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Abstract: Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life.
Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited
positioning accuracy devalues and hampers its wide applications for reliable mapping and
analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding
and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling
the trajectories. Moreover, they are insensitive to medium and small outliers, especially for
low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than
examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic
smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences
between the trend and GPS measurements, are then further modeled by time series method. Outliers
are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional
procedures, the trend-residual dual modeling approach has the following features: (a) it is able
to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores
needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning
outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS
trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in
outlier detection for GPS trajectories than thresholding and Kalman-based techniques.

Keywords: GPS trajectory; outlier detection; cubic smooth spline; time series; estimation

1. Introduction

Low-cost, non-professional GPS (receiver) has become popular and grows in popularity at an
ever increasing rate. Many devices in people’s daily life are equipped with a built-in, low-cost GPS,
such as mobile phones, watches, and cars. Compared with professional GPS, low-cost GPS has
advantages of easy use and portability. Although these GPS-enabled devices are found useful in
online mapping [1], traffic management [2], and localization of places of interest [3], their accuracy is
limited due to existence of outliers. Erroneous or missing GPS readings may be caused due to various
reasons, such as obscured line of sight, device cold starts, and other satellite signal disruptions [4–6].
Such aberrant data with inherent inconsistency may lead to difficulties, mistakes, or even failures in
subsequent processing such as route prediction [7] and trajectory clustering [8]. Moreover, outliers
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in a GPS trajectory hold back estimating some high-order trajectory properties, e.g., speed, heading,
and acceleration, which impair the quality and efficiency of trajectory comprehension [9,10].

For further processing or analysis of GPS trajectories, data cleaning is a prerequisite for any
value-added analyses. One important purpose of data cleaning is to detect and remove outliers
while retaining ‘good’ data. In view of this concept, data cleaning is different from data filtering.
Filtering refers to estimating the current point based upon past points. It changes the data structure
by reducing not only the influence of outliers but also data variations, which may lose original data
information [11]. The common GPS trajectory processing techniques such as mean filter and median
filter [12] mainly focus on filtering rather than cleaning. This paper aims to clean the trajectories,
i.e., detect and remove outliers.

The majority of outlier detection methods for time-dependent data are either non-model-based or
model-based, depending on whether a model is needed. Non-model-based method defines a specific
measure without assuming the underlying data model. Some data are then deemed as outliers if the
measured values are over a predefined threshold. Specific measures in GPS trajectory often use speed,
acceleration, angle change, etc. [13–16]. Such non-model-based methods in GPS trajectories can be
attributed as ‘threshold methods’. Among reported studies of these methods, thresholding speed is
probably the most popular one. When the speed estimated at a location exceeds a given threshold,
the corresponding GPS record will be removed. However, such a non-model-based method faces the
following difficulties. For a variety of trajectories in a dataset, it is hard for users to set thresholds
without prior knowledge of the moving states [17]. Moreover, objects may move at an irregular speed
and in varying directions, which makes it more difficult to choose the thresholds Threshold method
is ineffective to detect less obvious or small outliers that influence location-critical applications such
as map matching [18]. The same may occur for trajectories with a low-sample-rate. All of them may
influence the performance of the threshold method for outlier detection in trajectories.

Model-based method scores potential outliers based on the degree they deviate from an ordinary
pattern using a certain inherent statistical index. Generally, the first step of outlier detection for
time-dependent data is to fit a model to the data and then examine its residuals [19,20]. Model-based
method describes the data by the model and detects outliers according to the model, which, to a
certain extent, avoids the difficulties of setting thresholds. Therefore, it is suitable for automated outlier
detection. The model-based method is popular in a wide range of fields such as industrial quality
control [11], network anomaly identification [21], and traffic flow investigation [22]. A traditional
approach in GPS trajectory outlier detection is a Kalman-based method [23]. However, a major
difficulty using this method for GPS trajectories arises from modeling the trajectories in practice.
Not only because a trajectory could be quite irregular, but because various trajectories in a dataset
may belong to vastly different classes of curves, which makes the modeling even more difficult [24].
As a result, although the model-based method is potentially appealing for outlier detection in GPS
trajectories, its research is quite limited.

