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Abstract: An inkjet-printed, fully passive sensor capable of either humidity or gas sensing is presented
herein. The sensor is composed of an interdigitated electrode, a customized printable gas sensitive
ink and a specialized dipole antenna for wireless sensing. The interdigitated electrode printed on
a paper substrate provides the base conductivity that varies during the sensing process. Aided by
the porous nature of the substrate, a change in relative humidity from 18% to 88% decreases the
electrode resistance from a few Mega-ohms to the kilo-ohm range. For gas sensing, an additional
copper acetate-based customized ink is printed on top of the electrode, which, upon reaction with
hydrogen sulphide gas (H2S) changes, both the optical and the electrical properties of the electrode.
A fast response time of 3 min is achieved at room temperature for a H2S concentration of 10 ppm at
a relative humidity (RH) of 45%. The passive wireless sensing is enabled through an antenna in which
the inner loop takes care of conductivity changes in the 4–5 GHz band, whereas the outer-dipole arm
is used for chipless identification in the 2–3 GHz band.

Keywords: chipless radio frequency identification; gas sensor; hydrogen sulfide gas; inkjet printing;
internet-of-things; paper substrate; wireless applications

1. Introduction

An estimated 200 billion devices will be connected to the Internet by the year 2025 in the
Internet-of-Things (IoT) realm [1]. A typical IoT system requires three ingredients: firstly, the wide
variety of sensors that measure environmental, industrial, biological, activity, imaging, and other
parameters; secondly, the connectivity mechanism between these sensors and their central controller;
and thirdly, the plethora of applications using these two enablers in the domain of healthcare, wearables,
transportation, smart homes, connected cities, and industries [2–9].

The staggering number of required sensors and their associated cost has motivated research to
find ways of making them pervasive and reduce their cost to such an extent that they can potentially
become disposable. To that end, radio frequency identification (RFID) technology has emerged as
a strong candidate for widespread usage in the above-mentioned scenarios. In the last few years,
RFID has transitioned from a mere identification technology to a versatile platform that has been
used for tracking, localization, and remote sensing. In the last of these categories, RFID has been
demonstrated for wireless gas and humidity sensing [10–12]. In addition, many similar inkjet-printed
sensors, without RFID functionality, have also been presented on various substrates such as paper,
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polyimide, and polyethylene terephthalate (PET) [13–18]. Among these sensors, resistive response
types tend to have a slow response time (~60 min) [10,11]. On the other hand, capacitive response
type sensors have a faster response time (<10 min); however, their integration with antenna for
remote identification has not been widely published [14–19]. Lastly, sensors utilizing special materials
such as carbon nanotubes pose challenges of fabrication and can be less selective in an ambient
environment [12].

This paper presents a dual-functionality, paper-based, inkjet-printed humidity and gas sensor.
For humidity sensing, the resistive response of an interdigitated electrode, made of silver nanoparticle
ink is evaluated to yield a fast response time of ~3 min. On the other hand, for hydrogen sulfide
sensing, a copper acetate-based sensing material that is sensitive to H2S is printed over the electrode.
The detection of hydrogen sulfide, due to its toxic nature, is critically important in many industrial and
residential settings [20]. The sensor electrode is integrated with an antenna which is a combination
of a loop and a dipole, potentially enabling wireless sensing using the frequency domain chipless
RFID technique. The proposed design omits the use of discrete components and provides a low-cost
alternative for humidity and gas sensing.

2. Sensor Design and Working Principle

Humidity and gas sensing through printed and passive methods pose few basic requirements.
For the former, a structure that is able to change its electrical properties based on ambient humidity
is desirable. On the other hand, for gas sensing, a specific reagent that is sensitive to the target gas
and results in a measurable electrical, physical, or optical change is needed. Lastly, a mechanism to
detect and interpret these changes is required for the meaningful usage of such sensors. To that end,
this paper combines three elements to achieve the above-mentioned tasks. Firstly, an interdigitated
electrode, made using silver nano-particle ink combined with an underlying paper substrate, together
perform as a humidity sensor. Secondly, aiming for the sensing of toxic hydrogen sulfide (H2S) gas,
a printable chemi-resistive film of copper acetate is utilized as a reagent. Due to the chemical reaction
between the reagent and H2S, the physical, optical, and electrical features of the electrode change in
real time. The third element of the system involves the passive detection of these changes by adopting
the chipless RFID technique [21]. This is achieved by placing the sensor electrode as a load to a double
loop folded dipole antenna whose design will be discussed in subsequent sections.

