amplitude threshold Amthreshold, the valid steps (with green circles)
are detected in Figure 3. Considering that the pedestrian approximately takes two steps for each
second and the updating rate of the data from the MARG sensors is 50 Hz, we set Tthreshold = 0.3 s and
Amthreshold = 0.8 m/s2.
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Figure 3. Results of step detection.

• Velocity Calculation

The velocity estimation varies from step to step, especially when the stride length is treated as a
constant. We use the empirical model in Equation (1) to estimate the stride length, Lk, based on the
acceleration measurement.

Lk = ρ 4
√

acck
max − acck

min (1)

where acck
max and acck

min are the maximum and minimum values of Accnorm for the k-th step.
ρ is the calibration coefficient which equals the ratio between the real distance dreal and estimated
distance destimated. According to the biomechanical property, the stride length is determined by the
step frequency and height of the pedestrian. The nonlinear model for the calibration coefficient
ρ is constructed from the step frequency, f, height of the pedestrian, h, and mean and variance of
accelerometer magnitude, Amean and Avar, as shown in Equation (2). In our system, the coefficient ρ

is estimated by using the BP neural network.

ρ = Φ( f , Amean, Avar, h) (2)

Figure 4 shows the block diagram of velocity calculation. By performing the step detection,
we can obtain the number of steps, numt, in each second. In the t-th second, if numt = 0, the velocity
is set as 0 m/s, which indicates that the pedestrian is not moving, if 0 < numt < 2, the velocity is set
as 0.68 m/s, which indicates that the pedestrian walks for one step, and otherwise, we calculate the
velocity by

velocityt =
1

numt

numt

∑
i=1

Li
t fs

intervali
t

(3)

where Li
t is the i-th stride length, which is calculated by Equation (1). intervali

t is the number of
sampling points between every two valid local maximum values. fs = 50 Hz is the updating rate of
the data from the MARG sensors.

3.1.2. Heading Estimation

The state-of-the-art smartphones are generally equipped with the MARG sensors, like the tri-axial
accelerometer, magnetometer, and gyroscope. Theoretically, the attitude of the carrier can be estimated
by using the data in the gravity and geomagnetic fields, or the data from the gyroscope. However,
the accelerometer and magnetometer are easily interfered with by the noise of sensors; meanwhile,
the angular rate obtained from the gyroscope always drifts for a long time. To solve these problems,
we adopt the complementary filter auxiliary EKF to estimate the heading of the pedestrian, as shown
in Figure 5.
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Figure 4. Block diagram of velocity calculation.
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Figure 5. Block diagram of heading estimation.

• Initial quaternion calculation

Based on the Euler theorem of the rigid body rotation [27], we use the quaternion matrix to
describe the rotation of the body frame relative to the East-North-Up (ENU) reference frame, as shown
in Equation (4).

Hb
n(q) =

 q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4

 (4)

where Hb
n(q) is the attitude matrix. q =

[
q1 q2 q3 q3

]T
is the attitude quaternion, which is set as

a unit vector. We calculate the initial attitude quaternion Qinit by using the data from the accelerometer
and magnetometer, as shown in Equation (5). Accb

init = Hb
n (q) ·

[
0 0 g

]T

Magb
init = Hb

n (q) ·
[

0 bn
y bn

z

]T (5)

where the initial measurement vectors from the tri-axial accelerometer and magnetometer are

Accb
init =

[
ab

x ab
y ab

z

]T
and Magb

init =
[

mb
x mb

y mb
z

]T
respectively. g is the local gravity

acceleration. bn
y and bn

z are the northward and perpendicular components of the local earth magnetic
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field in the ENU reference frame respectively. Finally, by using the method in [28] to calculate the
magnetic heading angle, the initial heading of the pedestrian is calculated by

ϕinit = arctan
(

mb
x, mb

y

)
(6)

• Gyroscope error modification

The accumulative error of angular rate which is caused by the drift of the gyroscope significantly
deteriorates the precision of heading estimation. Although the attitude angular, which is calculated
by using the data from the accelerometer and magnetometer, is not featured with high precision,
it is able to remain stable for a long time. The gyroscope, accelerometer, and magnetometer can
be used to complement each other since the gyroscope exhibits the high-pass property, while the
accelerometer and magnetometer exhibit the low-pass property. Therefore, the complementary filter
method, which relies on the complementary characteristics of the MARG sensors to modify the data
from the gyroscope, improves the precision of attitude estimation. The angular velocity θ (k) in time
domain is modified as

