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Abstract: The use of the reflected Global Navigation Satellite Systems’ (GNSS) signals in Earth
observation applications, referred to as GNSS reflectometry (GNSS-R), has been already studied
for more than two decades. However, the estimation precision that can be achieved by GNSS-R
sensors in some particular scenarios is still not fully understood yet. In an effort to partially fill
this gap, in this paper, we compute the Cramér–Rao bound (CRB) for the specific case of static
ground-based GNSS-R receivers and scenarios where the coherent component of the reflected signal
is dominant. We compute the CRB for GNSS signals with different modulations, GPS L1 C/A and
GPS L5 I/Q, which use binary phase-shift keying, and Galileo E1 B/C and E5, using the binary offset
carrier. The CRB for these signals is evaluated as a function of the receiver bandwidth and different
scenario parameters, such as the height of the receiver or the properties of the reflection surface. The
CRB computation presented considers observation times of up to several tens of seconds, in which
the satellite elevation angle observed changes significantly. Finally, the results obtained show the
theoretical benefit of using modern GNSS signals with GNSS-R techniques using long observation
times, such as the interference pattern technique.

Keywords: GNSS-R; Cramér–Rao bound; CRB; coherent reflection; L-band; soil moisture estimation;
altimetry; interference pattern technique; IPT

1. Introduction

During the past two decades, researchers have been studying the use of the reflected Global
Positioning System (GPS) and other Global Navigation Satellite Systems’ (GNSS) radio signals
for remote sensing purposes [1]. This is commonly referred to as GNSS reflectometry (GNSS-R).
The GNSS signals are transmitted at the L-band frequencies, which can penetrate cloud cover and are
particularly sensitive to soil moisture, snow water content and sea-ice salinity. The GNSS-R concept
was first proposed by Martin-Neira in [2], in 1993, for its application on ocean altimetry from airborne
and spaceborne platforms. Since then, the use of GNSS-R for ocean altimetry, wind speed and sea state
determination has gained considerable traction. Several works have been published describing specific
GNSS-R instruments and architectures [3–5], retrieval techniques and algorithms [1,6], theoretical
signal models [7–10], simulators [11–13] and several measurement campaigns carried out from different
platforms [1,14,15]. Even specific GNSS-R space-based missions have been planned by different
space agencies [3,16,17]. Furthermore, more remote sensing applications have been also proposed
and validated through experimental campaigns, such as: soil moisture monitoring [7,18–25], snow
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monitoring [26–32], sea-ice monitoring [33,34], ground and calm water altimetry [35–43] and biomass
estimation [44,45].

Why has GNSS-R gained this much attention? When compared to traditional radars used in
remote sensing applications, which are typically monostatic and that make use of the backscattered
signal, the GNSS-R receivers represent a non-cooperative passive bistatic (or multi-static) radar
opportunity that makes use of the forward-scattered signals. Being a passive system, only the receiving
part is required within a GNSS-R instrument, which implies lower cost, complexity and power
consumption requirements than traditional active radars. Moreover, the high number of GNSS
satellites, which is only expected to grow in the near future, enables global coverage from a network
of transmitters whose location is very accurately known at any time instant. For air-borne and
space-borne applications, the multi-static configuration allows for simultaneous surface sensing tracks,
sensing more surface area within the same time and lower revisit times. However, the GNSS-R has
some significant drawbacks when compared to traditional radars, mainly due to the GNSS signals’
features, i.e., their low power and relatively low bandwidth. Furthermore, we have no control over the
transmitted signal features (e.g., modulation or code length).

The theoretical estimation precision that can be achieved using the different GNSS-R techniques
is still under study. Early work on the statistical properties of the scattered GNSS signals and their
connection to ocean altimetry and wind speed retrievals was described in [46,47]. This work adapted
the classical approach described by Fischer et al. in [48] used to characterize the precision of radar
altimeters and scatterometers. Later on, a similar approach was used again in [3], in an attempt to
predict the precision of the PARISocean altimeter. Another attempt was put forward in [49], where the
estimated delay difference error was computed using the approach described in [50], commonly used
to characterize the delay error in traditional GPS with an early-prompt-late correlator tracking scheme.
It is in [51] where the use of the Cramér–Rao bound (CRB) was firstly proposed in the GNSS-R ocean
altimetry context. In [52], the authors computed the CRB using real measurements to estimate the
scattered signal statistical properties, while later in [53,54], the authors used the CRB in an attempt
to quantify the impact of the signal’s incoherent integration and the receiver’s front-end bandwidth,
respectively, over the achievable precision.

Aside form specific GNSS-R instruments, multiple research works have demonstrated that in
some scenarios, it is possible to process the data provided by static ground-based GNSS receivers,
such as the ones used for geodetic applications, to directly perform GNSS-R. Under the assumption
of a strong enough specular reflection, such that the phase coherence is partially preserved, it is
possible to observe the interference between the line-of-sight (LOS) signal and the reflected signal.
This interference can provide information about the geometry of the scenario and the properties of
the reflection surface. A GNSS-R technique that exploits this information is the interference pattern
technique or GNSS multipath reflectometry (GNSS-MR) (The two terms are arguably interchangeable.
Nonetheless, some authors differentiate them by associating GNSS-MR with the cases where most of
the interfering signals are co-polar (right-hand circularly polarized (RHCP)), while they use IPT for
dedicated experiments, with dedicated experiments and sometimes a different polarization basis [1]).
Either received by the same antenna, or combined later, if the two signal components have a delay
difference shorter than a single modulation’s chip period, an interference pattern on the amplitude of
the composite signal will be observed with the change of the GNSS satellite elevation with respect to the
receiver. This interference pattern is mirrored into the receiver’s signal-to-noise ratio (SNR) estimate
for the receiver channel tracking that signal [7,55,56]. By applying the IPT to the SNR data provided by
the already deployed GNSS receivers, belonging to geodetic networks, it is possible to scout the surface
surrounding the sites where these receivers are installed in a very cost-effective manner. Several snow
and soil moisture monitoring experiments have been conducted using these data and the IPT, as well
as some calm water altimetry experiments. However, to the best of our knowledge, little work has
been published trying to characterize the estimation precision of these GNSS-R scenarios/techniques,
where long observation times are considered [57,58]. The works previously mentioned, together with
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others such as [59,60], have focused on GNSS (mostly GPS) ocean scattered signals, which are mostly
incoherent, i.e., with significant speckle noise.

In an attempt to fill this existing gap, in this paper, we make use of the CRB to provide the
theoretical estimation bound for scenarios dominated by coherent reflection when the LOS and the
reflected signals are received by the same antenna, both over short and long observation periods and for
different GNSS signals: GPS L1 C/A and L5 and Galileo E1 and E5. In our previous work [57,58], the
CRB was computed considering the samples at the output of the receiver’s prompt correlator during the
tracking of the composite signal (i.e., LOS and the reflected component) as our measurements. In this
paper, we assume no specific architecture for the GNSS-R receiver. The CRB is derived for the signal
model corresponding to the samples obtained at the output of the receiver front-end. This implies that
we are now considering all of the information contained in the received signal when computing the
CRB, while in previous works, some information could be lost due to the processing of the received
signal. Thus, the CRB expressions derived in this paper represent a more fundamental performance
bound, independent of the GNSS receiver architecture considered.

This paper is organized as follows. Section 2 describes the GNSS-R scenario under consideration,
summarizing all of the relevant assumptions made and later introducing the corresponding signal
model for this scenario. Section 3 contains the derivation of the CRB for the LOS and an arbitrary
number of multipath components over short measurement intervals, which is further adapted to our
specific scenario using the Fisher information matrix (FIM) transformation approach. In Section 4,
we analyze the impact of different parameters, e.g., the propagation path difference, over the CRB
obtained. Section 5 extends the derivation of the CRB for long observation times, while in Section 6,
we discuss the results obtained when computing this extended CRB as a function of the scenario
parameters. Finally, Section 7 summarizes the results and highlights the paper’s main conclusions.

2. Scenario Definition

In this section, we describe the scenario for GNSS-R coherent reflections that we have considered
for this work. By doing so, we summarize all of the relevant assumptions that are needed to define the
received GNSS signal model at the output of the receiver front-end.

As expected, the properties of the reflected signal when impinging the receiver antenna will
strongly depend on the scenario geometry and on the reflecting surface itself [61]. It is precisely that
dependency that allows us to retrieve useful information from the signal. In this paper, we study a
scenario similar to the one defined in [7].

