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Abstract: Highly sensitive and selective mercury detection in aqueous media is urgently
needed because mercury poisoning usually results from exposure to water-soluble forms of
mercury by inhalation and/or ingesting. An ionic conjugated oligoelectrolye (M1Q) based on
1,4-bis(styryl)benzene was synthesized as a fluorescent mercury(II) probe. The thioacetal moiety
and quaternized ammonium group were incorporated for Hg2+ recognition and water solubility.
A neutral Hg2+ probe (M1) was also prepared based on the same molecular backbone, and their
sensor characteristics were investigated in a mixture of acetonitrile/water and in water. In the
presence of Hg2+, the thioacetal group was converted to aldehyde functionality, and the resulting
photoluminescence intensity decreased. In water, M1Q successfully demonstrated highly sensitive
detection, showing a binding toward Hg2+ that was ~15 times stronger and a signal on/off ratio
twice as high, compared to M1 in acetonitrile/water. The thioacetal deprotection by Hg2+ ions was
substantially facilitated in water without an organic cosolvent. The limit of detection was measured
to be 7 nM with a detection range of 10–180 nM in 100% aqueous medium.

Keywords: mercury; conjugated oligoelectrolyte; aqueous media; chemosensor; fluorescent sensor

1. Introduction

Conjugated oligoelectrolytes (COEs) are characterized by a π-conjugated main backbone with
ionic side-chains (cationic or anionic), having unique electrical and optical properties due to effective
π conjugation as well as good solubility in highly polar media such as water. In these COE structures,
the bandgap is in the range of UV-Vis wavelengths because π and π* orbitals constitute the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), enabling
their applications in colorimetric and/or fluorescent sensors and imaging [1]. Based on the useful
electrical and optical characteristics of COEs, various types of chemo- and bioassays have been
successfully demonstrated using COEs as a signaling platform for a wide range of target materials such
as metal ions, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptides, and antibodies [2–5].

Mercury is a very toxic and hazardous material by accumulating through the food chain, seriously
influencing human health with fatal damages in several human organs, such as the brain, the heart,
and the kidney, via conversion into methylmercury [6–9]. We can be easily exposed to mercury
in neighboring environments including coal and gold mining, fossil fuel combustion, chemical
manufacturing, volcanic emission, and forest fires [10–12]. Due to its obvious hazard, mercury is strictly
banned in electrical and electronic equipment by the European Union′s Restriction on Hazardous
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Substances (RoHS) [13]. The mercury ion concentration in drinking water is also strictly regulated
by the World Health Organization (WHO) [14] and the Environmental Protection Agency (EPA) [15].
Various techniques, including atomic absorption spectroscopy, cold vapor atomic fluorescence
spectrometry, and gas chromatography, have been developed for sensitive and selective detection
of metal ions; however, these methods require complicated sample preparation and sophisticated
instrumentation. Fluorescence-based detection is one of the most widely used methods due to its
simplicity of measurement, rapid response, and high sensitivity [16–21]. Many researchers have
studied conjugated structure-based fluorescent probe molecules (ferrocene, rhodamine, naphthalimide,
boron-dipyrromethene (BODIPY), anthracene, and porphyrin-based molecules) for mercury detection
with high sensitivity and selectivity [22–25].

Mercaptans (or thiols) are well-known mercury-capturing substances due to their strong binding
affinity toward mercury ions [26]. Based on the mercury(II)-promoted thioacetal deprotection, several
Hg2+ detection assays have been reported [27–33]. Zhen Li’s group developed an ethylthio-posessing,
azobenzene- or triphenylamine-based chemosensor for Hg2+ detection, utilizing intramolecular
charge transfer (ICT) as a sensory mechanism [30,31]. In the presence of Hg2+, electron donating
alkylthioacetal groups were converted to an electron-withdrawing aldehyde group, resulting in
changes in ICT interaction through the molecule. By differentiating the electron donating groups, the
sensitivity of the sensor system was successfully modulated, showing a 10–400 nM limit of detection
(LOD). However, most previous Hg2+ assays demonstrated Hg2+ detection in organic solvents such as
tetrahydrofuran (THF), MeOH, and mixed organic/water due to the poor water solubility of fluorescent
probes [29–33]. Highly sensitive and selective Hg2+ detection in aqueous media is urgently needed
because mercury poisoning usually results from the exposure to water-soluble forms of mercury by
inhalation and/or ingesting.