This paper proposes a new model-based approach for detecting outliers in GPS trajectories.
It consists of two sequential steps. We first use a non-parameter, cubic smooth spline to extract the
trend of a GPS trajectory, and then apply a time series method to model its residuals. Locations where
significantly large residuals exist are considered as outliers. Compared with the existing model-based
method, the new approach attempts not to model the trajectory directly but to adaptively model
both the trend and residuals. It only requires setting one flexible critical value for outlier scores
rather than setting various thresholds using prior knowledge. In addition, it is able to detect medium
to small outliers in trajectories with low sample rates. Based on these properties of the proposed
cleaning method, it is named as trend-residual dual modeling (TRDM). The remainder of the paper is
organized as follows. Section 2 describes the theoretical aspects of the TRDM method. In Section 3,
the performance of the TRDM method for real GPS trajectories data is analyzed and compared with
the conventional threshold and Kalman-based method. Finally, concluding remarks and summary are
given in Section 4.
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2. Methods

This section introduces the TRDM method. Section 2.1 addresses the cubic smooth spline and
its application in determining the trend in a GPS trajectory. Section 2.2 models the residuals of the
trajectory with reference to the trend by a time series method, and finds the outliers by scoring the
residuals. An automated selection of the smoothness parameter for cubic smooth spline is described in
Section 2.3. Finally, we summarize an iterative algorithm for TRDM in Section 2.4.

2.1. Trend Modeling

This section uses cubic smooth spline to model the trend of a GPS trajectory. A GPS trajectory
consists of a sequence of points with at least three measurements: time, latitude, and longitude.
As an example, Figure 1 shows a trajectory of a walking person where two outliers occurred.
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Figure 1. A GPS trajectory with two outliers.

As a function of time, the two coordinate components of the trajectory can be expressed as below

Trjlat = {(ti, lati), 1 ≤ i ≤ n}
Trjlon = {(ti, loni), 1 ≤ i ≤ n}

(1)

where ti, lati, and loni are respectively the time, latitude, and longitude of the i-th location in the
trajectory. Since the observations are recorded in order of time, we have t1 < t2 < · · · < tn. Intuitively,
the true trajectory should not be far from the GPS observations and is expected to be smooth to a
certain degree in both longitudinal and latitudinal directions. Therefore, the cubic smooth spline
of nonparametric regression is appropriate for either the latitude or longitude trajectory. It is the
minimizer of the following function

S( f ) =
n

∑
i=1
{Yi − f (ti)}2 + λ

∫ b

a
{ f ′′ (t)}2 dt (2)

where Yi: the observation at ti; λ: the pre-selected positive constant known as the smoothness (tradeoff)
parameter; f (t): the expected smooth curve to be determined.

Let Y = (Y1, · · · , Yn)
T and F̂ = ( f̂ (t1), · · · , f̂ (tn))

T
then it can be shown [25]

F̂ = (I + λK)−1Y (3)
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where I: the identity matrix; K: a non-negative definite band matrix determined by t1, · · · , tn, the detail
calculation refers to [25].

The solution f̂ (t) is a cubic spline with knots at f̂ (t1), · · · , f̂ (tn). It is an optimal trade-off
between the goodness of fit to the data and certain smoothing requirements determined by λ.
Equation (3) is essentially a penalized least squares regression. Figure 2 shows the determined
trend in longitude-trajectory and latitude-trajectory for the trajectory in Figure 1. The selection of the
smoothness parameter λ is crucial for the solution of min f S( f ) and an adaptive selection method will
be introduced in Section 2.3.
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2.2. Outlier Detection from Residuals

Once the trend is determined, outliers will be detected by modeling its residuals with reference
to the observations, i.e., the GPS measurements. This is carried out with a time series method.
Let Zi denote the original residuals, i.e.,

Zi = Yi − f̂ (ti), i = 1, · · · , n (4)

According to Fox [26], the residuals Zi contaminated by an outlier at a time stamp T can be represented
by additive outlier (AO) model and innovation outlier (IO) model:

AO : Zi = ωIT (i) + Xi (5)

IO : Zi =

{
Xi + ωαi−T i ≥ T
Xi otherwise

(6)

where ω: the magnitude of the outlier; IT (t): the indicator function, i.e., IT (t) = 1 if and only if t = T;
Xi: the background process of outlier-free residuals; αi: the parameters of Xi’s infinite moving average
representation [27].

