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Abstract: There exist image processing applications, such as tracking or pattern recognition, that are
not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact,
they must only keep it as high as possible in a relatively small region, but covering a wide field of
view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at
a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution,
while the rest of the image is captured at a lower resolution. In these systems, this fovea must be
moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part
of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual
objects. Segmentation and attention are then intimately tied together: while the segmentation process
is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention
can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes
a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore,
this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream
of generated foveal images. The whole hardware/software architecture has been designed to be
embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the
data port for exchanging information between the mapping and attention parts of the architecture and
the good performance rates of the mapping procedure. Experimental evaluation also demonstrates
that the segmentation method and the attention model provide results comparable to other more
computationally-expensive algorithms.

Keywords: foveal images; irregular pyramids; hierarchical segmentation; visual attention;
hardware/software co-design; AP SoC

1. Introduction

Robotic vision needs to solve a large variety of tasks that demand different parameters. In order
to deal with all of them using the same sensor, this must be adjustable to a specific task. However, it is
also usual that some of these tasks run simultaneously. Thus, for instance, the module responsible
for the navigation skill could need a large field of view (FoV), while the one in charge of recognizing
an object could simultaneously need to capture this at a high resolution. Furthermore, this image
acquisition and processing must be done quickly, since the robot must be an agent able to communicate
and interact with people fluently within a dynamic world. Although it is currently possible to acquire
in real time a video sequence from a high resolution sensor (up to 10 megapixels) using dedicated
hardware, any algorithm that requires multiple frames will need a large off-chip memory access.
This requirement will typically be the bottleneck of the framework [1].
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The evolution of biological vision systems has reached a balance between what they can perceive
and what they are capable of processing in real time. Foveal vision reduces the data volume by
sampling the FoV at a variant resolution. A reduced area of the FoV, the fovea, is captured at a high
resolution. This will be the area of the FoV where, for instance, we must include the objects that we
want to recognize. Surrounding this fovea, the rest of the FoV is captured at a lower resolution. In fact,
resolution will typically be reduced as we move away of this fovea, as Figure 1 shows. Therefore,
to have a detailed vision of all of the world, we make quick movements of the eyes from one position
to another.

Figure 1. Approximated distribution of cones on the human retina, providing brain pixels of an adapted
size distributed following a polar pattern (adapted from the original from C.Ware, 2008, p. 5 [2]).

Against this need of image detail, which provokes that the eyes make short and rapid movements
while scanning a visual scene, it is also necessary to keep a record of what is happening with the rest
of the FoV. As previously mentioned, this could be required by a robot navigating within a dynamic
environment. In this application, the main goal is to perceive a large FoV, perhaps at lower resolution,
but sufficient to be able to act if necessary.

Space-variant vision is the term used to refer to sensors that capture the image with different
resolutions across the FoV, generating an image with space-variant resolution (foveal image). It reached
its greatest popularity in the 1990s. Intimately tied to the concept of active perception (it does not
make sense to have a fovea if the eyes cannot be swiftly moved over possible regions of interest [3]),
it was the origin of several physical implementations in silicon. However, the design of a specific
retina-like sensor was always a hard and expensive work. Hence, most of the proposals finally laid in a
software-emulated foveal sensor, which took the input data from a uniform, real sensor [1]. Currently,
this option is also supported by the fact that it is possible to acquire CMOS sensors of very high
resolution at a very reduced price. On the other hand, the processing limitations of software emulation
can be overcome by performing the mapping through hardware emulation. Specifically, this was a
wide part of the research within our group in the past [4–6].