2.1. Paper Substrate

The choice of substrate for inkjet printing of the electrode, reagent, and the antenna requires careful
consideration of parameters such as porosity, surface roughness, thickness, permittivity, and cost.
Organic flexible substrates such as paper and plastic are regularly being used to design antennas,
sensors, and chipless RFID tags [10–13,21–26]. More specifically, paper, due to it lower cost and
scalability to roll-to-roll and reel-to-reel printing has become a preferable choice for inkjet printing.
One downside associated with a paper substrate, especially if it is of porous nature, is the inferior
printing resolution, as the conductive ink during the printing process seeps into adjacent pores, leading
to deformation in the printed designs. To avoid this issue, Kodak photo paper is utilized in this work
which is glossy and flexible with low porosity. The selected paper has a permittivity, loss tangent,
and thickness of 2.6, 0.05, and 0.28 mm respectively.

2.2. Interdigitated Electrode

The layout of the sensor’s interdigitated electrode is shown in Figure 1. With dimensions of
45.75 × 20 mm2, the electrode is connected to the inner loop of the antenna at its edges and acts as
the base for printing of the chemi-resistive layer. Each electrode includes a total of 14 fingers with
lengths and widths of 40 mm and 200 µm, respectively. The spacing between the adjacent electrode
fingers is also 200 µm. These dimensions are optimized after a number of printing iterations to
achieve optimum fabrication results. The electrode is inkjet-printed using Dimatix DMP 2831 printer
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using silver nano-particle ink from UT Dots on the Kodak photo paper substrate discussed above.
The drop spacing for the nano-particle ink (silver 20% by weight) is 25 µm with a nozzle size of 10 pL.
After printing 5 layers of the conductive ink on top of each other, the electrode is heat sintered at 120 ◦C
for 10 min to achieve a conductivity of 6 × 106 S/m with a conductor height of ~2 µm. Post-sintering
resistance measurements show a high initial resistance of 10 MΩ.
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2.3. Chemi-Resistive Ink

After preparation of the electrode, a mechanism for gas sensing is devised. For this purpose,
chemicals that are sensitive to H2S and are printable using the inkjet printing process are investigated.
The latter requirement is critical, as the specific viscosity and surface tension is required for accurate
printing on the paper substrate. The printable chemical ink when exposed to gas leads to a visual
change in its color as well as variation in its chemical properties. The latter is responsible for the
change in the resistivity of the ink, hence the name “chemi-resistive layer”.

Hydrogen sulfide gas is known to react with metal acetates that typically result in a formation of
metal sulfides. The electrical response of copper acetate films in the presence of hydrogen sulfide gas
has been reported [13,23] and is governed by the following chemical equation:

Cu(CH3COO)2 (s) + H2S (g)
yields−−−→ CuS + 2CH3COOH (1)

The original chemi-resistive ink of copper acetate has low conductivity; however, in the presence
of H2S, copper sulfide is formed, increasing the conductivity [27]. This change in turn affects the
electrode’s conductivity and the antenna’s behavior as the electrode acts as a load to the antenna.

The composition of the copper-acetate solution is critical for successful printing using the inkjet
printer. This is achieved by mixing metal salt in three solvents namely water, ethylene glycol (EG),
and iso-propanol (IPA). A volume ratio of 8:1:1 is used for a water/EG/IPA solvent mixture for
a copper-acetate solution with a final concentration of 0.1 mol. For inkjet printing of the chemi-resistive
film, three layers are printed on top of the interdigitated electrode with a drop spacing of 30 µm.
This tag is again heat sintered at a temperature of 150 ◦C for 15 min before it is used for gas sensing.

3. Antenna Design

The specialized antenna designed in this work plays two distinct roles (Figure 2). Firstly, the inner
loop connects and encircles the interdigitated electrode that acts as its load. Any change in the
electrode’s properties manifests as a change in frequency behavior of the inner loop. The second role
of the antenna is to achieve a unique identification for each specific tag. This is realized by altering the
dimensions of the outer dipole arms of the antenna. Using this chipless RFID approach, wherein each
tag has a unique electromagnetic signature, passive sensing through its radar cross-section (RCS) can
thus be accomplished [21]. Based on these requirements, the outer identification dipole is designed
to resonate in the 2–3 GHz range, whereas the inner sensing loop resonates between 5 and 6 GHz as
verified by the current distribution shown in Figure 3. The frequency and bandwidth are controlled
by the dipole length, horizontal arm lengths L5, L6, and L7, and vertical arm lengths W4 and W5.
The antenna is simulated in CST Microwave Studio (ver. 14), and its optimized parameters are shown
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in Table 1. The horizontal arm lengths L6 and L7 control the resonance frequency in the identification
band. For instance, increasing L6 and L7 decreases the resonating frequency while maintaining the
operational bandwidth due to constant vertical arm lengths.
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Table 1. Detailed dimensions of proposed antenna.