In this contribution, a water-soluble fluorescent conjugated oligoelectrolyte, M1Q (as an aqueous
Hg2+ probe) based on 1,4-bis(styryl)benzene was synthesized, and the Hg2+ detection characteristics
were investigated in a 100% aqueous solution without the aid of organic solvents. The neutral precursor
probe (M1) was also studied as a Hg2+ probe in a mixture of acetonitrile (CH3CN) and water, and the
detailed sensor characteristics were compared in a mixture of CH3CN/water and 100% aqueous media.
The ethylthioacetal group as a mercury sensitive site and ionic side-chains containing quaternized
ammonium bromide (for water solubility) were incorporated at both termini of the π-conjugated
backbone. In the presence of Hg2+ ions, chemical transformation of thioacetal into aldehyde occurs;
photoluminescence (PL) spectral changes were measured with changing [Hg2+]. As compared to the
detection in CH3CN/water, the aqueous detection system (M1Q) showed a binding toward Hg2+ that
was approximately 15 times stronger, resulting in a stiff response curve with a smaller dissociation
constant (Kd) of 32 nM (vs. 570 nM for M1) and a signal on/off ratio that was approximately twice
as high.

2. Materials and Methods

2.1. General

All chemical reagents were purchased from Aldrich Co. (Seoul, Korea) and used without further
purification. 1H- and 13C-NMR spectra were recorded by JEOL FT NMR system (JNM-AL300, JEOL,
Peabody, MA, USA) operating at 300 MHz and 75 MHz, respectively. UV-Vis spectra were measured
with a Jasco V-630 UV-Vis spectrophotometer (JASCO International Co., LTD., Tokyo, Japan) and the
PL spectra were obtained on a Jasco FP-6500/FP-8600 spectrofluorometer (JASCO International Co.,
LTD., Tokyo, Japan). The PL quantum yield of probe molecules was measured relative to fluorescein in
water at pH = 10 as a standard [34,35].
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2.2. Mercury(II) Ion Detection Protocol

Stock solutions (1 × 10−3 M) of M1 in acetonitrile and M1Q in deionized water was prepared.
An amount of 2 µL of the stock solution of M1 was diluted into 2 mL of CH3CN/water (8:2), and 2 µL
of the stock solution of M1Q was diluted into 2 mL of water to make [M1] = [M1Q] = 1.0 × 10−6 M.
The PL spectra were measured with increasing [Hg2+]. After shaking the solution for 5 min, PL spectra
were measured by excitation at 390 nm. The same procedures were repeated in the presence of KCl,
NaCl, LiCl, AgNO3, Hg(NO3)2, CaCl2, CuCl2, MgCl2, FeCl2, AlCl3, PbCl2, and CdCl2 to assess the
selectivity against other metal ions.

2.3. Synthesis

Compounds 2 and 4 were synthesized by following previous reports [36,37].

2.3.1. 4-Bis(ethylthio)Methylbenzaldehyde (5)

A 250 mL round bottom flask was prepared and dried under vacuum. A mixture of
terephthalaldehyde (5.00 g, 37.2 mmol) and ethanethiol (6.07 mL, 82.1 mmol) was dissolved in 60 mL
of dichloromethane (DCM). The solution was stirred for 30 min under N2 at 0 ◦C. Then, the boron
trifluoride etherate (BF3O(C3H5)2) solution (10.0 mL, 82.1 mmol) was added to initiate the reaction,
and the mixture was stirred at room temperature for 24 h. After the reaction was completed, the
mixture was neutralized by adding excess NaHCO3 to adjust the pH around 7.0–8.0. The product
was extracted with DCM, dried over anhydrous magnesium sulfate, and purified by silica gel column
chromatography using hexane/DCM (5:4, by volume) as an eluent. The final product was dried under
vacuum (3 g, yield: 33%). 1H-NMR (CDCl3, 300 MHz): δ (ppm) 1.08–1.17 (t, 6H), 2.40–2.60 (m, 4H),
4.90 (s, 1H), 7.49–7.61 (d, 2H), 7.73–7.84 (d, 2H), 9.99 (s, 1H). 13C-NMR (CDCl3, 75 MHz): δ (ppm) 14.1,
25.1, 26.1, 35.5, 51.9, 128.2, 129.3, 129.9, 135.6, 147.4, 191.6, 191.8.