θ̇ (k) = K (θref (k)− θ (k)) + ω
b (k) (7)

where ωb (k) is a vector of the k-th measured angular rate. θref (k) is the k-th attitude angular
which is calculated by using the data from the magnetometer. K is an adjustable parameter.
However, the modified attitude angular cannot be easily obtained from Equation (7). To solve this
problem, we select the Mahony based multi-axis complementary filter which is also used in [29] to
modify the angular rate obtained from the gyroscope.

For pedestrians with a low walking speed, the attitude angular always has small variation in
every 0.02 s. Thus, we use the estimated attitude angular in the latest updating to construct the attitude
matrix for the sake of modifying the drift of the gyroscope. Specifically, we standardize the newly
collected measurement vectors in the acceleration and geomagnetic field, Accb and Magb, in the body
coordinate frame, and then estimate the projection vectors in the acceleration and geomagnetic field,
as and ms, by using the quaternion rotation matrix. Since the measurement and projection vectors are
in the same coordinate frame, the cross product of them can be described as

ea = as ×Accb (8)

em = ms ×Magb (9)

We select the error vector e as the input of the Proportion Integral (PI) controller [30] to calculate
the modification of angler rate δω , such that

δω = Kp · e (k) + Ki
k

∑
j=0

(e (j) · ∆t) (10)

where Kp is the proportional integral coefficient. Ki is the control integral coefficient. ∆t is the integral
time constant. e = ea + em is the error in total.

After the value δω is obtained, the modified angular rate equals to

ω (k) = δω + ω
b (k) (11)

where ω (k) is the k-th modified angular rate vector.
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• Attitude angular estimation

Since the data from the gyroscope can be used to estimate the attitude angular based on the
differential equation of the rigid body motion, we use the EKF to estimate the attitude angular.
In addition, we rely on the measurement vectors in the gravity and geomagnetic fields to modify the
attitude angular.

By setting the state variable as a quaternion vector, Q, and measurement variables as the
measurement vectors in the gravity and geomagnetic fields, the state and measurement equations can
be constructed as 

Q (k) =
(

I + 1
2 Λ (ω (k) TS)

)
Q (k− 1) + v (k)[

Accb (k)
Magb (k)

]
=

[
Hb

n (Q (k)) 0
0 Hb

n (Q (k))

] [
G
b

]
+ ν (k)

(12)

where G =
[

0 0 g
]T

is the local gravity acceleration vector. b =
[

0 bn
y bn

z

]T
is the local earth

magnetic field vector in the ENU reference frame. I is the identity matrix. TS is the system interval.
ω (k) =

[
ωb

x (k) ωb
y (k) ωb

z (k)
]

is the modified angular rate in the kTS-th time interval. v (k) is
the matrix of processing noise and ν (k) is the matrix of observation noise. Λ (ω (k) TS) is calculated by

Λ (ω (k) TS) =


0 −ωb

xTS −ωb
yTS −ωb

z TS

ωb
xTS 0 ωb

z TS −ωb
yTS

ωb
yTS −ωb

z TS 0 ωb
xTS

ωb
z TS ωb

yTS −ωb
xTS 0

 (13)

Finally, based on the recursive filtering process in EKF by Equation (12), including the correction
phase and prediction phase, we can obtain the optimal quaternion vector in each second, and then use
the newly updated quaternion to estimate the heading of the pedestrian by Equation (14).

ϕ = arctan(− 2(q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3
) (14)

3.2. Wi-Fi Localization

The Wi-Fi RSS is the superposition value of multiple signal paths, which easily suffers from the
multipath interference. Figure 6 shows an example of the Cumulative Distribution Functions (CDFs)
of RSS from two different APs at a given RP for 3 min. It can be obtained that the RSS is not stable,
even in a short time duration, and the probability of RSS fluctuation around its mean within the range
of [−5 dBm, 5 dBm] is higher than 90%. Furthermore, to examine the impact of the blocking of human
body on RSS fluctuation, we design another experiment in which the RSS is collected under four
different orientations, i.e., 0◦ , 90◦ , 180◦ , 270◦, as shown in Figure 7. From these figures, we can find
that (i) RSS fluctuation becomes significantly large and even reaches more than 20 dBm by the blocking
of the human body; (ii) different orientations result in a different mean of RSS and different ranges of
RSS fluctuation; and (iii) RSS from different APs at each RP generally has a different mean of RSS and
different ranges of RSS fluctuation, which guarantees the effectiveness of Wi-Fi localization.