In such a scenario, the GNSS-R receiver is ground-based and stationary during the data acquisition.
This receiver has a single antenna simultaneously receiving the line-of-sight (LOS) signal and a single
reflected signal, where the latter has been forwardly scattered from the specular reflection point on
the surface. The geometry of our scenario is shown in Figure 1. The reflection surface is assumed to
be a horizontal planar surface with a homogeneous layered structure, i.e., the dielectric permittivity
of the medium will only depend on the depth, i.e., the z-axis. These conditions could be fulfilled by
surfaces, such as bare soil, snow- or vegetation-covered soil, or a calm water surface. Because of the
large distance separating the satellite and the receiver, the elevation angle of the incident signal at
the specular reflection point and at the receiver antenna can be considered both equal to the angle
θel . In addition, we consider the reflection surface in our scenario to be smooth according to the
Rayleigh criterion [61], and thus, the standard deviation of the surface height σsh , i.e., the surface
roughness, satisfies:

σsh <
λ

8 sin(θel)
, (1)

where λ is the carrier wavelength. By default, we will assume a σsh = 0.01 m, low enough to fulfill
the Inequality (1) for the GNSS L1 and L5 carrier frequencies and θel ≤ 35◦. The reflected signals
are usually characterized as the sum of two contributions or components: one specular and another
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one diffuse [61]. Under the smooth surface assumption, the coherent component reflected from the
specular reflection point will clearly dominate, and as a consequence, the contribution of the diffuse
component will be disregarded in our analysis. Under such an assumption, we can consider the
energy reflected mainly coming from the first Fresnel zone [7,61], and the reflected signal can be well
approximated by a single delayed and complex-attenuated replica of the LOS signal. The first Fresnel
zone describes an ellipse on the reflection surface (denoted as S in Figure 1) with:

a =
b

sin(θel)
; b =

√
λ h

sin(θel)
+

(
λ

2 sin(θel)

)
, (2)

where a represents the semi-major axis, oriented towards the satellite’s azimuth; and b is the ellipse’s
semi-minor axis. As was also pointed out in [7,61], the waves carrying the GNSS signals will
acquire some degree of depolarization upon their reflection on dielectric mediums. While the wave
corresponding to the LOS signal will be considered as purely right-hand circularly polarized (RHCP),
the reflected wave can be described as a mix of both RHCP and left-hand circular polarization
(LHCP) components.
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Figure 1. Scenario geometry depicting the LOS (blue) and the specular reflection (red) signal
propagation paths. RX represents the position of the receiver’s antenna phase center, located at
a height h, defined as its orthogonal distance to the reflection surface. The point P marks the specular
reflection point. The values θel = 30◦ and h = 2 m are used in this case as the example.

The receiver’s antenna radiation pattern is assumed to be known, and its effect under different
polarizations of the incoming signals is included within the modeling of the amplitude of the received
signals. Furthermore, we make no assumption about the maximum height for the receiver’s antenna
phase center position in our scenario, as long as the smooth criterion defined by Inequality (1) is still
respected. Without loss of generality, we constrain our analysis to the single-satellite and single-signal
scenario in each case. This assumption is reasonable given the low crosstalk among different GNSS
signals, as well as the low cross-correlation among the different satellite spreading codes [62,63].
In this paper, we have focused only on the GPS L1 C/A and GPS L5 (both L5I and L5Q) signals, as
well as on the Galileo E1 (E1B: data; and E1C: pilot) and the full Galileo E5 signals. Table 1 summarizes
the characteristics of the signals considered, and Figure 2 shows their normalized autocorrelation
(real part).
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Table 1. GNSS signal characteristics considered [64–66]. fc is used to refer to the signal’s carrier
frequency; fchip is the modulation’s primary code chip rate; and BTx is the considered transmitted
signal bandwidth. BTx has been selected to be equal to the receiver’s reference bandwidth, defined in
the corresponding Interface Control Documents for each signal. For the GPS L1 C/A signal, we have
considered the reference bandwidth defined for the Block III satellite vehicles.

Signal fc (MHz) Modulation fchip (MHz) Main Lobe BW(MHz) BTx (MHz)

GPS L1 C/A 1575.42 BPSK (1) 1.023 2.046 30.69
GPS L5 1176.45 BPSK (10) 10.23 20.46 24

Galileo E1 OS 1575.42 CBOC (6,1,1/11) 1.023 14.322 24.55
Galileo E5 full 1191.795 AltBOC (15,10) 10.23 51.15 51.15
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Figure 2. (Top) Normalized autocorrelation function of the transmitted GNSS signals considered (real
part). The x-axis showing the delay τ has been normalized to Tchip = (1.023× 106)−1 s; (Bottom) PSD
of the signals. See Table 1 for more details.

Although the GNSS signals in Table 1 have different typical received powers [64–66], for
comparison purposes, we assume a default carrier-to-noise ratio (C/N0) of 45 dB-Hz for the LOS signal
in all of the cases, before considering the antenna gain.

Signal Model at the Output of the Receiver Front-End

For the single-satellite scenario described, we collect x ∈ CN×1, a vector representing the
complex baseband signal received, sampled at the output of the receiver’s front-end over a
total observation time interval of Tobs seconds. We assume the sampling rate fs, such that
Tobs = N f−1

s . The n-th sampling instant is defined as tn = t0 + n f−1
s , where t0 is the time where

the first measurement was taken. The vector x can then be expressed as:
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x =
M−1

∑
m=0

rm︸ ︷︷ ︸
r

+ n, (3)

where the GNSS signal, described by the vector r, has been expressed as M superimposed independent
signal components rm, each one corresponding to a different propagation path. In Equation (3),
n is circularly-symmetric complex Gaussian noise with covariance C. Thus, x is a random vector
distributed as CN (r, C). Each rm component can be expressed as:

rm = umdmejφm , (4)

where um and φm are, respectively, the amplitude and the phase at the instant t0 (referenced to the
receiver’s local oscillator) of the m-th individual component. um and φm are assumed to remain
constant during observation intervals of up to a 1-s duration. These parameters already include the
effects of the receiver antenna’s gain for each signal component. In Equation (4), the vector has been
defined as:

dm , [dm (t0) , . . . , dm (tN−1)]
T ∈ CN×1, (5)

with each of its component being equal to:

dm (tn) = s (αmtn − τm) ejωc(αm−1)tn . (6)

s (t) ∈ C represents the received filtered baseband navigation GNSS signal spread by the
pseudorandom code of the satellite considered. In addition, for each component, we have that:
τm is the time-delay at the instant t0; αm = (1 + vm/c) is the coefficient capturing the effect of the
Doppler shift, where c is the signal propagation speed and vm the equivalent relative velocity between
the transmitter and the receiver; and ωc = 2π fc, where fc is the signal carrier frequency. τm and αm

will also be assumed constant over time intervals of up to 1 s. This assumption for αm is justified by
the very low rate of change of the Doppler shift observed by a static receiver [67]. Given the maximum
rate of change of the relative speed possible in this case, i.e., dvm/dt|Max ≈ 0.178 m/s2 [67], αm can
vary as little as ≈5.94×10−10 within a 1-s interval.

In this paper, the front-end’s low-pass filter is implemented as a fifth-order Butterworth
filter. The distortion introduced by this filter is already taken into account in the signal model
s(t). The sampling frequency of the front-end is considered equal to the Nyquist rate with complex
sampling, i.e., fs = 2B f e, where B f e is the one-sided bandwidth (3 dB) of the low-pass filter. Finally, no
quantization loss is considered in our analysis.

3. Derivation of the CRB for Short Observation Intervals

In this section, we derive the CRB given the output samples of the receiver’s front-end, whose
signal model was defined in the previous section, over a total observation time Tobs of up to 1 s. After
introducing the CRB, we derive the general solution for M propagation paths. Then, we particularize
the solution obtained for our scenario, described in Section 2, i.e., with M = 2, corresponding to the
LOS signal plus a single coherent specular reflection.