The unobserved background process Xi is supposed to follow the auto-regressive and moving
average (ARMA) model:

Φ (B) Xi = Θ (B) εi (7)

In this case, αi, i ≥ 0 satisfies Θ(B)
Φ(B) =

∞
∑

j=0
αjBj. For further investigation of outliers in practice,

the parameters of the ARMA model of Xi should first be estimated by the observed residuals Zi using
robust methods, e.g., the Extended Sample Autocorrelation Function (ESACF) [28], Durbin method [29]
or the methods in [27].

To score outliers in time series, let π(B) = Φ(B)
Θ(B) = 1−

∞
∑

j=1
πjBj. From the single outlier models (5)

and (6), we can find the least squares estimation of the magnitude of the outlier

ω̂AO(T) = ρ2(1− π1F− . . .− πn−T Fn−T)
Φ(B)
Θ(B)

XT (8)

ω̂IO(T) =
Φ(B)
Θ(B)

XT (9)

where ρ2 = (1 +
n−T
∑

j=1
πj

2)
−1

, F is the forward shift operator, i.e., FeT = eT+1. Since Φ(B)
Θ(B)XT

follows a normal distribution [27] with zero mean and var(ωAO(T)) = ρ2σ2, var(ω̂IO(T)) = σ2,
the two estimators

ηAO(T) =
ω̂AO(T)

ρσ
(10)

ηIO(T) =
ω̂IO(T)

σ
(11)

both follow standard normal distribution, where σ2 is the variance of Gaussian white noise {εi}.
Then, by comparing the two estimators with a predefined critical value Cr, one can determine the
existence of outlier at time tT . As ηAO(T) and ηIO(T) both follow the standard normal distribution,
the critical value Cr is in fact the ratio between the magnitude of the residual’s outlier and its standard
deviation, which in general is selected as 3, 3.5, and 4, respectively for high, moderate, low sensitivities
to outliers in the literature [30].
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In practice, we do not know how many outliers there are in a trajectory and what their time
stamps are. To address this problem, Chang and Tiao [30] proposed an iteration approach. It checks
the magnitudes of the two estimators at all points and then detects the most obvious outlier one at a
time. Based on this idea, we define the outlier score of a point by

η(i) = max(|ηAO(i)|, |ηIO(i)|) , 1 ≤ i ≤ n (12)

and regard the largest one, when larger than Cr, as the most obvious outlier.
Figure 2 shows the results of trend-residual dual modeling and outlier detection for the trajectory

shown in Figure 1. This trajectory is for a time period of 122 s and consists of 120 GPS recorded locations.
The raw GPS recordings are shown in circles, while the trend is in solid dark lines. As depicted,
the trend is a smooth curve determined by cubic smooth spline. There exist residuals between
each GPS recording and the corresponding trend locations. Such residuals are then scored by using
Equation (12) to identify the potential outliers. At the end, the GPS observations with outlier scores
above the predefined critical value Cr are considered as outliers.

The predefined critical value Cr influences the cleaning results with TRDM. Generally, the smaller
the value, the stronger the outlier detection ability. But at the same time, it has a greater risk to
wrongly detect ‘good’ data as outliers. The effects of different critical values will be further discussed
in Section 3.3 through experiments. It will be shown that TRDM is able to have a high outlier detection
capability while maintaining a relatively small risk to wrongly clean the ‘good’ data.

2.3. Selection of the Smoothness Parameter λ

Determining the smoothness parameter λ in Equation 2 is a key step to achieve an optimal outlier
detection since it actually balances the smoothness and the allowed sudden change of a trajectory.
To this end, we propose a criterion that combines the generalized cross-validation (GCV) and the
corrected Akaike information criterion (AICc). The GCV approach is a modification of cross-validation
in which the deleted residuals at points with large values are down-weighted [25]. Correcting the
finite sample bias of AIC, AICc is an improved version of AIC proposed by Hurvich et al. [31].
The corresponding criteria of the two methods are:

GCV(λ) =
1
n

∑n
i=1 {Yi − f̂ (ti)}

2

{1− n−1tr(A)}2 (13)

AICC(λ) = log
‖(A− I)Y‖2

n
+

2 {tr(A) + 1}
n− tr(A)− 2

+ 1 (14)

where A = (I + λK)−1 is called the ‘hat’ matrix. Technically, λ should be chosen so that
Equations (13) and (14) are minimized. For our application, we suggest the final smoothness
parameter as

λ = max(λGCV, λAICC) (15)

where λGCV and λAICC are the maximal values respectively making GCV(λ) and AICC(λ) to be local
minimum. Such a selection can be justified as below. The existence of GPS outliers is inconsistent
with the assumption of Gaussian noise in cubic smooth spline. Larger smoothness parameters will
mitigate potential influence of outliers and yield a smoother trend. In practice, since similar values of
the smoothness parameters generate almost the same trends, we determine λGCV and λAICC based on
a limited number of λ ∈

{
5× 10i−5, i = 1, 2, . . . 10

}
.

