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Abstract: A point machine’s gap is an important indication of its healthy status. An edge detection
algorithm is proposed to measure and calculate a point machine’s gap from the gap image
captured by CCD plane arrays. This algorithm integrates adaptive wavelet-based image denoising,
locally adaptive image binarization, and mathematical morphology technologies. The adaptive
wavelet-based image denoising obtains not only an optimal denoising threshold, but also unblurred
edges. Locally adaptive image binarization has the advantage of overcoming the local intensity
variation in gap images. Mathematical morphology may suppress speckle spots caused by reflective
metal surfaces in point machines. The subjective and objective evaluations of the proposed method are
presented by using point machine gap images from a railway corporation in China. The performance
between the proposed method and conventional edge detection methods has also been compared,
and the result shows that the former outperforms the latter.
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1. Introduction

The railway system in China has undergone a dramatic increase in recent years. According to
a report of the National Railway Administration of the People’s Republic of China [1], the passenger
and cargo transportation volume were 2.535 billion and 3.358 billion tons, respectively, in 2015.
Heavy traffic means that the capacity utilization of the existing infrastructure is high. This will lead
to more equipment failures and service disruptions. Among these equipment failures, railway point
machines account for the vast majority of railway infrastructure failures that affect the availability of
the system [2]. Almost 33% of the total maintenance cost of railways is dedicated to point machines
and crossings [3]. How to monitor the health of railway turnouts and decrease their failure rates has
become an important problem that urgently requires a solution.

The gap width between a switch point and a stock rail is a key safety parameter for monitoring
a point machine’s healthy status. Too large of a gap may lead to catastrophic consequences, such
as train derailment, human injury, and severe damages to the equipment and the environment [4].
Monitoring these parameters helps to build a point machine failure prediction system. Among these
monitoring methods, an efficient one is the measurement of a point machine’s gap; i.e., the real gap
between the lock bar notch and the edge of the lock hammer, as shown in Figure 1. This gap may be
used as an indirect measurement of gap width between switch point and stock rail. The former can be
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easily converted to the latter, and the gap width between switch point and stock rail can therefore be
calculated. Following this idea, some researchers have devoted a large amount of effort in this area.
Franke [5] presented a device that uses inductive proximity sensors, and Hager [6] used a transformer
with two coils to detect the point machine gap. Melich proposed a measurement with a magnetic field
produced by two magnets and two Hall effect sensors [7]. This approach, however, has two problems.
The first is that the analog signal from the sensor has to be calibrated in order to give a measure of the
gap in millimeters; another problem is that the wires or the sensors themselves may be broken during
maintenance tasks. Melich also used an image binarization and morphological filtering to measure
the point machine gap. Lou proposed a point machine gap measurement method [8] which integrates
median filtering methods and edge image binarization to extract gap edges and then calculate the
point machine gap.

Switch rail

Figure 1. An example of a point structure.

The above studies improve the precision of gap measurement. They utilize traditional image
processing technologies, such as image denoising and image binarization. However, there are
three problems requiring advancements in the processing of gap images. The first is that an unsuitable
image denoising method may blur edges in gap images, which may set up barriers for the following
edge detection and gap width calculation. The second one is that a local intensity variation often
appears in gap images due to uneven illumination—this may lead to missing a gap edge by simply
adopting global thresholds. Finally, in edge detection and gap measurement, an unsuitable structure
element may be useless for reducing spectacle spot caused by metal surface reflection.

To tackle these problems, we propose an improved gap measurement algorithm which integrates
an adaptive wavelet threshold, local threshold in image binarization, and line structure element
in mathematical morphology. An adaptive wavelet threshold can obtain the optimal threshold in
wavelet-based image denoising. This will greatly suppress Gaussian noise imposed on the images
and keep the unblurred gap edges; a local threshold rather than a global one may help to search gap
edges under uneven illumination; and line structure element in mathematical morphology may greatly
reduce the spectacle spot due to metal surface reflection. A subject and object evaluation is presented
to validate the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2 provides an overview of a gap
measurement system for point machines. Section 3 elaborates the proposed method, including adaptive
threshold-based wavelet denoising, local threshold-based image binarization, and line structure
element-based mathematical morphology. Section 4 presents a subject and object evaluation of the
proposed method. Finally, the paper is concluded in Section 5.