3.1. Definition and General Case for M Propagation Paths

Estimation of the error bounds plays a major role in parameter estimation in general, since they
provide benchmarks to assess the performance of practical estimators. The workhorse in this respect is
the well-known Cramér–Rao bound. The CRB defines a lower bound on the variance of any unbiased
estimator for a set of deterministic parameters when the probability density function (pdf) of the
measurements is known ([68], Chapter 3). The CRB quantifies the dependency of the measurements’
pdf on the unknown parameters to estimate. The stronger the pdf’s dependency on these parameters,
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the lower the CRB. The CRB for a vector of L unknown real-valued parameters ξ ∈ RL×1 states that
the covariance matrix of the estimates, Cξ̂ , must satisfy (under standard regularity conditions):

Cξ̂ ≥ J−1 (ξ) , (7)

where J (ξ) is the Fisher information matrix (FIM), whose inverse is the CRB matrix. The elements in
the FIM are defined as:

[J (ξ)]ij = −E

{
∂2 ln p(x; ξ)

∂ξi∂ξ j

}
, (8)

where ln p(x; ξ) is the log-likelihood function of ξ, given the vector of random measurements x.
Taking the inverse from Equation (8), we can express the CRB of the i-th parameter in ξ as:

CRB (ξi) =
[
J−1 (ξ)

]
ii

. (9)

In Section 2, we have introduced the vector x, modeling the discrete output of the receiver
front-end during the time interval Tobs. As described there previously, the vector x is assumed to obey
a circularly-symmetric complex Gaussian distribution. Its expected value, defined as µ, will then be
r = ∑ rm, as defined in Equation (3). We can express each signal component rm as a function of the
following unknown parameters, grouped into the vector ξm as:

ξm , [um, φm, τm, αm]
T , (10)

where, for the m-th signal component, um represents its amplitude, φm its phase shift, τm its time-delay
or code phase and αm its Doppler shift coefficient. In this case, we want to jointly estimate the
vector ξ ∈ R4M×1, which has been defined as the vector concatenating all of the ξm vectors.
Now, given the Gaussian distribution of the vector x assumed in our case, it is
possible to make use of the Slepian–Bangs formula ([68], Chapter 3), which provides a
convenient way to compute Equation (8) as:

[J (ξ)]ij = tr

{
C−1 ∂C

∂ξi
C−1 ∂C

∂ξ j

}
+ 2<

{
∂µH

∂ξi
C−1 ∂µ

∂ξ j

}
, (11)

where <{·} denotes the real part of a complex vector or scalar, tr{·} denotes the trace operator, the
superscript H is used to denote the conjugate transpose operator and the C represents the covariance
matrix of x. Given that the noise component is independent from any of the parameters in ξ, then the
first term of the sum in Equation (11) will be equal to zero, due to ∂C/∂ξi = 0. In order to compute the
remaining term in Equation (11), we can express the elements of the gradient of µ as:

∂µ

∂um
= dmejφm , (12)

∂µ

∂φm
= jumdmejφm , (13)

∂µ

∂τm
= um

∂dm

∂τm
ejφm , (14)

∂µ

∂αm
= um

∂dm

∂αm
ejφm , (15)

where the vector dm is defined as in Equation (5). It is worth noticing that J(ξ) can be conveniently
expressed as the following symmetric block matrix:
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J (ξ) =


Jξ0ξ0

Jξ0ξ1
. . .

JT
ξ0ξ1

. . .
... JξM−1ξM−1

 , (16)

where every element of each sub-matrix Jξmξl
is computed as:

[
Jξmξl

]
ij
= 2<

{
∂
(
rH

m (ξm)
)

∂ξi
C−1 ∂ (rl (ξl))

∂ξ j

}
, (17)

with ξi ∈ {ξm} and ξ j ∈ {ξl}. Equation (17) can be used to compute the elements of J(ξ), and the
CRB of ξ is straightforwardly obtained as in Equation (9). This case corresponds to the CRB under the
assumption of Gaussian noise, independent of the received GNSS signal.

Let us now examine the case where only thermal noise is present. Since we have considered the
sampling rate to be a multiple of the Nyquist sampling frequency, the samples in x can be considered
uncorrelated, which implies a diagonal covariance matrix, i.e., C = σ2

wI. The noise variance σw can be
computed as:

σ2
w =

N0

2

∫ ∞

−∞
|HRx ( f )|2 d f = N0Bn (18)

where N0/2 is the assumed white noise spectral density in W/Hz, HRx( f ) is the front-end’s normalized
baseband filter response in the frequency domain and Bn is defined as the equivalent noise bandwidth
(one-sided). Thus, for complex white Gaussian noise (CWGN), we can express Equation (17) as:

[
Jξmξl

]
ij
=

2
σ2

w
<
{

∂
(
rH

m (ξm)
)

∂ξi

∂ (rl (ξl))

∂ξ j

}
. (19)

If the narrowband approximation for the received signal is taken, i.e., α{m,l} ≈ 1, then the CRB
obtained as a result of inverting the matrix defined in Equation (16) is analogous to the results described
in [69] (Chapter 4), where the CRB was derived for two propagation paths using a similar approach.
In addition, Skournetou et al. used in [70] an approach similar to the one described in this paper, but
for the case of up to four signal propagation paths.

3.2. Two Propagation Path Case for a Ground-Based Static Receiver

For the scenario described in Section 2, we assume M = 2, with the r0 component used to represent
the line-of-sight (LOS) signal and r1 used for the specular reflection. In this scenario, we consider a
stationary receiver, where subsequently, the LOS and the specular reflection will experience the same
Doppler shift; thus, αm = αl := α. This simplifies the FIM J(ξ) defined in Equation (16). Its elements
related to α[m,l] and a different parameter in ξ, as defined in Equation (19), will now become zero. This
implies that the estimates of α will be independent from the estimates of the rest of parameters, i.e.,
they will decouple. The same conclusion was reached in [69] (Chapter 4) when computing the CRB for
two propagation paths. Having decoupled parameters allows us to disregard the estimation of the α

for the rest of our analysis. The reason is that we are only interested in estimating the geometry of
the scenario and the characteristics of the reflecting surface. In a stationary environment, α cannot be
related with any useful information about the scenario that we want to retrieve. Thus, we are now
redefining the vector of unknown parameters ξ, by redefining each ξm to just [um, φm, τm]T .

For the scenario described in Section 2, we have only two propagation paths; using Equation (16),
the FIM can be expressed as the 6× 6 block matrix:

J (ξ) =

[
Jξ0ξ0

Jξ0ξ1

JT
ξ0ξ1

Jξ1ξ1

]
, (20)
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where each submatrix, computed using Expression (19), can be expressed as:

Jξmξl
=

2
σ2

w
<




dH
m dl juldH

m dl uldH
m

∂dl
∂τl

−jumdH
m dl umuldH

m dl −jumuldH
m

∂dl
∂τl

um
∂dH

m
∂τm

dl jumul
∂dH

m
∂τm

dl umul
∂dH

m
∂τm

∂dl
∂τl

 ej∆φ

 , (21)

with m, l ∈ {0, 1} and ∆φ , φl − φm.
Let us now introduce the discrete autocorrelation function (ACF) of s(t), defined as:

R (τ) ,
1
N

N−1

∑
n=0

s∗ (αtn) s(αtn − τ). (22)

The superscript ∗ is used to denote the complex conjugate.
Now, we introduce the following identities:

R (∆τ) =
1
N

dH
m dl , (23)

R′ (∆τ) = − 1
N

∂dH
m

∂τm
dl =

1
N

dH
m

∂dl
∂τl

, (24)

R′′ (∆τ) = − 1
N

∂dH
m

∂τm

∂dl
∂τl

. (25)

Notice that in order to keep our notation as simple as possible, we use R(n)(∆τ) to indicate the
n-th order partial derivative of R with respect to τ evaluated at the delay difference ∆τ , τl − τm.
The Identities (23)–(25) are obtained straightforwardly by applying the chain rule, and they allow us to
express Equation (21) as:

Jξmξl
=

2N
σ2

w

 R (∆τ) cos (∆φ) ul R (∆τ) sin (∆φ) −ul R′ (∆τ) cos (∆φ)

−umR (∆τ) sin (∆φ) umul R (∆τ) cos (∆φ) umul R′ (∆τ) sin (∆φ)

umR′ (∆τ) cos (∆φ) umul R′ (∆τ) sin (∆φ) −umul R′′ (∆τ) cos (∆φ)

 . (26)

Now, since we can express Jξmξl
as in Equation (26), therefore J(ξ) will be a function of the ACF of s(t)

and first and second order derivatives with τ evaluated at ∆τ. It is helpful to notice that ACF and its
derivatives can be expressed using their relationship with the signal’s power spectral density (PSD).
By making use of the well-known Wiener–Khinchin theorem [68] (pp. 576–577) and the properties of
the Fourier transform, we have that:

R(n) (∆τ) =
∫ ∞

−∞
(j2π f )n Ss ( f ) ej2π f ∆τd f , (27)

where Ss( f ) represents the signal s(αt)’s PSD. Notice that s(αt) represents the filtered signal at the
output of the receiver’s front-end, scaled in the time domain due to the Doppler effect. It already
takes into account any distortion effect on the signal due to the front-end’s filtering. Thus, in our
derivation, these effects are taken into account within the R() and its derivatives. Nonetheless, if we
are interested in evaluating the influence of the front-end’s filtering on the resulting CRB, it might be
more convenient to express Ss( f ) as:

Ss( f ) = |HRx( f )|2S( f ), (28)

where S( f ) is the PSD of the signal received at the antenna. In the context of GNSS-R, in [54], the
authors followed this approach to study the effects of using different front-end bandwidths and
filter types in the estimation performance of the interferometric GNSS-R technique. Moreover, they
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considered also the band limitations of the signal transmitted in practice. In contrast, in our approach,
we generate a model of s(t) simulating the samples at the output of the front-end, and then, we
compute its ACF and its derivatives.

The selected front-end bandwidth, B f e, will define the sharpness of the normalized autocorrelation
peaks, which will have a great impact on its derivatives, R(n). In addition, the total number of samples
considered within Tobs will also depend on B f e, as N = Tobs/(2B f e). If we consider the support
of R(∆τ) to be approximately limited to the interval [−Tc, Tc], where Tc is the chip duration, then,
according to Equation (26), we have Jξmξl

≈ 0 for propagation path differences greater than ρchip = Tcc,
where c is the signal propagation speed. This is a consequence of the autocorrelation properties of
PRNcodes [62]. Moreover, J (ξ) becomes a diagonal matrix, which implies that all of the parameters
in ξ are now uncoupled. From the FIM calculation point of view, this is equivalent to the scenario of
having a receiver with two synchronized RF front-end channels, with uncorrelated noise components,
and two different antennas: an up-looking one, exclusively receiving the LOS signal, and a second
down-looking antenna, exclusively receiving the reflected component.

3.3. Introducing Phase Coherence Using FIM’s Parameter Transformation

So far, we have derived an expression for the FIM of ξ given the scenario defined in Section 2.
However, in the GNSS-R context, we are actually more interested in a different set of unknown
parameters that can be related to the geometry of the scenario, as well as to the properties of the
reflecting surface. Moreover, up to this point, we have not taken into account in our signal model the
phase coherence presented by specular reflection. This implies that the LOS and the reflected signals
maintain a fixed phase relationship with each other and with respect to the local oscillator clock, used
as the reference, i.e., φ1 = g(φ0).

In our approach, we have decided to compute the CRB for ξ and then transform it for a new set of
parameters Ψ. This transformation of J(ξ) allows us to conveniently introduce the phase coherence
assumption. We define the new vector of unknown parameters as:

Ψ = [u0, φ0, ρ0, |Γ| , φΓ, h]T , (29)

where u0, φ0, ρ0 are the amplitude, phase and propagation distance (ρ = τ c) for the LOS signal
component. Γ = |Γ|ejφΓ is the reflected signal coefficient, i.e., the complex attenuation experienced by
the reflected signal when compared to the LOS. Its module is defined as:

|Γ| = u1

u0
. (30)

Γ takes into account the surface reflectivity coefficient, the antenna complex gain and the polarization
mismatch. Thus, it will depend on the satellite elevation angle (θel) and on the azimuth angle of arrival
of the reflected signal to the antenna. Since θel varies very slowly [67], we will assume it to remain
constant for observation periods up to 1 s. h is the height of the receiver, defined as the orthogonal
distance between the antenna phase center and the reflection surface. In our flat surface scenario,
this height h relates to the propagation path difference between the LOS and the reflected component
∆ρ as:

h =
∆ρ

2 sin(θel)
, (31)

where ∆ρ is defined as ∆ρ = (τ1 − τ0) c. In addition, because of the coherence assumption on the
reflected component, the phase difference between the two components, i.e., ∆φ = φ1 − φ0, can be
expressed as:

∆φ = φΓ −
2π

λ
∆ρ, (32)

where λ is the carrier wavelength.
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Following the approach described in [71], we can express the FIM for Ψ as:

J (Ψ) = GJ (ξ)GT , (33)

where G is the Jacobian transformation matrix defined as:

G =

{
∂ξ j

∂Ψi

}
. (34)

The expressions for each of the elements of G are provided in Appendix A. The CRB for the parameters
in Ψ can be directly obtained as the diagonal elements of J−1 (Ψ). This two-step approach, i.e., first
computing the FIM for ξ and then transforming it, has been used for its simplicity. It allows us to
redefine the bound for a different set of parameters and to introduce more assumptions into our signal
model without having to derive the FIM expression from scratch.

4. Analysis of the CRB for Short Observation Intervals

The matrix J−1 (Ψ) derived in the previous section shows that CRB(Ψ) in the specular reflection
scenario considered will depend on:

i The scenario geometry: through the propagation path difference between the two signal
components ∆ρ, which will be a function of h and the satellite elevation angle θel (and its
variation) during the observation time.

ii The properties of the reflecting surface: through its reflection coefficient, Γ, that can be modeled
as a function of the signal’s incident angle and the electrical properties of the surface and its
roughness.

iii The GNSS signal considered and the receiver features: the signal modulation and its
transmission bandwidth, the C/N0 of the LOS signal, the antenna’s radiation pattern and
the receiver front-end’s bandwidth (and the filtering scheme considered) will all have an impact
on the resulting CRB.

However, understanding these dependencies only by examining J−1 (Ψ) is not straightforward.
The expressions for their diagonal elements can be, in the general case, quite cumbersome with several
terms. Nonetheless, we examine the specific case when ∆ρ > ρchip, where the initial FIM J(ξ) is a
diagonal matrix, which greatly simplifies the terms in the final J−1 (Ψ).

4.1. CRB when ∆ρ > ρchip

In this particular case, not only the diagonal terms for the resulting J−1(Ψ) matrix, i.e., [J−1(Ψ)]ii,
are much simpler, but this assumption is particularly relevant because it represents the best estimation
case, i.e., when its CRB lower bounds all other cases with shorter ∆ρ. As shown in Appendix A, for h
and |Γ| in Ψ, after some simple algebra, we obtain the following CRB expressions:

CRB (h) = − 1

8γ SNR0 sin2 (θel)
(

R′′(0)
c2

) , (35)
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CRB (|Γ|) = |Γ|2 + 1
2 SNR0 R (0)

, (36)

where the coefficient γ introduced has been defined as:

γ =
|Γ|2

|Γ|2 + 1
, (37)

and SNR0 represents the equivalent SNR as if only the LOS signal was present and, as such, can be
expressed as:

SNR0 =
u2

0
σ2

w
N = 2

C
N0

Tobs. (38)

Notice that the amplitude u0 takes into account the effects of the receiver’s antenna gain pattern for
the received LOS signal, which is dependent on the signal incident angle, i.e., a function of θel .

From examining Equations (35) and (36), we can directly deduce the following:

1. With little surprise, both CRB expressions are inversely proportional to SNR0. However, CRB(h)
is also inversely proportional to sin2(θel). This poses a trade-off: we require low elevations for
the smooth surface assumption to hold, but at the same time, the lower the elevation, the higher
the CRB(h). Moreover, as shown by Equation (2), low elevation angles imply larger first Fresnel
zone areas, which decrease the spatial resolution of our estimates.

2. The values that CRB(|Γ|) can take for different |Γ| values are bounded, as a consequence of
having defined Γ as a ratio, with 0 < |Γ| ≤ 1.

3. In both CRB expressions, the effects of the assumed received signal bandwidth and the front-end
filtering (possible losses and distortions) are modeled within the R′′(0) and the ACF’s peak,
i.e., R(0). R′′(0) can be understood as the curvature or the sharpness of the R(0). The higher
the front-end bandwidth, the sharper the resulting ACF peak and, thus, the higher R′′(0). This
holds as long as the front-end bandwidth is narrower than the received signal bandwidth,
otherwise there will be no sharpening on the resulting R(0). Additionally, for a higher front-end
bandwidth, the SNR0 will also increase if the Nyquist sampling rate assumption is maintained,
as a consequence of having more samples for the same Tobs.