There are two phases involved in Wi-Fi localization, namely the offline phase and online phase.
In the offline phase, we collect the RSS sequences labelled by timestamps to construct a radio map,
in which the orientation of human body, MAC address of each AP, and location of each RP are also
recorded. Then, based on the similarities of the RSS and the corresponding geographic location
coordinates, affinity propagation clustering is performed to obtain a batch of clusters of RPs.

In the online phase, the orientations of human body are estimated by using the heading estimation
approach, which has been carefully discussed in Section 3.1. Then, the newly collected RSS and
the related estimated orientation are matched against the pre-constructed radio map to obtain the
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best-matching cluster of RPs. After that, the locations of the pedestrian are estimated by performing
the WKNN on the selected RPs in the best-matching cluster.
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Figure 6. CDFs of RSS from two different APs for 3 min. (a) RSS from AP with the MAC address C0:
A0: BB: 26: 56: 50; (b) RSS from AP with the MAC address C0: A0: BB: 27: 88: 20.
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Figure 7. CDFs of RSS under four different orientations for 3 min. (a) RSS from AP with the MAC
address C0: A0: BB: 26: 56: 50; (b) RSS from AP with the MAC address C0: A0: BB: 27: 88: 20.

3.2.1. Offline Phase

• Radio map construction

To deal with the problem that the RSS collected under different orientations of the human body
may be featured with significant variation, we construct eight radio maps, including the four under
the orientations 0◦, 90◦, 180◦, 270◦, and the other four constructed by using the mean of two radio
maps with the neighbouring orientations. By assuming that there are M APs and P RPs, the RSS vector
is notated as

ψ
k
i =

[
ψk

i,1, · · · , ψk
i,j, · · · , ψk

i,M

]T
(15)

where ψk
i,M

(
1 ≤ i ≤ P, 1 ≤ j ≤ M , 1 ≤ k ≤ 8

)
is the mean of RSS from the j-th AP, at the i-th RP,

and under the k-th orientation. The radio map with respect to the k-th orientation, Λk, is constructed as
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Λk =

 ψk
1 ψk

2 · · · ψk
P

x1 x2 · · · xP
y1 y2 · · · yP


T

(16)

• Affinity propagation clustering

For simplicity, we assume that the RSS vectors collected at the RPs i and j are ψi and ψj respectively.
To describe the similarity of every two RPs, we set the similarity function as

s(i, j) = −
∥∥∥ψi − ψj

∥∥∥
2
, ∀i, j 6= i ∈ {1, 2, · · · , P} (17)

During affinity propagation clustering, we define two types of messages which are transmitted
among different RPs, namely the responsibility message and availability message. The responsibility
message, r(i, j), describes the credibility about how suitably the RP j serves as the clustering centre for
the RP i, while the availability message, a(i, j), describes the credibility about how suitably the RP i
selects the RP j as its corresponding clustering centre.

In general, the larger sum of the values r(i, j) and a(i, j) indicates the higher likelihood of the RP
j to be selected as the clustering centre. In addition, the responsibility and availability messages are
updated iteratively among different RPs until the optimal clustering centres and the corresponding
clusters have been obtained. We define Hk as the set of clustering centres and Ck

j as the set of RPs
in the j-th cluster for the radio map with the k-th orientation. Considering that some clusters of RPs
may contain the singular points, which are geographically far away from the clustering centres of the
corresponding clusters, we use the outlier detection method [31] to eliminate the singular points after
obtaining the set of clusters by the APC.