As was previously mentioned, space-variant vision is very related to the concept of active vision
and also with the concept of attention, due to the necessity of moving the fovea from one region of
interest to another. Attention is the process in charge of determining the region or regions of interest at
each moment. Attention models are typically focused in aspects, such as the identification of features
that influence the selection of the interest region, the combination of these features to generate the
saliency map or how a specific task drives attention. However, they typically neglect the foveal nature
of the human vision system. A significant exception is the work by Rybaka et al. [7]. This approach
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proposes a complex system that includes the foveation as the basis for object identification, memorizing
motor and sensory inputs. The ‘what’ stream is complemented with a ‘where’ stream, which determines
the location of the new focus of attention. The practical implementation of the idea of working at
two different resolutions usually employs two cameras [8]: a low-resolution one for computing the
saliency map of the scene by capturing a large FoV (the ‘where’ stream) and a high resolution one for
studying in detail the most salient region (the ‘what’ one). This hardware layout tends to differentiate
both processes. Without considering the ‘what’ stream, several authors propose foveal approaches
for saliency estimation. Rajashekar et al. [9] use the foveal encoding of Geisler and Perry [10] in their
gaze attentive fixation finding framework (GAFFE). It employs luminance, contrast and bandpass
outputs of both luminance and contrast as low-level features to compute saliency maps and predict
gaze fixations. This framework works on a sequential process in which the input image is foveated
placing the fovea in the current fixation point, and the next fixation point is predicted by computing
the low-level features from circular patches obtained from the foveated image. This strategy has been
evaluated by Gide and Karam [11] using different sets of low-level saliency features extracted from
other attention models as the attentive information maximization (AIM) or saliency using natural
image statistics (SUN) [12]. To perform this evaluation, different types of distortions (Gaussian blur,
white noise and JPEG compression) have been applied to input images. This work shows that foveation
improves the performance of all saliency models over different types and levels of distortion.

Other authors propose to encode the foveal nature within a hierarchical structure.
Advani et al. [13] organize the scene content within a three-level Gaussian pyramid in which the
whole FoV is represented in the top level (with the lowest resolution), and the bottom one encodes the
50% of the field of view at the same resolution as the original image. The AIM model [14] is run at
these three levels, obtaining an information map for each of them. In these maps, salient regions are
represented at different resolution levels. They are combined into a unique saliency map by means
of a weighted summation. Following an object-based model of attention, Marfil et al. [15] propose to
estimate a saliency map using the regions generated within the foveal version of the bounded irregular
pyramid (BIP), an irregular pyramid where each level is represented as a graph. Saliency estimation
and segmentation are intimately tied within this work. The input data are encoded within a foveal
polygon [15], a structure where the image is represented as a stack of levels of uniform resolution.
The fovea is the base of the structure, and the upper levels are built by decimating the content of the
level below and adding a new ring of uniform resolution. At the waist level, the structure encodes the
whole field of view. Other levels can be then built over the waist, resembling the pyramid structure [15].
The main problem of this approach is that, in the foveal polygon, the whole field of view is only present
at the waist level. Additionally, at this level, the resolution of the foveated portion of the scene is as
reduced as the one of the peripheral region. The details are then lost.

This paper revisits the research field on space-variant, active vision, proposing a whole
framework that:

• Maps the sensor data into a foveal lattice. Similar to the proposal from Martinez and
Altamirano [16], this work proposes to emulate an artificial retina from a sensor of uniform
resolution by a Cartesian space-variant sampling, obtaining a unique space-variant resolution
image or foveal image, where the fovea has the highest resolution, and it decreases as we move
away from the fovea.

• Processes this foveal image for providing a multiscale segmentation of it in order to obtain the
different proto-objects present in the scene. A proto-object can be defined as regions of the image
that can be bounded into an object [15].

• Performs a bottom-up attention process for choosing a new fovea.

The proposed work tests the option of embedding the complete hardware and software solution on
an all programmable system on chip (AP SoC) platform. Thus, the foveal mapping is synthesized on the
FPGA (programmable logic), and the multiscale segmenter and attention model are programmed on an
ARM (processing system). Data between memory and modules are exchanged through direct memory
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access (DMA), allowing the whole framework to run at 10 frames per second (fps) (images covering a
FoV of five megapixels).

Contributions and Organization of the Paper

The main contribution of this paper is the proposal of a complete framework able to close the
loop between perception and foveation. The framework is able to process 10 fps, and using foveae
whose sizes are typically lesser than the 20% of the full FoV, it is able to segment natural images with
a performance similar to those approaches that deal with the full FoV at uniform resolution. There are
some significant theoretical aspects that must be emphasized:

1. Within an AP SoC, the hardware-emulated foveal sensor is able to provide a stream of foveal
images to the software components in real time, without significant latencies. This foveal sensor
is configurable at execution rates, being able to move and adapt the fovea to capture the objects
of interest.