In Figure 3, we show the results obtained when computing the CRB for h using Equation (35),
as a function of the front-end’s bandwidth B f e for the different GNSS signals considered. Note that
in Figure 3, the y-axis represents (the convention of representing the

√
CRB in the figures is followed

consistently along the entire paper) σΨi =
√

CRB(Ψi). An isotropic antenna pattern was assumed, and
|Γ| was set to

√
0.1, which corresponds to an attenuation of 10 dB in the reflected signal power with

respect to the LOS. The Tobs considered was equal to 1 s. The ∆ρ was fixed to 600 m to ensure isolation
between the LOS and the reflected signal components provided by the code correlation properties. We
observe how the CRB of h consistently decreases with the increase of B f e for all GNSS signals studied,
as long as B f e remains lower than the (one-sided) signal bandwidth BTx. The slight decrease of the CRB
of h for all GNSS signals observed in Figure 3 for B f e > BTx/2 is explained due to the use of a non-ideal
low-pass filter, like the one explained in Section 2, to model the limited transmission bandwidth. Also
from Figure 3, we see how the

√
CRB(h) stays in the meter order, except for the Galileo E5 signal,

which reaches decimeter order precision when B f e > 40 MHz, due to its highest bandwidth.
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Figure 3.
√

CRB(h) as a function of the front-end’s bandwidth for the different GNSS signals
considered. The vertical dashed lines are used to represent the BTx (one-sided) considered for each of
the signals.

The CRB for the rest of parameters in Ψ is jointly obtained when computing J−1(Ψ).
In Equation (32), we have expressed the phase difference between the two signal components as
the sum of two contributions: φΓ and (2π/λ)∆ρ, with the latter capturing the shift due to the extra
propagation path corresponding to the specular reflection. For short observation intervals, where both
of these contributions to ∆φ remain constant, it is not possible to individually estimate them precisely.
This issue is easily spotted by examining the CRB (φΓ) expression, i.e., the fifth element in [J−1(Ψ)]ii,
derived in Appendix A, that can be approximated as:

CRB (φΓ) ≈ −
c2k2R (0)

2 γ SNR0 R′′ (0)
, (39)

where k = 2π/λ is the wavenumber for the received signal carrier. Since the numerator in Equation (39)
will usually be many orders of magnitude higher than its denominator, resulting in

√
CRB (φΓ)� 2π

rad, this implies that we cannot estimate φΓ properly. Given this ambiguity in individually estimating
the two contributions to ∆φ, performing precise phase altimetry is only possible if φΓ is assumed to
be known or small enough that it can be neglected. Otherwise, a bias in the altimetry estimates
is introduced. Thus, even if we considered the phase coherence in our derivation of CRB(h),
Expression (35) is equivalent to the CRB for pure GNSS-R code altimetry only, i.e., as if no phase
information were used. The CRB for code altimetry can be also derived following the same proposed
approach, described in the previous section, but just assuming no phase coherence between the
LOS and the reflected signal, i.e., considering ∆φ as the difference between two independent phases
when computing the G transformation matrix defined in Equation (34), which leads to the same
results as in Equation (35). In addition, in [72,73], in an effort made by the authors to characterize
the code-tracking accuracy of GPS receivers, they computed the minimum code thermal noise jitter
when using noncoherent delay-lock loop (DLL) discriminators, i.e., σ2

DLL. The expressions provided in
their results are very frequently used to characterize the tracking performance of different receiver
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architectures [62] (Chapter 5). Additionally, we can use these same expressions to compute the
minimum variance on the h estimate, i.e., σ2

ĥ
, in a straightforward way, as:

σ2
ĥ ≥

c2 (σ2
DLL−0 + σ2

DLL−1
)

4 sin2 (θel)
, (40)

where σ2
DLL−0 and σ2

DLL−1 are the minimum variances of the LOS and the reflected signal code delays,
respectively. In Equation (40), two independent tracking channels are assumed: one tracking the LOS
signal and the other tracking the reflected signal. The results when computing Equation (40) match the
CRB(h) values obtained using Equation (35) when ∆ρ > ρchip, which correspond to the flat part of the
curves later shown in Figure 4. As a consequence, it follows that a two-tracking channel architecture
for code altimetry is efficient in terms of the bound defined in Equation (35) given a sufficiently large
propagation path difference. In practice, such a scenario might appear to be unlikely for ground-based
receivers. Nonetheless, many of the new GNSS signals have higher bandwidths, which implies lower
ρchip values (e.g., 293 m for GPS L1 C/A signal vs. 29.3 m for GPS L5) [62].
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Figure 4.
√

CRB(h) as a function of ∆ρ for the different GNSS signals considered. B f e is the bandwidth
of the receiver’s front-end assumed for each signal, set to match the signal bandwidth, i.e., BTx/2
(see Table 1). The two vertical lines represent the chip lengths: 293.25 m, of the GPS L1 CA and Galileo
E1 BC signals; and 29.32 m, of the GPS L5 and Galileo E5 signals.

In the previous discussion, we have highlighted the problem arising when trying to separately
estimate the two contributions to ∆φ and how the CRB for the joint estimation of Ψ captures this
effect. However, what if we assume some prior knowledge of one of the two terms in ∆φ? We examine
now the impact on the CRB if we assume that one of these terms is known, which represents the best
case scenario given such an assumption. We study two cases: (1) when φΓ is assumed to be known,
referred to as “phase altimetry” case; and (2) when h is known, referred to as “reflection coefficient
estimation” case.

4.1.1. Phase Altimetry

In this case, we assume the angle φΓ as known. Now, in order to obtain the new expression
CRBalt(h), we remove the row and the column of J(Ψ) associated with φΓ and then compute the matrix
inversion J−1(Ψ), as is described in Appendix A. We obtain the following expression:
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CRBalt(h) =
1

8γ SNR0 sin2 (θel)
(

k2R (0)− R′′(0)
c2

)
≈ 1

32λ SNR0R (0)

(
λ

π sin (θel)

)2
, (41)

by making the approximation of R′′(0)/c2 very small (e.g., ≈0.1 for the worst case, i.e., the Galileo E5
signal with B f e = BTx) compared to k2R(0) (e.g., ≈623), given the signal bandwidths considered.
The phase information is now effectively used and the bound multiple orders of magnitude
lower. As expected, it is directly proportional to λ2, i.e., the lower the carrier wavelength, the
higher the possible precision of the h estimate. In addition, we observe that when comparing
Equation (41) with Equation (35), the dependence on R′′(0) can be neglected now. This implies
that in this phase altimetry case, the estimation performance of the phase altimetry techniques should
be negligibly impacted by the bandwidth of the signal used. As a consequence, the use of the new
GNSS with higher bandwidths, but with the same carrier frequency, should bring little improvement
to the achievable precision of the phase altimetry techniques for short Tobs when ∆ρ > ρchip.

4.1.2. Reflection Coefficient Estimation

Analogously, we compute now CRBr for |Γ| and φΓ (subindex r), but in this case, we proceed by
removing the row and the column associated with h, as shown, once again, in Appendix A. We obtain
the following expressions:

CRBr(|Γ|) = CRB (|Γ|) , (42)

CRBr (φΓ) =
1

2 γ SNR0 R (0)
. (43)

As expected, the CRBr(|Γ|) is the same as in the joint estimation of Ψ, while CRBr(φΓ) is now orders of
magnitude smaller when compared to Equation (39) and well bellow 2π, thus implying that in this
case, it is possible to obtain useful phase estimates.

4.2. CRB when ∆ρ < ρchip: Interference Case

When ∆ρ < ρchip, we cannot process anymore the two signal separately, which was otherwise
possible thanks to the correlation properties of the PRN codes. Now, the initial FIM J(ξ) is no longer a
diagonal matrix, and the analytic expressions for [J−1(Ψ)]ii become quite cumbersome. Thus, from
now on, we will rely on numerical evaluation of [J−1(Ψ)]ii to compute the CRB.