3.2.2. Online Phase

The online phase contains two main steps, namely the coarse localization step and fine localization
step. The newly collected RSS vector is notated as

ψA = [ψA,1, ψA,2, · · · , ψA,M]T (18)

In the coarse localization step, we rely on the estimated heading of the pedestrian, ϕA, to obtain
the best-matching radio map. The pseudo code of this process is shown in Figure 8. Then, we match
the newly collected RSS vector ψA against the selected radio map to obtain the best-matching cluster
of RPs for the fine localization.

The clustering centre of the best-matching cluster is defined as

j′ = arg min
j∈Hs

∥∥∥ψA − ψ
s
j

∥∥∥2
(19)

where Hs is the set of clustering centres for the selected radio map Λs. ψs
j is the RSS vector collected at

the j-th RP and in the radio map with the s-th orientation.
In the fine localization step, we perform the WKNN on some specific RPs in the best-matching

cluster to locate the pedestrian. Specifically, we calculate the Euclidean distance between the newly
collected RSS and the RSS at each RP in the best-matching cluster by

dj =

√√√√ M

∑
i=1

(
Sij − ψA,i

)2 (20)

where Sij

(
i = 1, 2, · · · , M, j = 1, 2, · · · , n

)
is the RSS collected from the i-th AP, at the j-th RP, and in

the best-matching cluster. n is the number of RPs in the cluster Cs
j′ . ψA,i is the newly collected RSS

from the i-th AP. The estimated location of the pedestrian, L̃ = (x̃, ỹ), is as follows.
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L̃ =
K

∑
i=1

ωiLi (21)

ωi =
1
/

di
K
∑

m=1
1
/

d2
m

(22)

where Li = (xi, yi) (i = 1, 2, · · · , K) is the i-th selected RP with the smallest Euclidean distance in
the best-matching cluster. K is the number of selected RPs used for the WKNN. ωi is the weight of the
i-th selected RP.

Input: : the estimated heading  of the pedestrian

 : the radio map with respect to the k-th orientation k
Λ

Output: : the selected radio map

If then

s kΛ Λ

elseif

return
4s kΛ Λ

End if

kdir

thre : the threshold value of angle

: the k-th orientation including 0°, 90°, 180°, 

and 270°,                    , if k+1 > 4, 1,2,3,4k 

s
Λ

   abs ,absA k kdir thre dir thre     

    1abs ,absA k kdir thre dir thre   

return

1 1kdir dir 

A

Figure 8. Pseudo code of the selection of the best-matching radio map.

3.3. Extended Kalman Particle Filter

The performance of the conventional particle filter degrades significantly when there is a large
difference between the optimal IDF and real posterior distribution function [32]. To solve this problem,
we use the EKF to obtain the optimal IDF with the purpose of guaranteeing that the particles are
located in the high likelihood region. By fusing the Wi-Fi fingerprint information and the data from
the MARG sensors, the proposed EKPF is able to reduce the number of particles with low computation
cost, as well as improving the localization accuracy.

For the PDR, we construct the state equation in Equation (23); meanwhile, by assuming that the
state variable is stable in a short time, we also construct the observation equation in Equation (24).

Xk =


Elock
Nlock
velk

headk

 =


Elock−1 + velk · sin (headk)

Nlock−1 + velk · cos (headk)

velk−1
headk−1

+ Wk (23)

where Xk is the state variable vector. Elock and Nlock are the optimal eastern and northern locations.
velk and headk are the optimal velocity and heading of the pedestrian. Wk is the matrix of processing
noise which obeys the Gaussian distribution with the zero mean and covariance matrix Qw.

Zk = H · Xk + Vk (24)
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where Zk=
[

ElocWiFi
k NlocWiFi

k velMARG
k headMARG

k

]T
is the measurement variable vector.

ElocWiFi
k and NlocWiFi

k are the current eastern and northern locations estimated by Wi-Fi localization.
velMARG

k and headMARG
k are the current velocity and heading of the pedestrian estimated by using the

PDR. Vk is the matrix of observation noise which obeys the Gaussian distribution with the zero mean
and covariance matrix Rv.