2. Contrary to previous approaches, this work suggests that the hierarchical segmentation of
a captured scene can be achieved by decimating a non-uniform layout. That is, each level of our
hierarchy is now a graph whose spatial sampling varies across the FoV. The typical paradigm
is that a hierarchical segmentation of an input image provides a stack of successively-reduced
graphs (or images) of uniform resolution.

3. The image encoding within the hierarchy of an irregular pyramid is typically performed by
putting the effort on choosing the set of vertexes that, coming from a given level, will compose
the level above. The vertexes at this new level will be subsequently linked among them by
considering a connectivity criterion. In this work, we demonstrate that it is also interesting to
consider what arcs among vertexes should not be established. Using a very simple strategy,
our proposed decimation process runs significantly faster than previous approaches, exhibiting
a very similar performance.

4. Using the evaluation framework provided by the BSDB500 database, this work demonstrates
that it is not really needed to process the full FoV with the same level of detail. In an active
scenario and after a few foveations, the proposed system is able to provide segmentation results
(i.e., relevant contours) that are very close to the ones provided by human subjects.

The rest of the paper describes the proposed framework: Section 2 presents an overview of the
whole framework. Then, Section 3 briefly reviews and describes the foveal lattice synthesized on the
FPGA and presents the design and implementation of the chain of processing on the logic part of the
AP SoC. Section 4 describes how to create the communication for the hardware cores and the ones
running on the ARM. Section 5 briefly describes the hierarchical segmentation of the foveal images
and the bottom-up attention process performed on the software part. Sections 6 and 7 summarize
the experimental evaluation of the proposed framework and draw the main conclusions and future
work, respectively.

2. Overview of the Framework

Figure 2 shows the main stages of the proposed framework. It must be noted that, while in an
image with homogeneous resolution, the unit of information is the pixel, in a foveal image, the unit
of information is the rexel or resolution cell (i.e., the brain pixels in Figure 1 or the square cells of
Figure 3a–c). The first stage (foveal image acquisition and color conversion) is in charge of obtaining
the uniform RGB image from the sensor, mapping this image into a foveal lattice and converting the
RGB color values of the rexels to HSV color space, the one employed in our proposal. In the used
foveal lattice, the fovea has the same resolution as the input image, and it decreases as we move away
from the fovea following a Cartesian foveal geometry (CFG) with adaptive fovea (this will be explained
in detail in Section 3.1). Then, the output of this stage is a foveal image that is represented as a graph
where each vertex of the graph is a rexel of the foveal lattice. This graph is the input of the next stage
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of the system (the hierarchical segmenter). This hierarchy is encoded as an irregular pyramid where
each level is encoded as a graph. The output of the segmenter is the set of proto-objects present in
the image. Among them, the proto-object located in the current fovea, which has been captured with
a high resolution, can be sent to other specific modules, i.e., object recognition. The saliency of the
proto-objects is computed in the saliency estimation stage that also determines the position of the
fovea in the next frame. For achieving this, the module computes the parameters that will drive the
next foveation.

Figure 2. Overview of the proposed framework.

Figure 3. (a) Cartesian foveal geometry (CFG) with m = 3 and d = 2; (b) Shifted Fovea Multiresolution
Geometry(SFMG) of generalized motion with sh = {0,2} and sv = {0,2} (we have marked in the figure
the displacement among rings of resolution due to sh: the origin of the first ring is horizontally shifted
two rexels, within the second ring, and the origin of the fovea is not shifted (zero rexels) within the first
ring); and (c) GMFD of adaptive motion with Ld = 2, Rd = 1, Td = 1 and Bd = 3.