2.3.2. Synthesis of Neutral 1,4-Bis(Styryl)Benzene-Based Mercury Probe (M1)

Into a 100 mL two neck round bottom flask, 4-N,N-bis(6′-bromohexyl)aminobenzaldehyde
(0.279 g, 0.623 mmol), 1,4-bis[(diethylphosphoryl)methyl]benzene (0.236 g, 0.623 mmol), compound 5
(0.150 g, 0.623 mmol), and 20 mL anhydrous THF were added, and the reaction mixture was stirred at
0 ◦C. Then, potassium t-butoxide (0.35 g, 3.12 mmol) in 20 mL of anhydrous THF was slowly injected.
The solution was stirred at 0 ◦C for 1 h. The product was extracted with DCM, dried over anhydrous
magnesium sulfate, and purified by silica gel column chromatography using hexane/DCM (5:2 by
volume) as eluent. After drying under vacuum, 140 mg of a neutral precursor was obtained (yield:
30%). 1H-NMR (CDCl3, 300 MHz): δ (ppm) 1.20–1.25 (m, 6H), 1.31–1.38 (m, 4H), 1.42–1.52 (m, 4H),
1.54–1.61 (m, 4H), 1.73–1.82 (m, 4H), 2.49–2.64 (m, 4H), 3.24–3.29 (m, 4H), 3.51–3.55 (t, 4H), 4.93 (s, 1H),
6.59–6.62 (d, 2H), 6.84–7.07 (dd, 2H), 7.08 (s, 2H), 7.36–7.48 (m, 10H). 13C-NMR (CDCl3, 75 MHz): δ

(ppm) 135.51, 128.75, 128.06, 127.84, 127.29, 126.80, 126.63, 126.54, 126.22, 111.78, 52.21, 52.07, 50.92,
44.96, 32.54, 27.20, 26.75, 26.24, 14.30.

2.3.3. Synthesis of Quaternized Ionic 1,4-Bis(Styryl)Benzene-Based Mercury (II) Probe (M1Q)

M1 (120 mg, 0.16 mmol) was dissolved in 10 mL of THF, and 5.0 mL of 30% aqueous
trimethylamine solution was added. The mixture was stirred at room temperature for 24 h. A small
amount of methanol was added to the above solution to re-dissolve the precipitate. An additional
5.0 mL of 30% aqueous trimethylamine solution was added again, and the resulting solution was
stirred for another 24 h at room temperature. After the reaction was completed, excess trimethylamine
and the solvent were distillated out under reduced pressure. The crude product was dissolved in
a small amount of methanol and precipitated into cold diethyl ether. The precipitate was collected,
washed with diethyl ether, and dried under vacuum to produce cationic fluorophore (yield: 90%).
1H-NMR (300 MHz, DMSO-d6): δ (ppm) 1.11–1.15 (t, 6H), 1.31 (m, 8H), 1.52 (m, 4H), 1.65 (m, 4H),
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2.49–2.53 (m, 4H), 3.03 (s, 18H), 3.27 (m, 8H), 5.14 (s, 1H), 6.61 (m, 2H), 6.88–7.14 (dd, 2H), 7.09–7.14
(s, 2H), 7.39–7.56 (m, 10H). 13C-NMR (CDCl3, 75 MHz): δ (ppm) 147.65, 140.51, 137.94, 137.11, 135.65,
129.30, 128.91, 128.39, 127.55, 127.35, 126.90, 126.57, 124.88, 124.38, 123.04, 122.25, 121.54, 111.95, 65.64,
54.85, 52.59, 51.55, 50.43, 27.16, 26.41, 26.17, 22.58, 14.87.