2.4. Solution Procedure

In summary, the proposed TRDM method consists of the following steps:
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1. Consider a trajectory data sequence {(ti, Yi), i = 1, 2, . . . , nY}, where nY is the number of
GPS points.

2. Use the cubic smooth spline to extract the trend within data and obtain residuals.

(a) Set the smoothness parameter λ by (15).
(b) Estimate f̂ (ti), i = 1, 2, . . . , nY i.e., the value of data trend at ti by (3).
(c) Calculate the residuals between the observations and the trend Zi = Yi − f̂ (ti) for

i = 1, 2, . . . , nY.

3. Use the time series method to model residuals and score outliers for every observation.

(a) Model the ARMA (p,q) for outlier-free time series {Xi}nY
i=1 of residuals {Zi}nY

i=1 by the
ESACF [28] and Durbin method [29].

(b) Calculate outlier score η(i), i = 1, 2 . . . , nY for each point by (12).

4. If max1≤i≤nY {η (i)} > Cr, where Cr is a predetermined critical value (3, 3.5 or 4), remove the
point (ti0 , Yi0), where η(i0) = max1≤i≤nY {η(i)}.

5. Let the cleaned data be the new data sequence. Note that the number of the current data sequence
{(ti, Yi), i = 1, 2, . . . nY} is one point fewer than the previous data sequence. Go to step 2 until
max1≤i≤nY {η(i)} ≤ Cr.

A few notes need to be made for practical implementation of TRDM. Since a GPS trajectory
is decomposed to longitudinal and latitudinal directions, the above procedure needs to run for
longitudinal and latitudinal directions separately. The final cleaned trajectory is the records retained
in both directions. Besides, for a long GPS trajectory, one may divide the trajectory into multiple
segments. We suggest that one segment is at least 100 points to ensure correctly identifying time series
model of residuals [32,33].

3. Experiments and Evaluation

This section presents the experimental results on two real datasets, one trajectory from a vehicle
and another on foot, to demonstrate the performance of the TRDM method. The last part evaluates the
performance of the TRDM method by simulating different outliers and using 10 RTK GPS trajectories
as ground truth.

We compare TRDM with a traditional two-stage method. In this method, a popular threshold
method that considers both velocity (V) and acceleration (A) is used, and then a Kalman-smoother
based cleaner is further applied to remove outliers.

For the VA threshold method, two sets of thresholds are used. VA1 has a velocity and acceleration
limit of 22 m/s and 10 m/s2, respectively, where the velocity limit is chosen for city zones and the
acceleration limit is recommended by Chen [17]. The second threshold VA2 is set to the maximal
velocity and maximal acceleration of the ground truth trajectory. VA1 threshold method is often used
to clean outliers in practice. In the following examples, we compare the VA1 threshold method and
TRDM method with critical value for the low-cost vehicle trajectory and walking trajectories. Since the
VA2 threshold method is difficult to use in practice, it will only participate in the simulation study in
Section 3.3.

The Kalman-smoother based cleaner (KSC) is a modified version of the standard Kalman smoother.
KSC removes a point if it is more than certain times the standard deviation rather than smoothing
every point as its earlier version does [23]. In this study, we use three times the standard deviation for
comparison. To implement the KSC method, a process model for the trajectory is required. Our study
uses the popular near-constant velocity model, which assumes the object moves at a constant velocity
in a short time [12]. The variation parameters of KSC is estimated by Sage-Husa method [34]. KSC is a
fair comparison method as both KSC and TRDM are model-based and offline, i.e., cleaning outliers
based on all measurements of the trajectory [35].
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3.1. Vehicle Trajectory