Parameter Dimension Parameter Dimension

L0 50.25 mm W0 35 mm
L1 1.64 mm W1 10.75 mm
L2 13.75 mm W2 3.00 mm
L3 14.57 mm W3 2.75 mm
L4 3.5 mm W4 14 mm
L5 45.75 mm W5 20 mm
L6 20.5 mm L7 20 mm

The 2.8 GHz frequency band due to the outer dipole is utilized for the tag’s chipless identification.
This is achieved by creating minor changes in the dimensions L6 and L7, thereby getting varied
resonances between 2.7 GHz and 2.9 GHz. Table 2 enlists dimensions of five such example tags, whereas
preliminary simulation results (Figure 4) show the corresponding unique resonances. Following the
same procedure and utilizing frequency shift encoding technique as presented in [21], a large number
of individual tags can thus be generated.
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Table 2. L6 and L7 dimensions for unique identification.

L6 L7

Tag 1 20.5 mm 20 mm
Tag 2 21.5 mm 21 mm
Tag 3 22.5 mm 22 mm
Tag 4 23.5 mm 23 mm
Tag 5 24.5 mm 24 mmSensors 2016, 16, 2073 5 of 13 
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Figure 4. Antenna response for unique identification.

In order to enable characterization of the antenna via an SMA connector, a balun is also included in
the design. The balun introduces a 180◦ phase shift between the two microstrip lines that differentially
excite the dipole antenna. To obtain this phase shift, the difference in the microstrip lengths at the
center frequency is approximately λ/2. The balun is realized on the same layer as the antenna, whereas
its partial ground plane is printed on a separate layer and subsequently glued to the antenna layer.

4. Experimental Results

The interdigitated electrode, dipole antenna, and the chemi-resistive film are all fabricated using
inkjet printing as discussed earlier through individually optimized steps for each [21]. The fabricated
prototypes are shown in Figure 5. An SMA connector is mounted using conductive silver epoxy and
an Agilent VNA (Model: N5232A) is used for s-parameter measurements.

Sensors 2016, 16, 2073 5 of 13 

 

 

Figure 4. Antenna response for unique identification. 

In order to enable characterization of the antenna via an SMA connector, a balun is also 
included in the design. The balun introduces a 180° phase shift between the two microstrip lines that 
differentially excite the dipole antenna. To obtain this phase shift, the difference in the microstrip 
lengths at the center frequency is approximately 	λ 2ൗ . The balun is realized on the same layer as the 
antenna, whereas its partial ground plane is printed on a separate layer and subsequently glued to 
the antenna layer. 

4. Experimental Results 

The interdigitated electrode, dipole antenna, and the chemi-resistive film are all fabricated 
using inkjet printing as discussed earlier through individually optimized steps for each [21]. The 
fabricated prototypes are shown in Figure 5. An SMA connector is mounted using conductive silver 
epoxy and an Agilent VNA (Model: N5232A) is used for s-parameter measurements.  

 
(a) (b)

 
(c) (d)

Figure 5. Fabricated prototypes. (a) Top view of antenna; (b) Bottom view of antenna; (c) 
Inkjet-printed interdigitated electrode; (d) Complete prototype with antenna, balun, and 
interdigitated electrode. 

  

1 1.5 2 2.5 3 3.5
-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

S1
1 

(d
B

)

 

 

Tag1
Tag2
Tag3
Tag4
Tag5

Figure 5. Fabricated prototypes. (a) Top view of antenna; (b) Bottom view of antenna; (c) Inkjet-printed
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The experimental setup for conductivity measurements under controlled H2S exposure is shown
in Figure 6. The details of the setup are discussed in [28,29]. The system consists of the following:

- A gas line with a flow control valve coming from the H2S gas cylinder with controllable
concentration. The Mass Flow Controller (MFC) is provided by Alicat Scientific Inc. (Tucson,
AZ, USA).

- An aluminum chamber for housing the sensor with two leads for external connections.
In addition, the chamber consists of commercial humidity sensor (Honeywell HIH-4000-003) for
calibration purposes.