Apart from the theoretical contributions, the main goal of our work is the design, implementation
and testing of an embedded solution for the previously-explained framework. For this purpose
and given the co-existence of hardware and software modules on the whole system, we will propose
to endow the architecture within an AP SoC. Specifically, we have used the Zedboard from Avnet,
which is based on the Zynq-7000 AP SoC XC7Z020-CLG484-1 from Xilinx. The Zynq-7000 combines
software, hardware and input/output capability over a single silicon integrated circuit. This will be
the hardware base for setting our proposal. The hardware configuration for the AP SoC can be stated
as the interaction between two different parts: the processing system (PS) and the programmable logic
(PL). The software processing is addressed on the PS, which is mainly composed by the ARM cores,
I/O peripherals, clock system generators and memory interfaces.
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Figure 4 shows a block diagram of the proposed framework. In our case, the foveal image
acquisition and color conversion module is synthesized in the PL, while the initial configuration of the
sensor, an OV5642 of five megapixels from Omnivision, and the segmentation and saliency estimation
are conducted on the PS. The figure shows that, although the initial configuration of the sensor is
addressed from the PS, it accesses the sensor via the PL. The PS and PL parts are interconnected
through the AXI Video Direct Memory Access (AXI VDMA) core. The AXI VDMA is a soft Xilinx IP
core that provides high-bandwidth direct memory access between memory and AXI4-Stream type
video target peripherals. In the figure, cores involved in the connection between the PL and the PS
parts are filled with a white background. The sequence of foveal images obtained in the foveal image
acquisition and color conversion module is stored in the external memory (DDR3 SDRAM) through
AXI VDMA, Interconnect and high-performance (HP) interfaces/ports. From the DDR3, the segmenter
takes each foveal image to be segmented. This module and the saliency estimation one have been
successfully implemented on the ARM.

Figure 4. Block diagram of the system.

3. Foveal Mapping

3.1. Cartesian Foveal Geometries

Cartesian foveal geometries (CFG) encode the field of view of the sensor as a square-shaped
region at the highest resolution (the fovea), surrounded by a set of concentric rings with decreasing
resolution [4]. Figure 3 shows three different types of CFGs. In these geometries, each cell on the lattice
is a rexel. The resolution of each rexel depends on the ring in which it is located, and it decreases
from one ring to the next by a factor of four. In the majority of the Cartesian proposals, the fovea is
set in the center of the geometry (fovea-centered CFG), and the rings present the same parameters
(Figure 3a). Each ring is typically composed of several sub-rings. Thus, the geometry is characterized
by two constant values: the number of rings surrounding the fovea (m) and the number of sub-rings
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(d) within each ring. The size of the fovea is stated according to d: if we set its dimensions to 4d× 4d,
there is no discontinuity between the fovea and the periphery regions.

Among other advantages, there are CFGs that are able to move the fovea through the FoV
(shifted fovea). Usually, vision systems that use the fovea-centered CFG move the cameras to place
the region of interest in the center of the image. A shiftable fovea is very useful to avoid these camera
movements. Figure 3b shows one example of the Shifted Fovea Multiresolution Geometry (SFMG) of
generalized motion [4]. Within this algorithm, each ring of resolution is shifted with respect to the
center position according to two vectors (sv and sh). Furthermore, the possibility to adapt the fovea to
the size of the region of interest can help to reduce the consumption of computational resources [4].
Figure 3c shows an adaptive fovea. The geometry is now characterized by the subdivision factors
at each side of the fovea (Ld, Rd, Td and Bd). This will be the geometry finally implemented within
this work.

3.2. Hardware Implementation

Figure 4 illustrates the stages involved in the data processing within the PL. The sensor employed
(OV5642) is able to provide color frames of five megapixels. The sensor I/Fcore provides the video
input, consisting of parallel video data, video syncs, blanks and data validation. For bridging the video
input and the video processing cores, we use the Xilinx LogiCORETM IP Video In to AXI4-Stream core.
This core interfaces our video source to the AXI4-Stream Video Protocol Interface. On the one hand,
this forces us to use this protocol for communicating the rest of IP cores. However, on the other hand,
it simplifies the design, handling the asynchronous clock boundary crossing between the video clock
domain and the processing (AXI4-Stream) clock domain.

The foveal mapping and color conversion are addressed by the three last cores on the ‘foveal image
acquisition/color conversion’ block. The bayer2rgb core aims to reconstruct a color image, at the full
resolution, from the commonly-used Bayer color filter array pattern provided by the sensor. Specifically,
it implements a linear approach, encoded on masks of 3× 3 pixels [17]. This demosaicing process
provides the input data to the foveal mapping. This core is in charge of generating all rexels of the
foveal lattice.