The steps of the proposed EKPF are summarized as follows.
First of all, due to the fact that the PDR is a relative localization approach, we rely on the Wi-Fi

localization to estimate the absolute initial location of the pedestrian, (Eloc0, Nloc0). At the same time,
the initial particles

{
Xi

0, i ∈ 1, · · · , M
}

, where M is the number of particles, satisfy

Xi
0 ∼ p (X0) = N (X0, Q0) (25)

where X0 =
[

Eloc0 Nloc0 0 0
]T

is the mean of the initial particles. p (X0) is the proposal
distribution function which obeys the Gaussian distribution. Q0 is the covariance matrix of the initial
processing noise which is used to describe the dispersion degree of the initial particles. The weight of
the i-th initial particle is set as ωi

0 = 1/M.
Second, we apply the EKF [33] to update the state of particles in Equations (26)–(30),

and meanwhile fuse the measurement information to optimize the weights of particles in
Equation (31)–(32).

X̂i
k|k−1 = f

(
X̃i

k−1

)
(26)

Pi
k|k−1 = Fk,iPk−1,iF

T
k,i + Qk

w (27)

Ki
k = Pi

k|k−1HT
k,i

[
Hk,iP

i
k|k−1HT

k,i + Rk
v

]−1
(28)

X̃i
k = X̂i

k|k−1 + Ki
k

[
Zk −H

(
X̂i

k|k−1

)]
(29)

Pk,i = Pi
k|k−1 −Ki

kHk,iP
i
k|k−1 (30)

qi
k ∼ πN (Xk |Z1:k )

= 1
(2π)m/2|Rk

v|1/2 exp(
−[Zk−H(X̂i

k|k−1)]
T
(Rk

v)
−1

[Zk−H(X̂i
k|k−1)]

2 )
(31)

q̃i
k = qi

k

/
∑M

i=1 qi
k (32)

During the updating of the state of particles, the particles may be located at the incorrect locations
due to the interference of noise. To solve this problem, we fuse the indoor map information to modify
the trajectory of the pedestrian. Specifically, we define the particles which are located in the inaccessible
areas as the invalid ones, and modify the weight of the i-th particle into

q̂i
k =

{
0, inaccessible areas
q̃i

k, accessible areas
(33)

Finally, we adopt the residual resampling algorithm [34] to optimize the weights of particles
further. Based on the optimal particles X̃i

k and the corresponding weights q̂i
k, we estimate the locations

of the pedestrian by

X̃k =
M

∑
i=1

q̂i
kX̃i

k (34)
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4. Experimental Results

4.1. Environment Layout

The experiments are conducted on the same floor with the size of 64.6 m× 18.5 m in a building,
as shown in Figure 9. There are five APs and 363 RPs which are labelled with red stars and black dots
respectively in the target environment. The distance between every two neighbouring RPs in the green
and yellow shaded areas is set as 0.6 m and 0.8 m. The origin of the coordinate frame is labelled with a
red dot, while the X- and Y-axis point rightwards and upwards respectively.

The Galaxy S3 smartphone running under the Android 4.1.2 operation system is selected as the
receiver. The interface of our developed software contains two parts, i.e., Android based mobile client
(see Figure 10a) and Web page based remote control (see Figure 10b). The body coordinate frame with
respect to the receiver is shown in Figure 11. The receiver collects the data from the Wi-Fi module and
MARG sensors, and then transmits them to the location server through the Wi-Fi network. The location
server estimates the locations of the pedestrian, and then returns the localization results to the receiver
and remote control. The refresh rate of the data from the MARG sensors is 50 Hz and the updating
rate of the localization is 1 Hz.

64.6m

1
8
.5

m

AP Location Reference PointOrigin of coordinate frame

Figure 9. Environment layout.

(a) (b)

Figure 10. Interface of our developed software. (a) Mobile client; (b) Remote control.
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Z
X

Y

Figure 11. Body coordinate frame with respect to the receiver.

4.2. Performance of PDR Localization

4.2.1. Stride Length Estimation

To examine the performance of stride length estimation, we invite 10 volunteers with the height
ranging from 150 cm to 181 cm for the testing.

• Testing design

Taking the difference of walking speed into account, each volunteer is required to walk along
the same path with the length of 100 m under three different walking speeds, namely slow, normal,
and fast, to train the stride length model. After the stride length model is obtained, each volunteer is
required to walk along another path with the length of 140 m under the random walking speed for
the testing.