3. Results

The neutral mercury(II) probe (M1) was synthesized in ~30% yield via the Wittig-Honer-Emmons
reaction of 4-N,N-bis(6′-bromohexyl)aminobenzaldehyde, 1,4-bis[(diethylphosphoryl)methyl]benzene,
and 4-bis(ethylthio)methylbenzaldehyde (Scheme 1). The water-soluble cationic Hg2+ probe (M1Q) was
prepared in a yield of ~90% by a simple quaternization reaction of M1 and trimethylamine in a mixture
of methanol and THF [36,37]. The UV-Vis and PL spectra in CH3CN, water, and a solvent mixture of
CH3CN/water are shown in Figure 1. The neutral probe, M1 shows the maximum absorption and
emission at λabs = 397 nm and λPL = 545 nm (PL quantum yield (ΦPL) = 58.7%) in CH3CN, while the
maximum wavelength is shifted to λabs = 402 nm and λPL = 554 nm (ΦPL = 56.4%) in a mixture of
CH3CN/water (8:2 by volume). M1Q shows the maximum absorption and PL at λabs = 392 nm and
λPL = 592 nm (ΦPL = 11.6%) in water. The PL spectra display a clear solvatochromism, showing
a gradual red-shift with increasing solvent polarity. Molar absorption coefficients (εmax) were
determined to be 5.35 × 104 M−1 cm−1 in CH3CN, 5.52 × 104 M−1·cm−1 in CH3CN/water for
M1, and 3.85 × 104 M−1·cm−1 in water for M1Q at each maximum absorption wavelength (Table 1).
The ionic M1Q shows a largely increased Stokes shift of ~200 nm in water and decreased PL quantum
efficiency due to enhanced nonradiative relaxations in highly polar solvent of water [38–43].
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Table 1. Optical properties of M1, M1-CHO, M1Q, and M1Q-CHO.

Materials Solvent λabs (nm) λPL (nm) ΦPL (%) εmax (M−1·cm−1)

M1
CH3CN 397 545 58.7 5.35 × 104

CH3CN/water 402 554 56.4 5.52 × 104

M1-CHO CH3CN/water 410 560 22.1 5.37 × 104

M1Q Water 392 592 11.6 3.85 × 104

M1Q-CHO Water 409 584 0.78 1.33 × 104Sensors 2016, 16, 2082 5 of 11 
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Upon addition of Hg2+ ions, the terminal ethylthio group was reported to be converted to
aldehyde to form M1-CHO and M1Q-CHO (Scheme 2) [30,32]. To confirm the formation of aldehyde
in the presence of Hg2+, 1H-NMR spectra of M1 and M1Q were measured before and after the
addition of Hg2+ ions. As shown in Figure S1, three proton (near sulfur atom) peaks were observed
at δ = 1.20–1.25 ppm (6H, triplet –CH3), 2.49–2.64 ppm (4H, multiplet, –S-CH2–), and 4.93 ppm (1H,
singlet, –CH=) in the 1H-NMR spectrum of M1Q. Upon the addition of Hg2+ ions, the above three
peaks disappeared and a new proton peak appeared at δ = 9.97 ppm (1H, singlet), indicating that
the thioacetal functional group in M1Q is transformed into aldehyde via the deprotection reaction
(Figure S2). With regard to M1, the same chemical transformation was observed with the addition
of Hg2+ ions (Figures S3 and S4), where a new proton peak from –CHO group was measured at
δ = 9.97 ppm (1H, singlet).
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on the electronic structure of molecules based on different push-pull abilities between donor and
acceptor. Upon addition of Hg2+, the electron-donating ethylthio group at the end of both Hg2+
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and M1Q-CHO). Overall ICT interaction changes form M1 (or M1Q) with a donor-acceptor-donor
(D-A-D) structure to M1-CHO (or M1Q-CHO) with a D-A structure before and after reacting with Hg2+.
It has already been reported that the asymmetrical D-A structure, compared to that of symmetrical
D-A-D structure, has a larger change in charge distribution upon excitation [44]. Via transformation
of ethythio into aldehyde, the ICT interaction and the resulting electronic structures are expected
to change significantly, inducing a spectral change in the PL emission with a strongly quenched
signal. The PL intensity of M1Q in water decreased significantly (ΦPL = 11.6%→ 0.78%) with the
addition of Hg2+ ions (2.0 × 10−6 M), and the maximum PL wavelength was blue-shifted from 592 nm
to 584 nm (Table 1). M1 also showed a similar trend in CH3CN/water, showing suppressed PL
efficiency (56.4%→ 22.1%) with a slight change in λPL (from 554 nm to 560 nm). Interestingly, the
clear improvement of signal on/off ratio with/without Hg2+ was measured to be ~10 in M1Q (water),
compared to ~5 of M1 (CH3CN/water).