For achieving this foveation, we compute in parallel the rexels of all resolutions. The foveal
mapping is then obtained by a sequence of four-to-one averaging stages, which will generate the
complete set of rexels needed to have the foveal lattice with a CFG with adaptive fovea. It must be
noted that all of these rexels are obtained at the same rate imposed by the sensor, i.e., we obtain the last
rexel when the last pixel of the uniform frame is provided by the sensor. The four-to-one averaging
process can be addressed in two steps. In the first one, we obtain the average of the two pixels in the
upper row. In the second step, we average the two pixels in the lower row and compute the final value.
The process is schematized in Figure 5. In the figure, ldii=0,1,... denotes a cell that must be registered;
uii=0,1,... indicates the storing of the first averaging process; pii=0,1,... implies the recovery of the first
averaging value required for obtaining the second averaging value; and rdii=0,1,... denotes the instant
in which the four-to-one averaging process is complete. We have marked on the figure as gray cells
these instants of interest. They are referred to the reading of the original image. Figure 5a shows
the generation of the rexels with a size of 2× 2 pixels. The pixel at Row 0 and Column 0 must be
registered to be averaged with the next pixel in the same row. The result of this averaging process
will be available at Column 1 of Row 0 and should be stored for completing the four-to-one averaging
process with the two pixels at Row 1. This same process (registering, processing and storing) will
be replicated for the rest of the pixels at Row 0. Thus, we will need a buffer with a length equal to
the half of the width of the original image. When we will process Row 1, the values in the buffer
will be extracted in the same order that they are stored. The required buffer is then a FIFO structure.
The values of the rexels of a size of 2× 2 pixels are obtained when we process the pixels of the input
image associated with all odd columns of the odd rows (labeled with rd1 on the figure). This defines a
new data flow that is processed in the same way for generating the values associated with the rexels
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with size 4 × 4 pixels. Figure 6 shows the datapath for generating the rexels of size 2× 2 pixels
(DATA 1), 4× 4 pixels (DATA 2) and 8× 8 pixels (DATA 3). The structures should be triplicated for
dealing with the three channels of the RGB color encoding. It must be noted that, from the whole set of
computed rexels, only some of them are part of the foveal lattice, while the rest are only needed to
compute the next rexels with lower resolution. The rexel of the foveal lattice can be determined from
the parameters of the CFG with adaptive fovea in the current frame (Ld, Rd, Td and Bd). Briefly, with
this datapath structure, five streams of reduced resolution are generated. However, as we can see in
Figure 7, only the rexels corresponding to different rings are needed to build the foveal image. That is,
as was previously mentioned, the output of this foveal mapping is a foveal image, which is represented
as a graph where each vertex is a rexel of the foveal lattice. Thus, a multiplexing stage is added after the
datapath to select the rexels among the DATA i (i = 0, 1, ..., 5) streams. This multiplexing stage depends
on the values of the Ld, Rd, Td and Bd parameters and also of the coordinates of each pixel. The result
is a unique stream, with the same size and timing as the original input image. This stream contains the
foveal image required by the modules of the PS part to carry out the segmentation process. From the
received image, this module only uses the colored cells in the figure. The dashed cells are discarded.

Figure 5. Generating the sequence of images of reduced resolution.

Figure 6. Complete structure of the datapath for generating the first three levels using data from the
input image (DATA 0).
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Figure 7. Foveal Image embedded in a full image. CFG defined by Ld = 1, Rd = 3, Td = 1, Bd = 3.
Only the fovea, the first and second rings are shown.

However, before sending this image to the ARM, the RGB values are translated to the HSV color
space. This is achieved by the rgb2hsv core. The used conversion equations are:

H =


0 if Cmax − Cmin = 0,

60 · G′−B′
Cmax−Cmin

mod 6 if Cmax = R′

60 · B′−R′
Cmax−Cmin

+ 2 if Cmax = G′

60 · R′−G′
Cmax−Cmin

+ 4 if Cmax = B′

(1)

S =

{
0 if Cmax = 0,
Cmax−Cmin

Cmax
if Cmax 6= 0

(2)

V = Cmax (3)

being R′ = R/255, G′ = G/255 and B′ = B/255, Cmax = max(R′, G′, B′) and Cmin = min(R′, G′, B′).
The obtained image should be stored in the external memory for being shared with the ARM

cores. As previously mentioned, the foveal images is encoded within a uniform image whose size is
the same as the one of the original image (Figure 7).