• Data analysis

The two existing popular methods used to optimize the stride length model are summarized
as follows. The first one [35], M1, is based on the ratio of the real and estimated walking distances
to optimize the calibration coefficient, and then uses Equation (1) to estimate the stride length, LM1 .
The second one [9], M2, is based on the height and stride frequency of the pedestrian to construct
a linear mathematical model to estimate the stride length, LM2 . Different from the methods above,
the proposed one, M3, is based on the BP neural network to optimize the calibration coefficient to
estimate the stride length, LM3 .

−15

−10

−5

0

5

10

15

M1 M2 M3

D
is

ta
nc

e 
er

ro
rs

 (
m

)

Figure 12. Distance errors between the real and estimated walking distances.
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In Figure 12, we use the box-plots to compare the localization errors by using M1, M2, and M3 to
estimate the stride length. From this figure, we can find that the interquartile range by M1 is larger than
the ones by M2 and M3, which indicates that the localization error by M1 is the largest. Based on the
upper Whiske, the maximum localization error by M3 is the smallest, whereas an abnormal localization
error (with a red cross) is resulted by M3.

4.2.2. Heading Estimation

The testbed used for heading estimation is shown in Figure 13. The trajectory of the pedestrian
is notated as A → B → C → D → E → F → A with the length of 126.56 m. To investigate the
performance of the proposed Complementary Filter Auxiliary EKF (CFAEKF) for heading estimation,
we compare it with two existing approaches: the EKF and Gradient Descent Algorithm (GDA) [30].

64.6m

1
8
.5

m

A BC

DE

F

AP LocationOrigin of coordinate frame Trajectory  

Figure 13. Testbed for heading estimation.

Figure 14 shows the CDFs of errors of heading estimation by the proposed CFAEKF and the
conventional EKF and GDA. From this figure, we can find that the proposed CFAEKF performs best,
with most errors of heading estimation falling within the range of 10◦, compared with the EKF and
GDA. In addition, Figure 15 shows the statistical errors of heading estimation. From this figure, we
can find that the 50th and 90th percentile errors by the EKF, GDA, and CFAEKF are 6.3◦, 5.4◦ and 1.8◦,
and 13.7◦ , 14.5◦ and 4.9◦ respectively; meanwhile, the CFAEKF reduces the mean error by 57.89%
and 58.84% from the ones by the EKF and GDA. To illustrate this result clearer, Figure 16 shows the
result of heading estimation. From this figure, we can find that the result of heading estimation by
the CFAEKF is more similar to the real heading, namely baseline, compared with the ones by the EKF
and GDA.
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Figure 14. CDFs of errors of heading estimation.
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Figure 15. Statistical errors of heading estimation.
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Figure 16. Result of heading estimation.
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Figure 17. CDFs of errors of heading estimation under different values Kp and Ki. (a) Different value
Kp; (b) Different value Ki.

For the CFAEKF, since the output of the gyroscope is modified by the PI controller, the selection
of control parameters has a significant impact on the heading estimation. Figure 17 shows the CDFs of
errors of heading estimation under different values Kp and Ki. From these figures, we can find that
when the value Kp is larger than 1, the value Kp has a slight impact on the error of heading estimation.
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When the value Ki is smaller than 100, the impact on the error of heading estimation of value Ki is
slight, while as the value Ki increases to 1000, more than 10% of the errors are larger than 150◦. Due to
the consideration of the sensitivity and stability of our system, we set Kp = 2 and Ki = 1.

4.3. Performance of Wi-Fi Localization

To investigate the performance of Wi-Fi localization, we design two experiments including the
static and dynamic localization. Figures 18 and 19 show the testbeds for the static and dynamic
localization respectively. For the static localization, we collect 10 RSS samples at each test point with
random orientations of human body, while for the dynamic localization, the pedestrian walks along a
given path A→ B→ C → D → E→ F which is labelled by the blue solid line.

64.6m

1
8
.5

m

AP Location Reference Point Test PointOrigin of coordinate frame

Figure 18. Testbed for static localization.

64.6m

1
8
.5

m

AP LocationOrigin of coordinate frame Trajectory  

A
B

C D

E F

Figure 19. Testbed for dynamic localization.