To investigate the assay characteristics, the PL responses of M1 and M1Q versus [Hg2+] in
CH3CN/water and in water (at pH = 7) were measured (Figure 2). The neutral probe (M1) needs
the help of additional organic solvent (CH3CN) to be dissolved due to a lack of water solubility
(CH3CN:water = 8:2 by volume). Each PL spectrum was obtained at [M1] = [M1Q] = 1.0 × 10−6 M
with increasing [Hg2+] after 5 min of shaking. With increasing [Hg2+], the PL intensity of M1 and
M1Q decreased gradually by forming M1-CHO or M1Q-CHO. The normalized PL intensity (I/I0,
where I and I0 are the PL intensity at λPL in the presence and absence of Hg2+ ions) vs. [Hg2+]
shows a hyperbolic transition, showing a detection range of 50–1360 nM for M1 and 10–180 nM for
M1Q, respectively. The detection range was determined by fitting the titration curve using the Hill
equation [45,46], where I/I0 transits from 10% to 90% of its signal output. The LOD was calculated
by the following equation: LOD = 3.3 × σ/slope (σ is the standard deviation of six independent
measurements of blank samples; slope was measured from the linearly fitted response curve (I/I0

vs. [Hg2+]). Insets of Figure 2c,d show the linear range of titration curves as a function of [Hg2+],
showing LOD = 41 nM and 7 nM for M1 and M1Q, respectively. By looking into the both spectral
curves of M1 and M1Q carefully, M1Q shows a much sharper change in the PL intensity as a function
of [Hg2+], where M1 shows only an ~15% decrease in PL intensity with [Hg2+] = 0–100 nM, while an
~70% decrease in PL intensity was observed for M1Q. This indicates that M1Q in water can detect
the smaller changes in [Hg2+] compared to M1 in CH3CN/water, which is closely related to the
dissociation constant (Kd) of M1 (or M1Q) and Hg2+. By measuring the Hg2+ concentration when
the I/I0 ratio decreases to half of the original value without Hg2+, the Kd value was determined to
be 570 nM (binding constant (Ka) = 2 × 106 M−1) for M1 and 32 nM (Ka = 3 × 107 M−1) for M1Q,
respectively (Figure 3). The binding affinity of M1Q toward Hg2+ was ~15 times higher than M1,
indicating a stronger interaction between Hg2+ and ionic M1Q in water. Moreover, efficient binding
between Hg2+ and M1Q results in an early saturation of sensory signals, showing a short detection
range of Hg2+ ions, relative to M1 in CH3CN/water.

The probe-Hg2+ binding stoichiometry was also studied by the Job plot experiment for M1 in
CH3CN/water and M1Q in water (Figure 4). The Job plot is widely used in analytical chemistry
to determine the stoichiometry of a binding event [47]. The PL signal was measured by changing
[Hg2+]/([Hg2+] + [M1] or [M1Q]) for the M1 and M1Q sensory systems. Figure 4 shows a saturation
point at [Hg2+]/([Hg2+] + [M1] or [M1Q]) = 0.6 and 0.5 for M1 and M1Q, indicating the 1:1.5 and 1:1
probes: the Hg2+ binding ratios for M1 in CH3CN/water and for M1Q in water.
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The Hg2+ detection was also carried out in water by varying the pH of the solution (pH = 4, 7, 10).
In an acidic condition (pH = 4), the spectral responses were different compared to those at pH = 7 and
10 because of the protonation of amine and ethylthio groups (Figure S5), which may have significantly
influenced the binding event of M1Q and Hg2+, and the resulting thioacetal deprotection reaction
at pH = 4. The Hg2+ detection characteristics of M1Q at pH = 10 were similar to those at pH = 7,
showing a similar Kd of 31 nM, LOD of 2 nM, and 1:1 binding stoichiometry in the Job plot (Figure
S6). However, a smaller signal on/off ratio (~5) was measured at pH = 10 compared to that (~10) at
pH = 7, because of the higher PL intensity of M1Q-CHO (at the signal off state) under basic condition.
To take advantages of the high signal on/off ratio, all the PL experiments in water were performed in
deionized water at pH = 7.0 to maximize the sensory properties.