4. Communicating the PL and PS Cores

The proposed framework needs to handle the data stream from the PL to the DDR3 SDRAM
memory at the highest possible rate. Direct memory access (DMA) will allow the rgb2hsv core to gain
access to the main bus linking the processor with the DDR3 memory. This avoids the use of the ARM
processor to perform load or store operations, giving the Zynq-7000 AP SoC a large I/O bandwidth
and low latency in the integration of a custom logic with a custom software. Thus, once the DMA
transfer has been set up by the ARM core, this will wait to be notified when a complete chunk of
resolution levels is received. When a transfer is completed, the ARM core generates the foveal image
and then the hierarchy of segmentation results while a new transfer is in progress. This mechanism
saves CPU cycles and increases the data throughput.

In the system block in Figure 4, the generated image encoding the foveal lattice is transferred
through AXI VDMA (Video Direct Memory Access). AXI is a standardized IP interface protocol
based on the ARM AMBA4 and AMBA3 AXI specifications. The AXI VDMA core can be used to
transfer the AXI4-Stream protocol-based video stream to DDR memory and vice versa. AXI VDMA
implements a high-performance, video-optimized DMA engine with frame buffering, scatter gather
and two-dimensional (2D) DMA features. AXI VDMA transfers video data streams to and from
memory and operates under dynamic software control or static configuration modes. To provide
high-speed AXI master interfaces in the PL with lower latency, connections to the high performance
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(HP) interfaces are required. AXI Interconnect and AXI HP ports on the Zynq-7000 AP SoC together
implement a high-bandwidth and high-performance memory system for use in applications where
multiple devices share a common memory controller. Briefly, the AXI VDMA is connected to an HP
interface by means of the AXI Interconnect and is controlled by the Cortex-A9 processor. As we can
see in Figure 8, only two VDMA blocks are needed to connect the PL side with the PS side: the first
one to upload the generated stream to the DDR (with the read channel disabled) and the second one
to download the processed stream from the DDR (with the write channel disabled). In order to have
full control of the operation of the VDMA blocks, both must operate in “park” mode. In this way we
can select by software the frame-buffer we want to process. Thus, the download VDMA is always
working with a buffer containing a completely processed image. The upload VDMA requires an extra
SWcontrol to guarantee that no new image is received until the previous one is processed. For this
purpose, the “frame counter” feature is used to determine the number of frames we want to receive.
The VDMA is halted while the image processing is running and is enabled again by recharging the
frame counter when the processing is finished. This strategy allows us to adjust the frame rate capture
to the frame rate software processing.

Figure 8. Organization of the memory space for allowing the multithread processing within the
processing system (PS).

Within the PS, the code is organized to run the same algorithm within two independent threads.
The aim is to better exploit the power of the two cores of the Cortex-A9 processor. Furthermore,
the execution of these two cores can concurrently work with the reception of a new frame. Figure 8
shows how the memory space is organized into a collection of pages. An additional subsystem can be
added to visualize the segmentation/saliency results on an HDMI monitor.

5. Software Processing: Segmentation and Saliency Estimation

5.1. Hierarchical Segmentation

Segmentation is the process of partitioning an image into homogeneous regions according to some
criteria. Pyramids are hierarchical structures that have been widely used in segmentation tasks [18]
due to their ability to represent the image content at different resolution levels. In a pyramid, the input
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image is encoded using multiple representations with decreasing resolution. Therefore, segmentation
algorithms based on pyramids exhibit interesting properties with respect to segmentation algorithms
based on a single representation of the input image [18]: (i) the hierarchical structure of the pyramid
can be adapted to the image topology using local operations; thus, global image features of interest can
be detected and represented at different resolution levels; (ii) the noise in the segmentation is reduced;
(iii) local and global features are computed within the same framework; and (iv) the complexity of the
segmentation task is reduced due to the hierarchical nature of the pyramid.