In Figure 4, we show the results of computing CRB(h) as a function of the ∆ρ for the different
GNSS signals under study. Once again, we have considered a |Γ|2 = 0.1, and Tobs = 1 s.
As expected, we have observed that when ∆ρ increases, the bound reaches the values obtained
using Equation (35). Moreover, we also observe how that the CRB reaches these values even for
∆ρ � ρchip. In summary, we can identify two consequences of having higher bandwidth signals:
(a) the asymptotic value for the bound is reached faster; and (b) the value of the bound is lower for any
∆ρ. In the case of (a), this can be clearly related with having a sharpened peak of the ACF for higher
front-end bandwidths.

In Figure 5, we show the results of computing CRB(h) for different ∆ρ and |Γ| values. The plots
presented allow us to visually determine, approximately, the order of the best achievable precision
given a ∆ρ and |Γ| combination. The y-axis represents |Γ|2, which in practice is equivalent to the gain
experienced by the reflected signal compared to the LOS. As expected, for ∆ρ values higher than
ρchip, the CRB agrees with the one obtained with Equation (35). Figure 4 confirms that the CRB when
∆ρ > ρchip lower bounds all of the other cases, as we hypothesized at the beginning of this section.
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Figure 5.
√

CRB(h) for different |Γ|2 and ∆ρ values for the considered GNSS signals. Red lines are
used to represent the level curves, each one labeled with its corresponding value of

√
CRB(h) (in m).

B f e represents the assumed front-end’s one-sided 3-dB bandwidth.

5. Derivation of the CRB for Long Observation Intervals: CRB(Ψlong)

So far, we have assumed total observation times of up to one second. However, the IPT uses much
longer observation times, usually on the order of several minutes. Can we use the CRB expressions
obtained in Sections 3.3 and 4 for such long observation times? Unfortunately, we cannot use them
for observation times Tobs longer than one second. This is due to the fact that, for Tobs > 1 s, the
approximation described in Section 2, of considering the parameters in Ψ to be constant over Tobs,
is no longer valid. In this case, the change in the delay of the received LOS signal cannot be well
approximated anymore as a linear expression with an initial value of τ0 s. In addition, neither the
Doppler shift observed, nor the phase shift φ0 with respect to the receiver oscillator can be considered
as constant. That is due to the non-linear relative movement of the satellite and the receiver over long
observation times and due to the signal propagating through the atmosphere, which effects the signal
as it varies with time [62]. In addition, the direction in which the signals impinge on the antenna will
vary over time as a consequence of the variation of the satellite’s elevation, i.e., θel , and the azimuth
angles observed. Subsequently, this variation can result in a change in the LOS signal amplitude u0

and an extra phase shift, i.e., a variation of φ0, since these two parameters also model the effect the
receiver’s antenna radiation pattern.

In realistic scenarios, modeling the reflection coefficient Γ, even for homogeneous and horizontal
flat surfaces, can be a complex matter. Nonetheless, we still can characterize Γ as a function of the
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vector sΓ, containing the set of parameters related to the reflection surface physical properties; the
signal’s impinging angle on the surface; and the antenna gain towards the specular reflection point [61].
The two last terms can be expressed as a function of θel . Thus, we have that:

Γ(θel) = f (θel ; sΓ). (44)

If we consider h and the parameters in sΓ constant over Tobs � 1 s, then we can compute the CRB
for a new vector of unknown parameters Ψlong, defined as:

Ψlong ,
[
uT

0 , φT
0 , τT

0 , sT
Γ , h
]T

, (45)

where u0, φ0 and τ0 are column vectors of L elements, which we refer to as “fast-varying” parameters.
In our analysis, these parameters are associated with the values of u0, φ0 and τ0 at the l-th time interval
of Tcoh =1 s duration, with L = Tobs/Tcoh being the total number of these intervals for Tobs. We assume
that θel remains constant over each Tcoh interval. The previous assumption is based on the fact that the
rate of change of θel over time observed by ground-based static receivers is very low, i.e. on the order
of 10−3 ◦/s [67].

We can now use the same FIM parameter transformation approach to compute the CRB(Ψlong),
which was introduced in Section 3.3. This approach allows us to obtain J(Ψlong) as a function of the
J(Ψ) for each of the different L short time intervals Tcoh. In order to do so, we first define the vector
Ψext of unknown parameters as:

Ψext ,
[
ΨT

0 , ..., ΨT
L−1

]T
, (46)

where each subvector Ψl corresponds to the l-th Tcoh observation interval. We build now the matrix
J (Ψext) as:

J (Ψext) ,

 J (Ψ0) 0
. . .

0 J (ΨL−1)

 (47)

= diag {J (Ψ0) , . . . , J (ΨL−1)} , (48)

where each J(Ψl) is the FIM computed using Equations (20)–(34) for the l-th Tcoh observation interval.
The J (Ψext) generated is equivalent to assuming all of the parameters in any Ψl are independent from
any of the parameters in a different subvector Ψk. This assumption is only used as a means to introduce
the parameter dependencies between observation intervals by transforming J (Ψext), once again, using
a new Jacobian transformation matrix A ∈ R6L×P, defined as:

A =

{
∂Ψextj

∂Ψlongi

}
, (49)

where i and j are the indexes used for the rows and columns, respectively. The number of columns in
the matrix A, P, is equal to the number of parameters in Ψlong, i.e., 3L + 1+ the number of elements
in sΓ. Since the parameter h was already in Ψ and is considered constant for all of the L intervals,
∂hl/∂h = 1, for any l. Finally, J(Ψlong) is obtained as:

J
(

Ψlong

)
= A J (Ψext)AT . (50)

A more detailed description of how the matrix A is constructed is provided in Appendix A. The CRB
can be obtained directly as [J−1(Ψlong)]ii. Furthermore, we shall point out that the previous derivation
is independent of the model of Γ considered, as long as the gradients of |Γ| and φΓ with respect to sΓ

exist. No assumption was made regarding the number of parameters in sΓ. Nonetheless, it is well
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known that the CRB can only increase with the number of unknown parameters considered, which
intuitively makes sense, given the increased uncertainty.

6. Analysis of the CRB(Ψlong)

In this section, we compute the CRB, using Equation (50), for different simulation cases. Our goal
is to study the effect of the received signal’s satellite elevation span covered during the observation
time (∆θel), as well as the impact of the GNSS signal modulation, over the theoretical achievable
precision in the estimation of the parameters in Ψlong.

The variation of θel during the observation time has the following implications:

1. The propagation path difference ∆ρ will change due to the displacement of the specular reflection
point. In addition, the angle of arrival of both the LOS and the reflected component to the antenna
will also vary.

2. If the reflection coefficient Γ is assumed to depend on θel , this will also change during the
observation time.

Up to this point, we have not selected any specific model for the reflection coefficient Γ. From
now on, we will use the model for a single-layer bare soil introduced in [7], which we will call the
Zavorotny–Larson model (Z-L). This model is described in more detail in Appendix B, and it allows us
to specify Γ as a function of θel and the following parameters:

sΓ = [εr, σ]T , (51)

where εr and σ are the real part of the surface’s relative permittivity and the surface conductivity,
respectively, which are assumed constant over the entire observation interval. Notice that this model
for Γ is used as an example in our analysis and that the approach proposed to obtain J(Ψlong) can
accommodate other models for Γ(θel ; sΓ).

In addition, the gain of the receiving antenna will have an important impact over the CRB. To
assess this impact, we consider two possible antenna cases in our analysis:

1. An ideal case with an isotropic antenna model.
2. A Leica GNSS AR25 antenna [74] model. Only the antenna gain’s amplitude has been modeled.

The antenna phase center is assumed to be located at the distance h perpendicular to the reflection
surface. The antenna boresight is pointing upwards, parallel to the surface normal vector (i.e.,
an elevation of 90◦). We have used the pattern model provided as part of the open source GPS
multipath simulator [75].

In both cases, we make the assumption that the antenna complex gain is accurately known and
that all of the available signal’s energy is considered by defining the receiver’s front-end bandwidth
as B f e = BTx/2.