2. System Overview

Figure 2 illustrates a schematic diagram of the gap measurement system. The most critical factor
determining the camera image quality is the type of the image sensor. There are two basic types of
image sensor: CCD (charge-coupled device) and CMOS (complementary metal oxide semiconductor).
Traditionally, CCD sensors have been thought to produce better-looking images with less visual
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noise and distortion, but they draw more power and provide slower data-throughput speed. CMOS
is increasingly used in today’s cameras, allowing users to shoot high-resolution video and apply
complex imaging effects with ease [9]. In this gap measurement system, a CMOS plane camera with
resolution 750 x 480 and focus length 3.6 mm is adopted. In Figure 2, a camera with CMOS plane
is firstly used to capture two images of black and white stripes pasted on a lock bar. Among these
two stripes, one is used as a reference gap tag. Therefore, the gap width is indirectly measured by the
displacement between these two stripes. The gap measurement system transfers these images to the
image processing unit, and then an adaptive threshold-based wavelet denoising is carried out to obtain
the optimal threshold and suppress Gaussian white noise. Second, a local threshold-based image
binarization is used to decrease the chance of edge missing due to uneven illumination. Afterward, a
line structure element-based mathematical morphology is applied to reduce the speckle spot caused
by material surface reflection. Finally, the gap measurement is gained by calculating the displacement
between edges of corresponding two stripes.

CMOS plane camera

3 Adaptive threshold Local 1h_resh01d Line structure eletr)ent Gap
— X . based image based mathematic
P based Denoise P measurement
— binarization morphology
displace
— e

Figure 2. Schematic diagram of the gap measurement.

3. Methodology

3.1. Adaptive Wavelet Threshold-Based Noise Removal

Usually, a CMOS detector is characterized by a linear model. Then, for the (ij)! detector in the
CMOS plane, the measured readout signal g;; can be expressed as [10]:

8ij = aij - fij + €ij @
where a;;(t) are the gain and €;; the added noise of the (i )" detector, and fij(t) is the real incident
radiation collected by the respective detector. Because the gain is not obvious in the captured images,
we omit it in this work. €;; are independent and identically distributed (iid) as normal N (0, 0?) and
independent of {f;; }.
The objective of denoising is to remove the noise, or “denoise” g; ;, and to obtain an estimate f;; of
fij while minimizing the mean squared error (MSE),

MSE(f) =+ Yy — fi)? @
L]

where M and N are the image sizes.

It should be noted that the edges in the image are not blurred by the denoising operation, because
these edges always carry important information for the following gap measurement. On one hand,
the traditional filter templates (such as “average”) can remove the noise. However, on the other hand,
it also blurs the edge, which will set up an obstacle for the following edge detection. Therefore, we
here use wavelet-based image denoise technology. Image denoising based on the wavelet transform
is mainly completed by wavelet thresholding in wavelet domain [11,12]. The processing of image
denoising in wavelet domain can be considered as an optimal estimation to the input image with noise
data using the threshold.
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Let g = {gij}i;, f = {fij}ij, and e = {e;;}; ;. Here we borrow the idea from [13] to use Bayesian
to find the best soft-threshold rules under the Gaussian assumption (i.e., X ~ N(0, 0}2()), which can
efficiently utilize the image prior knowledge. Formally, the objective of image denoising is to find
a threshold T which minimizes the Bayes risk,

risk(T) = E(X — X)? = ExEy)x(X — X)? ®3)

where X = p7(Y), Y = Wg, X = Wf,V = We, and W is the two-dimensional dyadic orthogonal

wavelet transform operator. Y|X ~ N(x,0?2). pr() is the threshold function. For soft-threshold function,

pr(x) = sgn(x) - max(|x| — T,0) takes the argument and shrinks it toward zero by the threshold T.
Equation (3) can be reformulated as follows:

risk(T) = EXEY\X(X _ X)2 "
B /_o; /_0; (pr(y) — 2)*p(ylx)p(x)dydx )
- o \E(TZHZ—U%),/:O eXp(_T;) ©)