A real example of a vehicle trajectory is used to illustrate the capability of TRDM in detecting
unapparent outliers. For evaluation purposes, the trajectory was recorded by a low-cost GPS receiver
and a precise GPS receiver, both aboard a Chevrolet Captiva. The low-cost GPS receiver was an Android
Phone (Samsung S4 with Android version 5.0), recording at a rate of 1 Hz by using a home-made
application. A precise Trimble R7 GPS receiver, configured to use RTK corrections, was employed to
record the path at a rate of 2 Hz. The entire route was about 90 km (Figure 3a).
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Figure 3. A vehicle route and its outlier detection outcomes. (a) Driving route; (b) A sample section
of the route where the records of low-cost GPS fit well with the precise GPS; (c) Cleaned problematic
trajectory segment using the VA1 + KSC method; (d) Cleaned problematic trajectory segment using the
TRDM method.

By comparing the two trajectories point-to-point in terms of time recorded by the low cost GPS
and the professional Trimble GPS with RTK correction, it is found that the mean of distance errors
between the two trajectories is 15.97 m, and the root mean square error (RMSE) is 13.48 m. With the
TRDM method, the mean and RMSE of distance errors are reduced to 15.17 m and 12.70 m respectively.
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Such marginal improvement is because the low-cost GPS trajectory overall did not deviate greatly
from the RTK GPS trajectory. Figure 3b shows an example section of the route where the low-cost GPS
returns a trajectory quite close to the RTK GPS trajectory.

However, the TRDM method shows its contribution in a complex, curving segment as shown in
Figure 3c,d. The low-cost GPS recorded many erroneous points possibly due to the low driving speed
(30 km/h) in this curved segment. Figure 3c shows many remaining outliers after VA1 + KSC method,
since the velocity change is relatively small at this route segment. As a result, the KSC is less effective
to identify the outliers due to its assumption of near-constant velocity. In contrast, the TRDM method
(Figure 3d) is able to remove many such small outliers (typically the ones in the circle). This is because
the introduction of the trend in TRDM enables adaptive capture of the structure of the trajectory and
detect points that are inconsistent with their neighboring ones.

The mechanism of the TRDM’s satisfactory performance can be illustrated by examining the
longitude direction of this problematic segment. Figure 4a shows the trend of raw data extracted
by cubic smooth spline. The trend fluctuates around the precise GPS, and the points deviating from
precise GPS significantly are also deviating from the trend further compared with other ‘normal’
points. A great deviation from the trend contributes a high outlier score. Notice that the trend near
5940s balances the points before and after in longitude direction, which helps us detect the deviations.
However, some erroneous points such as the ones near 5870s and 5875s have outlier scores lower than
Cr = 3 at the start. After the fifth iteration (Figure 4b), the outlier scores of remaining points increase
in certain degree (e.g., erroneous points near 5870s and 5875s) and have outlier scores higher than
Cr = 3. That is a more obvious outlier and it may suppress the outlier scores of other erroneous points.
Therefore, detecting and removing all outliers at one time is difficult. This is one of the reasons we
iterate to remove outliers one at a time. Finally, we stop the iteration until all the outlier scores are
lower than 3. From Figure 4c, we find that the remaining points are all close enough to the precise
GPS, and the trend is more similar with the one comparing with the raw data.
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3.2. Walker Trajectories

We now discuss the performance of TRDM in more complex low-sample-rate walker trajectories.
A walking trajectory (Figure 5a) was collected by a volunteer with a smartphone under Android OS in
an urban setup at a sample rate 5 Hz. Due to the obstructions from buildings and the weather at that
time or other unknown reasons, there were many missing points. The actual mean sample rate was
40 s. The route was from Place 1 to Place 5, and at Places 2 and 4 the volunteer wandered in a small
range, causing a large deviation from the main trajectory. The VA1 + KSC method shown in Figure 5b
has little ability to detect and remove the deviations near Places 2 and 4, while the TRDM cleans most
of deviations, especially at Place 4. The cleaned trajectory in Figure 5c converges closely at Place 4 and
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all the points wrongly cross the streets are excluded. This is helpful for understanding the volunteer’s
movement more clearly.
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Figure 6 shows the velocity of the volunteer after using the TRDM method. At Places 2 and 4,
the original velocities of many points exceed 10 m/s which are beyond walking speed limit, and the
variation is large. After the TRDM method, most of velocities are less than 10 m/s. What is more,
the standard deviation and the 95th-pencentile range are computed and shown in Table 1, in which
the standard deviation and 95th-pecentile are reduced by 42.89% and 40.65%, respectively. It implies
that, after applying the TRDM method, the velocity is relatively stable in a more reasonable range of
common sense than before.
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Table 1. Statistical parameters of velocity of comparative results.