6.1. CRB(Ψlong) vs. ∆θel

In this first case, we compute the CRB for different h values and elevation spans ∆θel , covering
from θel = 10 ◦–35 ◦. In the results obtained, the first individual ∆θel value represents a special case,
since it corresponds to a single short observation interval of Tobs = 1 s, with no change in θel . In this
case, the bound matches the results obtained using the short-period CRB derived in Section 3. Figure 6
shows the CRB of h results for the isotropic antenna and the AR25 antenna cases, with the GPS L1
C/A signal. In the figure, the highest CRB values are located at the left-upper corner of the plot,
which correspond to the lower values of antenna heights (below 5 m) and elevation spans (below 15◦).
The CRB values decrease almost monotonically with both the increase of h and the elevation span
covered. As expected, it becomes clear from the plots that the antenna pattern has a very significant
impact on the CRB of h given the same h and ∆θel . Figure 6a shows that sub-millimeter precision could
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be achieved in theory in the ideal isotropic antenna case. On the other hand, in the AR25 antenna
case, the plot in Figure 6b shows that now, only centimeter precision can be achieved. These CRB
values now obtained are significantly lower than the CRB values computed previously in Section 3.
Firstly, given the satellite elevation rate of 5× 10−4 ◦/s considered, the observation time is above the
hour duration for ∆θel > 18◦. The longer the observation time considered, the more independent
samples we collect, thus the lower CRB values obtained. Secondly, the CRB computed now takes
into account that the phase difference information can be used for the estimation of h in this case.
Intuitively, this can be explained by the different rate of change of the two contributions to the phase
of the reflected component: the phase shift due to the scenario geometry (related to h) and the phase
shift due to the polarization change due to the reflecting surface properties, i.e., to Γ.
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(a) Isotropic antenna case.
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(b) Leica AR25 antenna case.

Figure 6.
√

CRB(h) for different ∆θel ’s (vertical axis), starting from 10◦, and true receiver heights
h (horizontal axis). Complete left-hand circular polarization (LHCP) reflection with constant
|Γ|2 = −10 dB is assumed. (a) The results when an ideal isotropic antenna is considered, while
(b) shows the results when the Leica AR25 antenna pattern is considered. Black lines are used to
represent different level curves for the values labeled on top of them.

Having a higher true h has two main implications. First, the higher the h, the faster the oscillation
rate of the interference pattern observed in the composite amplitude of the received signal with the
change of satellite elevation. Second, the ∆ρ will be higher, which makes it easier to differentiate
between the two signal components, given the code autocorrelation properties, and the resulting CRB
can be lower, as we have shown in Section 3. However, techniques like the IPT only use the output
of the estimated SNR or the prompt correlator (single output), and they can only work if there is
interference between the LOS and the reflected signal, i.e., if ∆ρ < ρchip [21]. Thus, with IPT, we face a
trade-off: we require low ∆ρ values in order to observe the interference pattern, but according to the
CRB expressions obtained, low ∆ρ values degrade the achievable estimation precision.

6.2. Effects of the Signal Modulation on the CRB(Ψlong)

We now present the results of computing the CRB of sΓ and h, given ∆θel spans of different lengths
and the GNSS signals considered. For each signal, we have considered a particular B f e = BTx/2.
We have considered the Leica AR25 antenna model and a true receiver height h = 3 m. We also have
used the Z-L model for Γ(θel) given a dry ground surface with a permittivity (real part) εr = 30 and a
conductivity σ = 0.2 S/m [76]. The initial θel is 10◦ for all of the elevation spans considered.
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Figure 7.
√

CRB for (a) h, (b) εr, and (c) σ, for different ∆θel starting from an initial θel = 10◦. Each data
point in the plots represents the results for a ∆θel , with its value on the x-axis representing the final θel
angle achieved in that span. The first data point (left of the plot) corresponds to a single Tcoh observation.

The results obtained are summarized in Figure 7. As expected, the longer the ∆θel covered during
the observation time, the lower the CRB values obtained, for all three parameters. However, this
improvement is not linear. We observe how the CRB decreases significantly for ∆θel covering up to
∼2◦, while it decreases at a much slower rate when extending ∆θel beyond that value. This observed
behavior can be explained as follows. For our scenario and given the GNSS signals’ carrier wavelength,
i.e., from 0.19–0.25 m, a ∆θel of ∼2◦ is required to observe a 2π phase shift in the reflected signal phase,
caused exclusively due to the change in ∆ρ. In the IPT context, this corresponds to observing a single
complete oscillation of the SNR interference pattern. Longer ∆θel , i.e., longer observation times still
provide some improvement. It is important to remark about the existing trade-off between extending
∆θel , i.e., extending the observation time, and the displacement of the specular reflection point over the
reflection surface. The change in θel also changes the size of the first Fresnel zone. For low elevation
angles, such as the ones that we need to consider to ensure the smooth surface assumption, the change
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in the area covered by the first Fresnel zone and the displacement of the specular reflection point
is significant, as shown in Figure 8. In practice, it is unlikely to find real surfaces that are that flat
and homogeneous (and with no obstacles), except maybe for the case of calm water surfaces. On the
other hand, the antennas used in practice (e.g., in geodetic sites) have lower cross-coupling at lower
elevation angles, i.e., less attenuation on the LHCP signal for these elevations. This is why higher
oscillation amplitudes of the SNR interference pattern are observed for θel angles in standard GNSS
geodetic receivers [7,55].
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Figure 8. Accumulated area within the first Fresnel zone for h = 3 m with the variation of θel .
The right axis shows the displacement of the specular reflection point from its initial location when
θel = 10◦. The GPS L5 and Galileo E5 signals have slightly different carrier frequencies (1176.45 MHz
and 1191.795 MHz, respectively), but both of their wavelengths have been approximated to the same
λ = 0.25 m.

We shall also notice that even for long observation times, where the signal’s phase information
can be used in the parameter estimation, the greater the signal’s bandwidth, the lower the CRB for
all of the parameters. This is due to the fact that for a h = 3 m, ∆ρ is small enough for the two signal
components to interfere, and the separability provided by the PRN code’s correlation properties acts
only partially. This separability is needed to measure the code delay difference between the two
components, which is required to unambiguously estimate h. This cannot be done by only using the
phase difference information.

We would like to highlight that, if during the ∆θel observed, the Γ coefficient changes significantly,
e.g., when the Brewster angle is covered by ∆θel [21,61], lower values of the CRB for εr and/or σ can
be achieved with shorter ∆θel . From the CRB point of view, if the pdf of the observed signal changes
significantly with the variation of the unknown parameters, such as εr and/or σ, then it is easier
to estimate these parameters from the observed samples, resulting in lower CRB values. Likewise,
when the Γ coefficient barely changes during the observation time considered, it becomes harder to
unambiguously retrieve the εr and/or σ parameters from the observed samples, thus resulting in
higher CRB values.

Figure 7 shows that centimeter precision can be theoretically achieved when estimating h over
elevation spans larger than 20◦ for all GNSS signals. The CRB also shows that millimeter precision can
be theoretically achieved for the ∆θel = [10◦, 25◦] in the case of the Galileo E5 signal, i.e., using its full
bandwidth. In practice, however, it is unlikely to find real surfaces that are that flat and homogeneous
(and with no obstacles), maybe except for very calm water surfaces. Thus, the millimeter precision is
unlikely to be achieved by any estimator in a practical scenario, even with the assumptions made in
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this paper (e.g., perfect knowledge of the antenna radiation pattern, the satellite elevation angle, etc.).
The asymptotic behavior observed over long observation times of the CRB of the conductivity σ can be
related to the small dependency and change of Γ during the considered elevation spans for the dry
ground surface.

7. Conclusions and Future Work

In this work, we have derived a theoretical precision bound for the GNSS-R coherent reflection
scenario, for ground-based static receivers. The CRB has been derived first for observation times of up
to 1 s (short observation intervals), and later on, we have extended this bound for long observation
intervals of up to hundreds of seconds, where the satellite elevation angle was changing during the
observation time. The CRB was computed for GPS and Galileo signals with different bandwidths and
different modulations, i.e., BPSK, CBOC (6,1,1/11) and AltBOC (15,10). For short observation times
and ∆ρ > ρchip, we obtained simple analytic expressions of the CRB for the parameters of interest.
Later on, the CRB was extended for long observation times by using the FIM transformation approach.
The approach followed can easily accommodate different models for the surface’s reflection coefficient
Γ. In this paper, we selected the Z-L model to describe Γ, and then, we have computed the CRB as a
function of satellite elevation spans of different sizes covered during the observation time. The impact
of the antenna radiation pattern was considered within the modeling of Γ. The specific case that
we have studied (receiver height, antenna pattern and surface properties) is an example selected to
understand the dependency of the CRB on the signal properties and the scenario parameters.