• Direction database

The proposed radio map, namely the Direction Database (DD), is constructed from the radio
maps with eight different orientations. The Mean Database (MD) is defined as the radio map which
is constructed from the mean of the four radio maps with the orientations 0◦ , 90◦ , 180◦ and 270◦.
For the comparison, the conventional radio map, namely the Static Database (SD), is constructed by
collecting the Wi-Fi RSS at each RP without the blocking of the human body in the fixed orientation.

To investigate the impact of different databases on the accuracy of the static localization, we show
the CDFs of errors in Figure 20. From this figure, we can find that the localization performance by
using the DD is better than the ones by the MD and SD under four different orientations. To illustrate
this result clearer, we select five popular performance metrics, i.e., mean error, standard deviation of
errors, maximum error, 67% error, and probability of errors over 5 m, to compare the statistical errors
by these three types of database in Table 1. Due to the blocking of the human body, the probabilities of
errors over 5 m by the MD and SD are higher compared with the DD; meanwhile, the DD reduces the
mean error by 30.65% and 36.61% from the ones by the MD and SD under the orientation 2.
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Figure 20. CDFs of errors by using different types of database. (a) Orientation 1; (b) Orientation 2;
(c) Orientation 3; (d) Orientation 4.

Table 1. Statistical errors by using different types of database.

Performance Metrics Types of Database Orientation 1 Orientation 2 Orientation 3 Orientation 4

SD 3.43 4.21 4.15 4.06
Mean error (m) MD 2.54 3.85 2.66 2.71

DD 2.40 2.67 2.31 2.54

SD 3.02 5.52 3.76 3.94
Standard deviation of errors (m) MD 1.99 5.83 2.60 2.57

DD 1.51 1.97 2.02 2.22

SD 19.57 31.81 18.63 21.78
Maximum error (m) MD 9.76 34.13 18.06 16.65

DD 8.21 10.29 13.67 12.04

SD 4.70 4.60 4.70 4.60
67% error (m) MD 2.90 3.10 2.90 3.10

DD 2.70 2.90 2.70 3.10

SD 19 22 24 24
Probability of errors over 5 m (%) MD 8 18 10 7

DD 3 12 6 8

• Affinity propagation clustering

Considering both the time overhead and localization accuracy, we propose using the improved
affinity propagation clustering for the coarse localization and the inverse matching auxiliary WKNN
for the fine localization, namely WKNN + Inverse matching + Improved APC. For the inverse matching
method, we search for the K RPs which are geographically close to the one-step prediction location
from Equation (26), estimate the RSS at the one-step prediction location by weighting the RSSs at the K
selected RPs, and modify the collected RSS at the one-step prediction location by the estimated one.

Using the Wi-Fi RSS data collected on the given path (see Figure 19), we compare the CDFs of
errors by using the WKNN, WKNN + Inverse matching, and the proposed WKNN + Inverse matching
+ Improved APC in Figure 21. From this figure, we can find that there is no error over 20 m by
the WKNN + Inverse matching and WKNN + Inverse matching + Improved APC, which indicates
that the inverse matching approach can effectively decrease the large error probability. In addition,
the improved APC is able to reduce the large localization errors further since the process of coarse
localization will discard the abnormal RPs which are far away from the corresponding clustering
centres. In Table 2, we can find that the proposed approach decreases the mean error by 63.68% and
19.62%, and the 67% error by 61.47% and 20.75% from the ones by the WKNN and WKNN + Inverse
matching respectively.
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Figure 21. CDFs of errors by using different Wi-Fi localization approaches.

Table 2. Statistical errors by using different Wi-Fi localization approaches.

Performance Metrics WKNN WKNN + Inverse
Matching

WKNN + Inverse
Matching + Improved APC

Mean error (m) 9.41 4.25 3.41
Standard deviation of errors (m) 7.83 3.49 2.90

Maximum error (m) 38.95 19.01 16.22
67% error (m) 10.90 5.30 4.20

4.4. Performance of Fusion System

We compare the location tracking performance of the proposed fusion system and the conventional
PDR-based Localization (PBL) and Wi-Fi based Localization (WBL) systems without data fusion in
Figure 22. From this figure, we can find that the PBL involves the accumulative error for a long time,
while the WBL contains many irregular large errors due to the disturbance of the Wi-Fi signal. As can
be seen from Figure 23, the proposed fusion system performs best in localization accuracy due to the
fact that it not only avoids the accumulative error by the PBL, but also eliminates the large errors by the
WBL. In Table 3, it is found that the mean error by the PBL and WBL are 2.22 m and 6.79 m respectively,
which is larger than the one by the proposed fusion system, 0.85 m. In addition, the proposed fusion
system decreases the 67% error by 64.41% and 84.85% from the ones by the PBL and WBL respectively.