The first attempts for developing pyramid-based approaches for image segmentation were based
on setting in advance the size of all levels of the hierarchy. These regular pyramids were very efficient
for solving the segmentation problem, but they were not able to correctly encode the image layout
within such a rigid structure [18,19]. This rigidity problem is solved by irregular pyramids by using
variable data structures and decimation processes, which allows the adaptation of the structure to the
image layout.

Irregular pyramids are represented as a set of successively-reduced graphs. Each level l is a graph
Gl = (Vl , El) where Vl are the vertexes and El the edges. When the input image is an image with
uniform resolution, V0 is formed by the pixels of the input image, and E0 is defined by the four
or eight neighborhood of each pixel. In the proposed work, where we are working with a foveal
image, V0 are the rexels of the foveal lattice, and E0 represents their neighborhood relationships. In an
irregular pyramid, each graph Gl+1 is built from Gl using a decimation process. This procedure
has three main stages: first, the vertexes of Vl+1 are generated by selecting a subset of surviving
vertexes from Vl . Second, the non-surviving vertexes of Vl are linked to surviving ones, generating the
inter-level edges of the structure, which define the son-parent relationships. Third, the edges of El+1
(intra-level edges) are computed, defining the neighborhood relationships among the vertexes in Vl+1.
The inter-level edges, which link a vertex v ∈ Vl+1 with vertexes of Vl , define the reduction window of
v, which includes itself and all non-surviving vertexes linked to it.

The efficiency of an irregular pyramid depends on the employed decimation algorithm and
also on the graph encoding used within the pyramid [18]. Among other relatively complex schemes,
the data-driven decimation process (D3P), proposed by J.M. Jolion [19], uses a simple graph to
encode each level of the structure and a two-step algorithm to select the set of surviving vertexes.
For addressing this decimation process, the algorithm characterizes each vertex on the pyramid by the
variance value vari, estimated from the set formed by itself and its neighbors. Then, the algorithm uses
two additional binary-state variables for describing each vertex i of a level l: p(l)i and q(l)i . In the first

step, the vertexes of level l, which are local minima according to vari, are labeled with p(l+1)
i equal to

one and q(l+1)
i equal to zero. In the second step, the algorithm only evaluates the vertexes with q(l)i

equal to one: those ones that have a local minimum (p(l+1)
i = 1) in its neighborhood are labeled with

q(l+1)
i equal to zero. In the base level, the value of both variables p(0)i and p(0)i is set to one. For the rest

of the levels, they are computed as:

p(l+1)
i = (p(l)i ∪ q(l)i ) ∩ (vari < min(varj : δ

(l)
ij · q

(l)
j )) (4)

q(l+1)
i = {pi

(l+1)
⋂

j∈N(l)
i

pj
(l+1)} ∩ (N(l)

i 6= 0) (5)

where δ
(l)
ij is equal to one if there exists an intra-level edge between vertexes i and j in level l, and N(l)

i
are the set of neighbor vertexes of vertex i in level l.

Then, vertexes with p(l+1)
i or q(l+1)

i equal to one are the surviving ones and:

p(l+1)
i = q(l+1)

i = p(l+1)
i ∪ q(l+1)

i (6)
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The surviving vertexes define Vl+1. Then, a vertex vi of Gl survives if and only if it is a local
minimum or does not have any surviving vertex in its neighborhood. Figure 9 provides a simple
example. Red vertexes are local minima: their vari value are lesser than the varj values of their
neighbors. Green vertexes do not have any local minima in their neighborhoods. They will survive
without taking into consideration their vari values. The surviving of these last vertexes is not iteratively
evaluated. This is the reason for the two adjacent green survivors in Figure 9b.

Figure 9. (a) Original graph (within each vertex, we have annotated its vi value); and (b) surviving
vertexes marked in red (local minima) and green.