%y

[2 T2
— %TO'O'y exp(—frﬁ) (7)
2

where 0y = 0% + 0%. In contrast to [13], the oy in the captured point machine gap images is almost
same, because only the gap location moved slowly, and the background is almost unchanged. Therefore,
by using the wavelet operation W and the Bayes-based calculation of optimal threshold, the adaptive
wavelet threshold T* is

T*(0) = arg mTin risk(T) 8)

The value of T*(¢) is found numerically for different values of ¢ under the ox = 0.3816,
as shown in Figure 3. From it, we can set the optimal threshold for image denoising.

0.06 - b

Threshold Value

0 0.01 0.02 0.03 0.04 0.05

Sx

Figure 3. Thresholding for different Gaussian noise variance.

Figure 4 presents the noisy image with 02 = 0.02 and the denoising one by applying the generated
optimal threshold 0.052. Considering that it is impossible to obtain true noise-free images, we have to
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carefully select some with low noise as noise-free images. The simulated noisy images are obtained by
adding different levels of noise.

20 40 60 80 100 120 20 40 60 80 100 120
(a) Noisy image (b) Denoising image

Figure 4. Noisy and denoising image.

3.2. Local Threshold-Based Image Binarization

In order to perform edge detection, a grey image should be transformed into a binary one.
During this process, an optimal threshold plays a key role. There are well-known global and local
threshold algorithms [14,15]. Compared with the global thresholding algorithms, local ones are
superior in terms of selecting threshold values according to local intensity variation. Specifically in
point machine gap images, the local intensity variation often appears due to uneven illumination.
In order to solve this problem, an adaptive local binarization method, as shown in Algorithm 1,
is proposed by dividing the gap images into several parts and then applying Otsu’s method [14] to
each part. Otsu’s method chooses the threshold to minimize the intraclass variance of the black and
white pixels to form a binary image. Figure 5 illustrates that two parts are divided in a point machine
gap image, in which each part uses Otsu’s method to generate the binary images. Figure 6 gives the
comparison between the global threshold and the local one. From this figure, we can see that if a global
threshold is used, a gap calibration line (i.e., the vertical white line in the upper image) is lost due to
weak illumination. Otherwise, a local threshold can be used to overcome the uneven illumination and
capture the gap calibration line, which is shown in Figure 6b.

Algorithm 1: Adaptive local image binarization method.

Data: A point machine gap image
Result: A binarization image of point machine gap
begin
1 Divide input image into a number of sub-images
2 Compute the optimal threshold for each sub-image by using Otsu algorithm [14]
3 Produce a binarization image by applying the computed optimal threshold for each
sub-image
4 Merge the binarization image into a full binarization image
end
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block 2

Figure 5. Two blocks in the divided input image.

20 40 60 80 100 120 20 40 60 80 100 120
(a) Global thresholds (b) Local thresholds

Figure 6. Comparison between global and local thresholds.

3.3. Line Structure Element-Based Mathematical Morphology

Mathematical morphology is a set-theoretic method of image analysis providing a quantitative
description of geometrical structures. The fundamental idea of mathematic morphological edge
detection is that an edge which satisfies the shape of a structure element is extracted according
to the morphological edge detection operator [16]. By utilizing suitable geometrical structures, the
methods of edge detection based on the morphology transform are capable of obtaining clear edges
and suppressing the noise—especially impulse noise, such as speckles in the case of a reflective
metal surface.

Considering the special shape of point machine gaps, we here apply a line structure element,
as shown in Figure 7. This creates a flat, linear structuring element, where “Length” specifies the
length, and is approximately the distance between the centers of the structuring element members
at opposite ends of the line. “Degree” specifies the angle (in degrees) of the line, as measured in a
counterclockwise direction from the horizontal axis.

1

1
SE = @ Length=35

/ Degree = 90

|

1

Origin

Figure 7. Structure element.
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Figure 8 presents the edge detection by performing morphological opening on the binary image
with the proposed line structuring element. The morphological opening operation is an erosion
followed by a dilation, using the same line structuring element for both operations. Figure 8a
illustrates the binary point machine images, and Figure 8b the edge detection by mathematical
morphology. Using the aforementioned line structuring element shown in Figure 7, we can see that
some speckles caused by the reflective metal surface are removed, and the point machine gap edges
are extracted clearly.