For short observation times of up to 1 s, the results obtained have shown that even for antennas
designed to mitigate multipath and these antennas being installed with their boresight perpendicular
to the ground, it is still theoretically possible to obtain meter precision (or even decimeter in the
case of using the full Galileo E5) given a front-end with a large enough bandwidth. In the case of
long observation intervals, the CRB computed confirms the link between the variation of the satellite
elevation and the achievable precision. Moreover, the CRB evaluation presented confirms the cm level
precision that has been reported by many works, e.g., [29,32,38,41,77–79], among others, some of them
using standard GNSS geodetic stations [80]. Reasonable accuracy was obtained in the estimation (joint)
of εr and σ over observation times covering satellite elevation variations above 10◦. According to the
CRB results computed, the modernized GNSS signals considered in this work, i.e., GPS L5, Galileo
E1 and Galileo E5, can potentially provide better estimation precision for all of the parameters when
compared to the GPS L1.

In this work, the CRB results presented have been mainly focused on the h estimation. Using the
approach described in this paper, further study of the CRB for the parameters related to the reflection
surface’s properties is planned, in order to characterize the precision achievable in other GNSS-R
applications, such as soil moisture determination. In addition, two main future activities are planned
to continue with the work described in this paper: first, to further explore the CRB for similar scenarios
with different models for the Γ and, second, to compute the CRB for the scenarios where experimental
campaigns were carried out, as a way to fully validate the bound obtained and assess the performance
of the techniques used.

As a final remark, we want to point out that a practical limitation of the precision bounds provided
in this paper is the fact that our signal model (for coherent reflection) might not accurately match
the true reflected signal. In many practical scenarios, the reflected signal will be better described as
a combination of the coherent and incoherent components. The importance of each component will
depend on the considered scenario. In any case, the CRB results provided in this paper will lower
bound those obtained with a signal model considering also the presence of incoherent reflections. We
are considering as future work the derivation of CRB expressions for different kinds of ground-based
receiver scenarios, which is not straightforward from the analytic point of view.
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Appendix A. Expressions for the Transformation Matrices Used and Analytic Expressions for the
CRB in Short Observation Times

Here, we provide more detail about how the Jacobian transformation matrices, G and A, which
were described in Sections 3.3 and 5, are computed. In addition, we show how the CRB expressions for
short observation times discussed in Section 4 were obtained.

As discussed in Section 4.1, the FIM J(ξ), which is expressed using Equations (20) and (26),
becomes a diagonal matrix when ∆ρ > ρchip, i.e.:

J (ξ) =
2N
σ2

w
diag

{[
R (0) , u2

0R(0), −u2
0R′′(0), R (0) , u2

1R(0), −u2
1R′′(0)

]T
}

. (A1)

However, we are interested in computing the CRB for the set unknown of parameters Ψ, already
defined in Equation (29) as:

Ψ = [u0, φ0, ρ0, |Γ| , φΓ, h]T , (A2)

by transforming J(ξ) into J(Ψ) (which is not diagonal anymore), as described by Equation (33), i.e.:

J (Ψ) = GJ (ξ)GT . (A3)

As discussed in Section 3.3, the Jacobian transformation matrix G for short observation intervals
and this specific case with phase coherence between both signal components is expressed as:

G =

{
∂ξ j

∂Ψi

}
=



1 0 0 |Γ| 0 0
0 1 0 0 1 0
0 0 c−1 0 0 c−1

0 0 0 u0 0 0
0 0 0 0 1 0
0 0 0 0 −2k sin (θel) 2 sin (θel) c−1


. (A4)

With some algebra, the CRB for Ψ is then obtained as:

CRB (Ψ) =
[
J−1 (Ψ)

]
ii
=

σ2
w

2N



1
R(0)

1
u2

0R(0)

− c2

u2
0R′′(0)
|Γ|2+1
u2

0R(0)
(R′′(0)−R(0)k2c2)(|Γ|2+1)

u2
0|Γ|

2R(0)R′′(0)
−c2(|Γ|2+1)

4u2
0|Γ|

2 sin2(θel)R′′(0)


. (A5)

CRB(h), CRB(|Γ|), CRB(φΓ), defined in Expressions (35), (36) and (39), are obtained in a
straightforward manner from the 3rd, 4th and 5th elements of Expression (A5), respectively.

The CRB expression presented in Equation (41) for the phase altimetry case, described in
Section 4.1.1, is obtained by removing the fifth row and the fifth column (both related to ΦΓ) from J(Ψ)

and then computing the inverse of this matrix. Now, the CRBalt(h) is the element related to h in the
main diagonal, i.e., the fifth element. In the same way, the CRB for the reflection coefficient estimation
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case, i.e., CRBr, described in Section 4.1.2, with Equations (42) and (43), is obtained following the same
procedure, but now removing the last row and the last column (both related to h) from J(Ψ).

In Section 5, the Jacobian transformation matrix A ∈ R6L×P was introduced, with L being the
number of Tcoh intervals considered and P the number of parameters in Ψlong. For a sΓ = [εr, σ]T , as in
Section 6, we have the following:

A =

{
∂Ψextj

∂Ψlongi

}
=



δ0 0 . . . 0
0 δ0 0 . . . 0
...

...
0 0 δ0

δ1 0 . . . 0
0 δ1 0 . . . 0
...

...
0 0 δ1

δ2 0 . . . 0
0 δ2 0 . . . 0
...

...
0 0 δ2

∂|Γ(θel [0])|
∂εr

δ3
∂|Γ(θel [1])|

∂εr
δ3 . . . ∂|Γ(θel [L−1])|

∂εr
δ3

∂φΓ(θel [0])
∂σ δ4

∂φΓ(θel [1])
∂σ δ4 . . . ∂φΓ(θel [L−1])

∂σ δ4

δ5 δ5 . . . δ5



, (A6)

where the vector δk ∈ R1×6 has been defined as a row-vector with all elements equal to zero, except for
the position indicated by the subindex k ∈ {0, . . . , 5}, which has a value of one. |Γ(θel [l])| and φΓ(θel [l])
will change together with θel in each of the L intervals of Tcoh duration, over the total observation time.

Appendix B. Zavorotny–Larson Model for the Surface Reflection Coefficient Γ

In [7], the authors proposed a model for the complex reflection coefficient Γ = |Γ| exp {φΓ} of the
GPS L1 signal for the case of bare soil with a plane surface. Γ is defined like in Expression (30) as the
amplitude ratio between the reflected and the LOS signals. The model treats the soil as a single-layer
dielectric medium with losses. It also takes into account the polarization dependent antenna gain
effect on the reflected signal. The main geometric optic contribution to the amplitude of the reflected
signal comes from the first Fresnel zone around the specular reflection point. According to the model,
when the antenna boresight is perpendicular to the ground, Γ can be expressed as a function of the
satellite elevation θel as:

Γ(θel) = exp {−0.5 k2σ2
sh

sin2(θel)}
× (VRRFR (−θel) + VRLFL (−θel)) , (B1)

where the effect of the surface roughness is incorporated by the exponential term, the so-called
coherence loss factor [61]. k = 2π/λ is the carrier wavenumber, and σsh is the standard deviation of
the surface height. FR (θel) and FL (θel) represent the antenna complex amplitude gains for right-hand
and left-hand circular polarizations (RHCP and LHCP) at θel , respectively; and

VRR = VLL =
1
2
(Vv + Vh) ,

VRL = VLR =
1
2
(Vv −Vh) ,

(B2)
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are the polarization-dependent reflection coefficients, where the first subindex stands for the
polarization state (R for RHCP and L for LHCP) of the incident wave, while the second subindex
stands for the polarization state of the reflected wave. Vv and Vh are the coefficient for the linear
vertical and horizontal polarizations, which can be expressed as:

Vv =
ε sin (θel)−

√
ε− cos2 (θel)

ε sin (θel) +
√

ε− cos2 (θel)
,

Vh =
sin (θel)−

√
ε− cos2 (θel)

sin (θel) +
√

ε− cos2 (θel)
,

(B3)

with:

ε ≈ εr − j60λσ (B4)

the complex dielectric permittivity of the material [81,82]. In Equation (B4), εr represents the real-part
of the permittivity, and σ is the conductivity of the reflection surface (in S/m units). The model for
Γ can be extended for the multiple layer ground case, where Γ will also depend on the thickness of
each layer and their relative permittivity [81,83]. For example in [84,85], the authors use a three-layer
(air + two soil layers) model for GNSS-R applications working with the GPS L1 band signal. For more
details on all of the assumptions made to obtain (B1), we refer the interested reader to [7].
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