- The chamber is connected to an LCR meter (Agilent E4980A) that is accessed by a PC through
RS-232 to USB interface and National Instruments (NI) LabVIEW software (ver. 2011).
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Figure 6. Measurement setup for humidity and gas sensing. (a) Block diagram; (b) Laboratory setup.
1. Gas cylinder. 2. MFC (Mass Flow Controller) connected to H2S gas. 3. MFC connected to dry
Nitrogen. 4. Gas flow through this MFC going to bubbler. 5. MFM (Mass Flow Meter). 6. Connected to
bubbler for humidity measurement. 7. LCR meter. 8. Multimeter. 9. Measurement chamber with gas
inlet and gas outlet; test leads connected to LCR and Multimeter, contains sensor tag. 10. Bubbler to
provide humidity.

4.1. Antenna Characterization

The dipole antenna is fabricated on a paper substrate. Figure 7a shows adequate agreement
between simulated and measured results with two distinct bands appearing at 2.8 GHz and 4.6 GHz.
As only one side of this paper is glossy, two individual layers are used, first to print antenna and
interdigitated electrode and second to print the partial ground plane. The two layers are subsequently
glued together, thus increasing the thickness from 0.280 mm to 0.560 mm. In Figure 7b, the simulated
and measured return loss of the antenna with an interdigitated electrode is shown. The slight shift
between the simulated and measured results is attributed to the glue used between the two layers of
photo paper.
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Figure 7. Simulated and measured results on Kodak photo paper (a) Return loss of antenna only;
(b) Return loss of antenna with electrode on Kodak photo paper.



Sensors 2016, 16, 2073 7 of 13

4.2. Humidity Sensing

Utilizing the measurement setup of Figure 6, the humidity sensing capability of the sensor was
analyzed. The bare interdigitated electrode without the chemi-resistive ink was placed in the chamber,
and the relative humidity (RH) was increased with time. As the paper substrate has a tendency to
absorb moisture, the conductivity of the electrode was expected to increase due to initiation of ion
conduction as explained in [26]. This was verified, as shown in Figure 8a,b, by a decrease in resistance
from 10 MΩ to a few tens of kΩ as the RH was increased from 18% to 88%. The decrease in resistance,
measured through the LCR meter, started at about the 20 min mark and continued to decrease linearly
as RH was increased.
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4.3. Gas Sensing

After the antenna and humidity measurements, the copper-acetate solution was inkjet-printed on
the tags and subsequently exposed to H2S concentrations of 5 ppm and 10 ppm for 100 min without
humidity (0% RH) and with humidity (45% RH). All the experiments discussed in this paper were
performed at room temperature. The response of the sensor was assessed in two ways: the optical
response and the electrical response. In the former, the exposure to H2S changes the greenish-blue color
of the copper acetate to a darker shade due to the formation and growth of copper sulfide particles,
Cu2S and CuS, whose characteristic color is dark grey and indigo blue, respectively. Exposure to
a 10 ppm concentration of H2S changes the color to dark brown/blackish green. The un-exposed and
exposed samples of the sensor module are shown in Figure 9, verifying that the sensor can be used
as a simple optical indicator for the presence of H2S gas. The exact color depends on the humidity,
exposure time, and gas concentration. It is important to note that the change in color is an irreversible
process making the sensor suitable for a one-time use only. This disposability characteristic is justified
due to the sensor’s low cost of fabrication when scaled from lab-scale inkjet printing to mass scale
roll-to-roll and reel-to-reel printing. To represent the optical response in a meaningful way, a graph
with a color scale from 0 to 255, where 0 corresponds to black and 255 corresponds to white color.
Shown in Figure 10, as the H2S concentration is increased from 0 ppm to 10 ppm, the scale reading
decreases. Furthermore, as the humidity is increased to 45%, the scale reading decreases further as high
humidity improves the sensitivity of the chemi-resistive layer; hence, more copper sulfide particles are
formed on the sensor surface, leading to a decrease in color scale reading.
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Figure 10. Optical response of the sensor with different concentrations of H2S and relative humidity.

In addition to the optical changes, the electrical properties of the sensor also change under
exposure to H2S gas. This happens due to the formation of Cu2S particles on top of the electrode
fingers, thus forming a conductive path resulting in a decrease in resistance. At the particle level,
this increase in conductivity is attributed to the percolation in the continuous conducting networks and
tunneling between the isolated conducting particles [30,31]. Figure 11a shows the resistance variation
of the sensor exposed to concentrations of 5 and 10 ppm H2S at a relative humidity of 45%. A sharp
decrease is observed in the initial few minutes, after which both curves saturate. The response time,
which is defined as the time required to attain a 90% change of the total resistance change, is 3 min for
a 10 ppm concentration, as compared to 7 min for 5 ppm. This is a consequence of a faster chemical
reaction and a formation of copper sulfide particles. Similar behavior is observed for the reactive part
of the sensor, as shown in Figure 11b. Figure 12 illustrates the dependence of the sensor response on
two different levels of humidity. An inverse relationship is observed between humidity and response
time. More specifically, response time increases from being less than 10 min to more than 60 min as
humidity decreases from 45% RH to 0% RH. Nevertheless, for typical humidity levels of 30%, response
time can be extrapolated to around 10 min. Furthermore, as the variation in the sensor’s resistance is
different for humidity and H2S, and optical changes also happen for the latter, differentiation between
humidity and gas sensing can be achieved.
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Figure 11. Change in (a) real impedance; and (b) reactance of sensor exposed to 5 ppm and 10 ppm
concentrations of H2S at a relative humidity of 45% and measured at 2 MHz.
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Figure 12. Comparison of change in sensor’s real impedance exposed to 5 ppm and 10 ppm
concentration of H2S at 0% and 45% RH.