20-

40-

60-
100
120

140

160~
180 |
20 40 60

éO 40 60 éO 160 1‘20
(a) Binary point machine images (b) Edge detection by mathematical morphology

80 100 120

Figure 8. Mathematical morphology-based edge detection.

The gap edges can be easily calculated by multiplying the number of pixels between gap edges
by the resolution between two pixels.

4. Experimental Results

4.1. Subjective Evaluation

The proposed method is tested on a number of point machine gap images recorded in a railway
corporation in China, including low level noise images and noisy images. The former can be regarded
as noise-free images due to their high quality. The latter may result from electromagnetic interference
or communication channels.

In noise-free images, Figure 9 gives the comparison of the proposed method with traditional edge
detection methods, such as Sobel [17], Prewitt [18], Roberts [19], Laplace [20], Canny [21], and fuzzy
logic [22] based techniques. For Sobel, Prewitt, Roberts, Laplace, and Canny based edge detections,
the noise-free image is convolved with their kernels to approximate the derivatives in horizontal and
vertical change. Heuristic thresholds are used, which are based on RMS (root mean square) estimates
of the mean of the magnitude squared image. The fuzzy method uses membership functions to define
the degree to which a pixel belongs to an edge or a uniform region. Similar to [22], we define a
fuzzy inference system with a zero-mean Gaussian membership function for inputs and triangular
membership functions for outputs. Then, some fuzzy inference rules were added to make a pixel white
if it belongs to a uniform region, and otherwise, it was made black. The result of the edge detection is
obtained by defuzzification.

We can see that the proposed method successfully detects all types of edges and suppresses the
speckle spot caused by reflective metal surfaces. However, the traditional method may generate false
edges or lose true ones, which will create obstacles for the following point machine gap measurement.

At the same time, the proposed method has the advantage of detecting point machine edges
in noisy images without blurring edge pixels. This is verified by detecting edges in point machine
images with Gaussian white noise with variance 0.02. Figure 10 illustrates the comparison between the
proposed method and the aforementioned conventional edge detection algorithms, in which heuristic
thresholds are used. These heuristic thresholds are based on RMS estimate of noise mean of the
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magnitude squared image, and are roughly proportional to the SNR (signal-to-noise ratio). From the
experimental results, it is clear that the proposed method detects very few false edge pixels compared

to other reported edge detection techniques.

Sobel Prewitt Roberts

Original Image

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 0 100 120
Laplace Fuzzy Proposed method
20 20 |
40 40
60 ; 60
80 i 80
100 100
120 120
140 140
160 |_ 160
180 1 | 180
20 40 60 80 100 120 20 40 60 80 100 120

Figure 9. Comparison between conventional and the proposed methods for edge detection in noise-free

gap images.
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Figure 10. Comparison between conventional and the proposed methods for edge detection in noisy

gap images.
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4.2. Objective Evaluation

Measures for evaluating the performance of edge detectors have been formulated by Abdou and
Pratt [23] and DeMicheli, Caprile, Ottonello, and Torre [24]. The criteria to consider in evaluating the
performance of an edge detector include

Probability of false edges;

Probability of missing edges;

Error in estimation of the edge angle;

Mean square distance of the edge estimate from the true edge;

Tolerance to distorted edges and other features such as corners and junctions.

Ol @

The first two criteria concern the performance of an algorithm as a detector of edges. The second
two criteria concern the performance of an algorithm as an estimator of the edge location and
orientation. The last criterion concerns the tolerance of the edge algorithm to edges that depart
from the ideal model used to formulate the algorithm. We here use a set of direct measurements, such
as the number of correctly detected edge pixels (called true positive), the number of pixels erroneously
classified as edge pixels (called false positive), and the amount of edge pixels that were not classified
as edge pixels (called missed).