We continue to compare the location tracking performance of the proposed fusion system and
the conventional fusion systems, EKF and Robust EKF (REKF) in Figure 24. Compared with the EKF
and REKF, the proposed fusion system achieves the best location tracking performance, especially
when the pedestrian makes a turn. The CDFs of errors by using different fusion systems are shown in
Figure 25. Obviously, the proposed fusion system performs better in localization accuracy than the
EKF and REKF since its particle updating scheme results in the well data fusion by combining the
optimal IDF and map information. As illustrated in Table 4, the proposed fusion system decreases the
mean error by 49.40% and 29.75% and standard deviation of errors by 63.64% and 38.03% from the
ones by the EKF and REKF respectively.
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Figure 22. Location tracking by the proposed fusion, PBL, and WBL systems.
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Figure 23. CDFs of errors by the proposed fusion, PBL, and WBL systems.
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Figure 24. Location tracking by the proposed fusion, EKF, and REKF systems.
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Figure 25. CDFs of errors by using the proposed fusion, EKF, and REKF systems.

Table 3. Statistical errors of the proposed fusion, PBL, and WBL systems.

Performance Metrics The Proposed Fusion PBL WBL

Mean error (m) 0.85 2.22 6.79
Standard deviation of errors (m) 0.44 1.05 7.69

67% error (m) 1.05 2.95 6.93
90% error (m) 1.56 3.81 15.10

Table 4. Statistical errors of the proposed fusion, REKF, and EKF systems.

Performance Metrics The Proposed Fusion REKF EKF

Mean error (m) 0.85 1.21 1.68
Standard deviation of errors (m) 0.44 0.71 1.21

67% error (m) 1.05 1.48 2.25
90% error (m) 1.56 2.25 3.28

Finally, we investigate the computation time required by the proposed fusion system. The target
user walks along a given path A→ B→ C → D → E→ F → E→ D → C → B→ A with the length
of about 142 m, as shown in Figure 19. This process takes this user about two minutes. After that,
we calculate the computation time in total involved in the localization process by the proposed
system under different particle numbers. In our experiment, all the calculations are conducted on a
desktop with the Intel (R) Core (TM) i3-3240 CPU and 4 GB RAM. As can be seen from Figure 27a,
the computation time gradually increases with the increase in particle number, whereas the particle
number has a slight impact on localization accuracy according to the CDFs of errors in Figure 26.
The computation time required by the three different fusion systems mentioned above is shown in
Figure 27b. Based on the results in Figure 25 and Figure 27b, we can find that although the proposed
fusion system consumes a little more computation time compared with the EKF and REKF, its related
localization accuracy is much higher than the other two.
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Figure 26. CDFs of errors under different numbers of particles.
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Figure 27. Comparison of computation time. (a) Under different number of particles; (b) Under
different fusion systems.

5. Conclusions

In this paper, we propose a new Wi-Fi/MARG indoor localization system by fusing the data
from the Wi-Fi module and MARG sensors, and then integrating the indoor map information to
improve the localization accuracy. For the PDR, we employ the complementary filter auxiliary EKF
to estimate the heading and the velocity of the pedestrian by using the BP neural network, while for
the Wi-Fi localization, we rely on the improved affinity propagation clustering approach to improve
the localization accuracy of the WKNN. The proposed integration system can avoid the accumulative
error of the PDR, as well as reducing the large error probability of the Wi-Fi localization which is
caused by the disturbance of the Wi-Fi signal. Furthermore, we rely on our developed software,
including the Android based mobile client, Web page for remote control, and location server, to verity
the effectiveness of the proposed system in the real indoor environment. In the future, we will focus
on the design of an effective and efficient radio map construction approach to reduce the time and
labor cost involved in the site survey of the large-scale indoor environment.
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