The sensor characteristics of M1Q in real samples (Han River and tap water) were also investigated.
Before PL experiments, all real samples were first filtered with a 0.2 µm syringe filter. There were no
detectable mercuric ions in the Han River or in tap water, and the PL characteristics of M1Q were
investigated with the addition of Hg2+ (Figure S7). The normalized PL intensity versus [Hg2+] shows
a sigmoidal transition curve, exhibiting Kd = 72 nM and 47 nM in the Han River and in tap water,
respectively. The LOD was approximately determined to be 10 nM in the Han River and 2 nM in tap
water, respectively (Figure S7c,d inset). Similar sensory characteristics were measured in real samples
compared to those in deionized water (pH = 7). The sharp change in the PL intensity as a function of
[Hg2+] (50%–60% of PL intensity decrease with [Hg2+] = 0–100 nM) was still observed, facilitating the
successful detection in real samples.
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Figure 5. Selectivity test for M1 (a,c) and M1Q (b,d) in the presence of single (a,b) and co-existing
(c,d) metal ions. The error bars represent the standard deviation of three independent measurements.
[M1] = [M1Q] = 1.0 × 10−6 M, [metal ion] = 2.0 × 10−6 M.

Finally, the selectivity test of M1 and M1Q toward Hg2+ was performed in the presence of other
metal ions (Figure 5). A negligible decrease in the PL signal of both M1 and M1Q was observed upon
the addition of other metal ions (2.0 × 10−6 M), suggesting the high selectivity toward Hg2+ over other
metal ions including K+, Na+, Li+, Ag+, Ca2+, Cu2+, Mg2+, Fe2+, Al3+, Pb2+, and Cd2+. The significant
PL intensity drop with Hg2+ in the presence of coexisting metal ions implies a dominant binding
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between M1 (or M1Q) and Hg2+, with a negligible influence from other metal ions (Figure 5c,d).
Figure S8 shows the selectivity data of M1Q against a range of metal ions in real samples. A decrease
in the PL signal was observed only for Hg2+ in both the Han River and tap water because of a strong
binding affinity between the ethylthio group and the Hg2+ ions. It is also noteworthy that the stronger
binding between M1Q and Hg2+ provides a higher on/off ratio in sensory responses, although both
M1 and M1Q demonstrate successfully high selectivity.

4. Conclusions

We designed and synthesized a cationic, quasi-linear conjugated fluorescent probe (M1Q) for
mercury(II) detection in aqueous media. To detect the water-soluble form of mercury in water, ionic
alkyl chains and the thioacetal group were incorporated at both termini of the conjugated backbone as
water-solubilizing and mercury recognizing sites. A neutral mercury(II) probe (M1) was also prepared
based on the same conjugated framework. In the presence of Hg2+, thioacetal was converted to
aldehyde functionality, resulting in a slight shift in the PL spectrum with the decrease in PL intensity.
Compared to M1, the thioacetal/mercury binding was substantially enhanced by ~15 times for M1Q
in water, showing a smaller Kd of 32 nM compared to that (570 nM) for M1 in CH3CN/water. The
detection range was narrower in water (10–180 nM) relative to that (50–1360 nM) in CH3CN/water.
The thioacetal deprotection by Hg2+ ions was clearly facilitated in water without an organic cosolvent.
The signal on/off ratio (Ion/Ioff) was also approximately twice as high in water. M1Q showed good
selectivity toward Hg2+ without any influence from other coexisting metal ions. This study emphasizes
the molecular design of water-soluble fluorescent probes that can detect mercury(II) in aqueous
solutions without the aid of an organic cosolvent.

Supplementary Materials: The followings are available online at http://www.mdpi.com/1424-8220/16/12/
2082/s1: Figures S1–S4: 1H-NMR spectra; Figure S5: PL spectra of M1Q at pH 4 and pH 10; Figure S6: Job plots of
M1Q in water at pH 7 and pH 10; Figure S7: PL spectra of M1Q in real samples; Figure S8: Selectivity test of M1Q
in real samples, Explanation of sensor properties.
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