Standard Deviation 95th-Pecentile

VA1 + KSC 4.01 12.03
TRDM 2.29 7.14

Finally, Figure 7 shows the TRDM results of the other four volunteers’ trajectories with low sample
rates collected with smartphones under Android OS. The arrows show the wandering places of the
volunteers. After using the TRDM method, many large deviations are removed. These wandering
places then become much apparent, although a few suspected outliers (e.g., those in black circles) still
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exist. The possible reason for the remaining outliers after the TRDM method is that the suspected
outliers influence the trends, and then the remaining outliers do not deviate from the trends obviously
enough. Therefore, the time series method is unable to detect them.Sensors 2016, 16, 2036 11 of 11 
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Figure 7. Four volunteers’ trajectories and their VA1 + KSC (blue) and TRDM (red) cleaning results.
The black points are the raw data. The arrows show the detected wandering locations. The black circles
show suspected outliers which still exist after TRDM.

3.3. Performance Evaluation

This section evaluates the performance for the TRDM method by adding a range of outliers to a set
of precise RTK GPS trajectories. For comparative purpose, results from the VA1 + KSC and VA2 + KSC
methods are provided. Finally, the time consumption of TRDM and VA1 + KSC is discussed.

Ten precise GPS trajectories are used as ground truth in this study (Figure 8). They were collected
by a Leador Spatial mobile mapping system equipped with a precise Trimble R8 GPS receiver with
RTK corrections. The sample frequency was 1 Hz for most of the time, whereas there was a small
part of data collected at a lower rate. We define small, medium, and large three outlier classes that
respectively have a magnitude of errors of 0.00015 degree (about 15.7 m), 0.0004 degree (about 41.9 m),
and 0.001 degree (about 104.7 m). We create four groups of simulated datasets by contaminating 10% of
every trajectory respectively with small, medium, large outliers, and a mixture of the above three.
Every contamination version is simulated 100 times for each trajectory. Outliers are added randomly
to the original trajectories.
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Figure 8. Ten RTK GPS vehicle trajectories overlaid atop road map.

We use two metrics for evaluation: FP rate (i.e., false positive or type I error) and FN rate
(i.e., false negative or type Π error). FP rate is the rate of wrongly detecting normal observations as
outliers, while FN rate is the rate of undetected outliers.

Shown in Figure 9 are the statistical averages for all 4000 simulations from TRDM and VA + KSC
methods under different contamination modes. The VA + KSC methods could detect almost all of
the large deviations, but VA1 + KSC could not detect as many as VA2 + KSC does when the outlier
magnitudes are medium. Notice that both VA + KSC methods perform poorly for small outliers
and outliers of mixture magnitudes. Since we often do not know the actual maximum speed and
acceleration, the adoption of VA1 + KSC would only be able to handle large outliers and some medium
outliers in practice. On the other hand, the TRDM method never performs worse than the VA + KSC
methods (though all working well for large outliers), especially in detecting small and mixture outliers.
Moreover, the TRDM method can detect most of the outliers no matter which critical values are set.
However, the detection efficiencies of TRDM with critical value Cr = 3.5 and 4 performed slightly poor
for small and mixed contaminated outliers, though they still correctly remove much more outliers than
the VA + KSC methods.
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The contamination modes are: (a) 10% small outliers; (b) 10% medium outliers; (c) 10% large outliers;
(d) mixture outliers.
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With the decrease of the critical values from Cr = 4 to 3.5 and 3, the false negative rates of TRDM
decrease while false positive rates increase. It implies that TRDM with a smaller critical value filters
out more outliers and more normal data at the same time which agreed with general knowledge.
In addition, the false positive rates of TRDM with the smallest critical value of 3 are just a little higher
than VA1 + KSC method. It shows that the TRDM method retains most of normal data as the popular
VA1 + KSC method. Among the four contamination modes, the mixture outlier mode is the most
similar one to the reality. Therefore, loosely speaking, the most aggressive TRDM method (with critical
value Cr = 3) can reach an average FN rate 9.27 (34.2/3.33−1) times lower than the VA1 + KSC method,
while the FP rate is only 0.05 (6.89/6.57−1) times higher, as shown in Figure 9d.