500

True Positive Edge Detected Pixels
= = N N w w £ S
o (%, o a o a o (42
o o o o o o o o
T T T T T T T T

o
S
T

Sobel Prewitt Robert Laplace Canny Fuzzy Proposed

Figure 11. Comparison of true positive edge detected pixels between the proposed algorithm and

other conventional ones.

The number of positive edge pixels, false edge pixels, and missed edge pixels detected by
different reported edge detection techniques are shown in Figures 11-13, respectively. From Figure 12,
it is evident that the proposed algorithm when subject to a noisy image of 512 x 512 size and
25 dB noise level has detected 102 false edge pixels, while other edge detection techniques—For
instance, Sobel [17], Prewitt [18], Laplace [20], Roberts [19], Canny [21], and fuzzy logic [22] based
techniques—after fine tuning, the Canny method gives more false edge pixels. As shown in
Figures 11 and 13, the proposed algorithm gives more positive edge pixels and less missed edge
pixels than other edge detection techniques.

In this work, the performance is next compared based on the parameters mean square error (MSE)
and peak signal-to-noise ratio (PSNR). MSE indicates the average difference of the pixels throughout
the image. A higher MSE indicates a greater difference between the original and processed image.
Nevertheless, it is necessary to be very careful with the edges. The formula for the MSE calculation is
given as:

1
TN (X = Vi)’ ©)

i j

MSE =
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where M and N are the size of the image, X is the processed image, and V is the original image.
Peak Signal-to-Noise Ratio (PSNR) is formulated as

M % N % 2552
¥ (X — Vig)?

which is used for quantitative comparison of different methods.

PSNR = 10 % Ig(

) (10)

800
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Figure 12. Comparison of false positive edge detected pixels between the proposed algorithm and
other conventional ones.
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Figure 13. Comparison of missed edge pixels between the proposed algorithm and other conventional ones.

As shown in Table 1, the proposed method has the smallest MSE and the largest PSNR, so it has
the best performance.

Table 1. Comparison of mean square error (MSE) and peak signal-to-noise ratio (PSNR) between the
proposed algorithm and other conventional ones.

Sobel Prewitt Robert Laplace Canny Proposed Algorithm

MSE 0.1812 0.1814 0.1347 0.2204 0.2429 0.1193
PSNR 55.5492 55.5444 56.8371 54.6987 54.2765 57.3644

Finally, the performance is compared based on the parameters SDy [25]. SDj has better theoretical
properties and is sensitive to both False Positive (FP) and False Negative (FN). Whenk =1ork =2
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we obtain the average symmetric surface distance or root mean square symmetric surface distance,
respectively, as introduced by Heimann et al. [26]. The formula for SDj, calculation is given as:

et d*(p, Egt) + Zper, d* (p, Eo))
SDk(Egt,Ec)Z( peecd (P, Egt) pegd" (P, Ec)) )

1
(|Ec U Ege|)®

which is used for quantitative comparison of different methods. In Equation (11), Eg; is perfect solution
(ground truth) to the edge detection problem, E; a candidate edge image, p a pixel, d(p, Eg;) the
distance from p to the closest point in Egy, | - | cardinality of set.

From Table 2, we can see that the proposed method has the smallest SD; and SD;. Therefore it
gains the best performance.

Table 2. Comparison of SD; and SD; between the proposed algorithm and other conventional ones.

Sobel  Prewitt Robert Laplace Canny Proposed Algorithm

k=1 1.3509 1.3450 1.2246 1.8774 1.9826 0.1563
k=2 375285 372919 34.5551 58.8145 64.6885 3.6443

5. Conclusions

This work proposes an image-based point machine gap measurement method. The proposed
method can obtain an optimal denoising by using an adaptive wavelet-based threshold while keeping
gap image edges unblurred, which plays an important role in precise gap measure. It also reduces
edge missing by using local rather than global threshold in image binarization. A line structure
element in mathematic morphology helps to reduce the speckle spot caused by metal surface reflection.
Point machine gap images from a railway corporation have been used to validate the effectiveness of
the proposed method via both subjective and objective evaluations. A comparison experiment shows
that the proposed method outperforms the traditional ones. In image binarization, a more intelligent
method is needed in order to obtain the optimal block division and local threshold; this is left for
future work.
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