The repeatability of sensor performance was verified by fabricating and characterizing three
samples through the same process. Shown in Figure 13a, the response of these three sensors, under
0% RH and 5 ppm H2S gas exposure, shows a very close match in the steady state. Using the mean
resistance values from the three sensors for each time instant, the deviation of each sensor response
from the mean was calculated, which was subsequently used to calculate the average and maximum
deviation. These are plotted in Figure 13b,c, respectively, alongside the mean response. Slightly
higher spread is observed during the initial transient period, whereas response closely matches the
steady state.
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Figure 13. (a) Response of three sensors to 0% RH and 5 ppm H2S concentration; (b) Average deviation
between three sensor responses; (c) Maximum deviation between three sensor responses.



Sensors 2016, 16, 2073 10 of 13

In order to validate the overall operation of the sensor including the antenna, the change in
conductivity of the sensor is included in a full-wave 3D post-measurement simulation. This method
is adopted, as it is not possible to measure the s-parameters, while the tags are placed in the gas
measurement chamber. Thus, as shown in Figure 14, four measured resistance values of the electrode
are used in the simulation model of CST Microwave Studio, yielding four distinct frequencies of the
chipless RFID tag. This emulates how the sensor along with the antenna would behave in reality for
varying concentrations of H2S gas. These frequencies when passively sensed can be directly related to
the level of H2S concentration, thus verifying the overall operation.
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A detailed comparison with published works is presented in Table 3. It is interesting to note
that, due to the electrode structure used, the presented work shows the fastest response time of
3 min among resistive type sensors [10–12]. Furthermore, it is the only gas sensor among the
reported fully-printed sensors that not only has wireless sensing capability but also identification
functionality [14–18]. Lastly, compared to [13], in which H2S sensing is offered in a smaller tag
dimension, the presented work demonstrates a sixfold lower response time along with the antenna
integration for wireless identification.
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Table 3. Comparison with published works.

Reference Sensor Type Tag Size Response Time Substrate Integrated with
Antenna

Identification
Capability

[10] Humidity, Resistive type 2.9 mm × 0.6 mm More than 60 min Paper No No

[11] Humidity, Resistive type 188 mm × 9 mm 20–100 min Paper Yes No

[12] Gas (Ammonia & Nitrogen Oxide),
Resistive type 118 mm × 27 mm - Paper Yes No

[13] Gas (Hydrogen Sulfide), Resistive type 20 mm × 11 mm Approx. 20 min Paper No No

[14] Humidity, Capacitive type Sensor area is 200 mm2 4–11 min Polyimide and
Polyethersulphone No No

[15] Humidity, Capacitive type 12 mm × 8 mm Approx. 24 s PET No No

[16] Humidity, Capacitive type 6.3 mm × 1.85 mm 5–6 min Polyimide No No

[17] Humidity, With both resistive and
capacitive measurements 5.4 mm × 5.4 mm Less than 20 s Polyimide No No

[18] Humidity, Capacitive type 12 mm × 12 mm Approx. 20 min PET No No

This work Dual functionality Humidity & Gas
(Hydrogen Sulfide), Resistive type 45.75 mm × 20 mm 3 min Paper Yes Yes
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5. Conclusions

A dual-functionality, paper-based, inkjet-printed humidity and gas sensor has been presented.
The complete sensor consists of an interdigitated electrode, a copper acetate-based chemi-resistive
ink, and a specialized loop-dipole antenna combination to enable passive sensing. The miniaturized
electrode results in a fast response time of ~3 min, which is the best among resistive type sensors.
The gas sensing behavior has been characterized both electrically and optically. The novel use of the
antenna’s inner loop for the wireless monitoring of the sensor’s resistance and outer loop for chipless
identification makes it a promising choice as a low-cost pervasive humidity and gas sensor.
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