Taking the mixed outliers as an example, Figure 10 shows a snapshot of outlier detection and
removing by the VA + KSC and TRDM methods. Thanks to appropriate thresholds, the VA2 + KSC
method is able to detect five additional outliers (as shown by black circles in Figure 10a) than the
VA1 + KSC method. It is, however, unable to clean less obvious outliers (see Figure 10b). Figure 10c
shows that the TRDM method is sensitive in detecting medium and small outliers and removes
all outliers in this segment where the VA2 + KSC method fails. This is because that the TRDM
method removes the points against the trend rather than some pre-determined features and model,
which makes it more effective. As a result, the cleaned trajectory segment using the TRDM method
satisfactorily coincides with the ground truth.
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In order to determine which critical value (Cr = 4, 3.5, or 3) to use in practice, we suggest users to
choose a lower one (e.g., Cr = 3) since a smaller critical value tends to be more restrictive in keeping a
potential outlier and only have a small risk of cleaning ‘good’ data. However, users can adjust this
value to meet their own needs. For example, users can choose a larger critical value to retain more
points if the number of records in the trajectory is relatively small, or they use robust analysis tools to
reduce the influence of small outliers.

Finally, we address the time consumption of TRDM (Cr = 3) and VA1+KSC. Since the two methods
generally remove different numbers of points in a trajectory, the time cost of removing one point will
be discussed. The scenario is based on 10 precise trajectories under the mixture outlier contamination
mode with each having 100 simulations. With Inter Core i7-4790 CPU, the average times for removing
one point for TRDM and VA1 + KSC are respectively 0.68 s and 0.10 s. This shows that TRDM is more
time-consuming than VA1 + KSC since TRDM involves matrix inversion which is computationally
costly. However, considering TRDM is an offline cleaning method and performs much better than
VA1 + KSC, high-performance computing environments will be helpful for TRDM cleaning trajectories.
Furthermore, there is a great potential to improve the TRDM implementation since our coding at this
time is with Matlab without engineering optimization.

4. Conclusions

This paper proposed a model-based outlier detection approach to clean trajectories recorded by
low-cost GPS. The main procedure of TRDM involved trend extraction and outlier score computation
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through residuals. To model the trend, we applied the cubic smooth spline to the longitude trajectory
and latitude trajectory separately. The residuals of GPS trajectories with reference to the trends were
then evaluated by the time series method to determine potential outliers one at a time. All outliers
were found through iteration to reach a reliable, outlier-free trajectory.

Unlike other model-based methods such as KSC which face difficulty when modeling GPS
trajectories, TRDM extracts the trend of a trajectory adaptively and then models the residuals. As a
result, TRDM is able to clean trajectories regardless what kinds of the curves they actually belong to.
Compared with various common non-model-based threshold methods, TRDM focuses on removing
outliers against the intrinsic consistency of the GPS trajectory rather than some predetermined simple
thresholds. Moreover, adaptive parameter estimations are introduced in TRDM and only one critical
value Cr for outlier scores needs to be set without much difficulty and prior knowledge.

Our experiments showed that TRDM could be applied to various complex GPS trajectories and it
performs much better than popular velocity or acceleration threshold methods, especially when small
and medium outliers exist. TRDM can yield an average false positive rate 9.27 times better than the
conventional VA+KSC method, whereas its false negative is only 0.05 times higher than the VA + KSC
method. More importantly, TRDM is able to detect outliers in moving objects that behave ‘normal’
in velocity or acceleration and ‘wander’ in a stop-and-go mode even if the recording time intervals
are long. The resultant outlier-free trajectories are all closer to the actual trajectories and accord with
common sense.

However, there are still some limitations of TRDM method which need to be improved in the
future work. First, the window size in this paper is chosen by authors’ experiences to balance the speed
variation and sufficient number of points to model the time series. A more reasonable adaptive selection
method is desired. One may use some trajectory partition approaches (see [36] and references therein)
to preprocess trajectories and then apply TRDM to clean the sub-trajectories. Second, the TRDM
method may still fail to identify relatively small outliers. This problem may be solved if a digital vector
map is incorporated into the TRDM method. Finally, the processing speed of TRDM is slow at this
time, since the matrix inversion in trend-residual modeling is computationally costly. It may cause
limitations in some time-critical, dynamic cleaning applications.
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