After choosing the survivors, the intra-level edges at this new level, El+1, are obtained as:

El+1 = {(i, j) ∈ Vl+1 ×Vl+1 : i 6= j ∩ path(i, j) ≤ 3} (7)

where the path between to vertexes i and j is equal to one if these vertexes are linked by an intra-level
edge at level l. This path is equal to two if there is a non-surviving vertex y, which is linked by
intra-level edges with i and j at level l. Additionally, this path is equal to three if there are two
non-surviving vertexes y and x that satisfy that, at level l, y is liked by intra-level edges with i and x,
and x is linked by an intra-level edge with j (see Figure 10 for a graphical illustration):

path(i, j) = 1⇔ δ
(l)
ij (8)

path(i, j) = 2⇔ ∃y ∈ Vl : δ
(l)
iy ∩ δ

(l)
yj ∩ y /∈ Vl+1 (9)

path(i, j) = 3⇔ ∃y, x ∈ Vl : δ
(l)
iy ∩ δ

(l)
yx ∩ δ

(l)
xj ∩ y, x /∈ Vl+1 (10)

Inter-level edges, linking each non-surviving vertex with a surviving one at level l + 1,
are established by imposing that both vertexes must be neighbors at level l.

The Bounded D3P

The main advantage of the D3P is that, being very simple, it provides results comparable to
other irregular approaches (see Section 6). However, there are two main problems related with
its implementation. On the one hand, it does not bound the number of neighbors of the vertexes.
This makes it impossible to bound the computational times and memory resources. On the other hand,
the estimation of the path(i, j) values in Equations (9) and (10) is a very hard problem, as it is needed to
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evaluate all possible paths in level l for obtaining El+1. This computation must be iterative, provoking
that the whole algorithm will be slow.

Figure 10. Graphical illustration of the three path concepts (1,2,3).

This paper proposes to address both problems, alleviating the computational cost and memory
resources needed to run the algorithm. This new version, the bounded D3P (BD3P), takes into
account the final task for reducing the number of edges on El+1 and speeding up its computation.
The first issue is addressed by removing from the neighborhood of vertex x those vertexes whose color
is very different from the color of x. This qualitative assertion is implemented by a simple thresholding.
Thus, the neighborhood Nx of a vertex x is now defined as:

{y ∈ Nx : δxy ∩ d(x, y) < tc} (11)

where d(x, y) defines the HSV color distance between vertexes x and y and tc is a threshold value.
Thus, Equations (4) and (5) are now defined as follows:

p(l+1)
i = (p(l)i ∪ q(l)i ) ∩ (vari < min(varj : (δ(l)ij ∩ d(i, j) < tc) · q(l)j )) (12)

q(l+1)
i = {pi

(l+1)
⋂

j∈N(l)
i :δji∩d(j,i)<tc

pj
(l+1)} ∩ ({j ∈ N(l)

i : δji ∩ d(j, i) < tc} 6= 0) (13)

The effect of this thresholding is illustrated in Figure 11. Figure 11a provides a naive example of
the application of the D3P algorithm to a set of 11 vertexes. When the rules for obtaining the surviving
vertexes are applied, the algorithm chooses three survivors. The color of one of them is light gray (red),
and the color of the other two is dark gray (blue). When the non-surviving vertexes look for a surviving
one for establishing the inter-level edges, one of the blue vertexes (with a 0.6 value) must link to the
red survivor, as this is the only surviving vertex within its neighborhood. This linking clearly disturbs
the definition of the reduction window of the red surviving vertex (composed by four red vertexes and
one blue vertex). Figure 11b shows the application of the BD3P to this same set of vertexes. Assuming
that tc avoids the linking of red and blue vertexes, the neighborhood of each vertex is now quite
different. We have marked as bold lines this new set of intra-level edges on level k. There are again
three surviving vertexes at level k + 1, but they are different from the previous case (the 0.6-valued
vertex is substituted by the 0.2-valued one). All non-surviving vertexes must now find a survivor
within their neighborhood, but intra-level edges at level k impose that linked vertexes are of the same
color. Subsequently, the three reduction windows are now composed by vertexes of the same color.

With respect to the second issue, the removal of the computation of the path(i, j) values in
Equations (9) and (10) is achieved by determining that there will be an edge between two vertexes
x and y at level l + 1 if the reduction windows of these two vertexes are in contact at level l (and if
d(x, y) < tc). Thus, El+1 can be computed by a single evaluation of the vertexes at level l.
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Figure 11. Influence of the thresholding of intra-level edges within the internal structure of the
data-driven decimation process (D3P) algorithm: (a) The original D3P; and (b) The bounded D3P
(BD3P) (see the text for details).

5.2. Estimating the Salience

Once the image has been decomposed within a set of regions (our proto-objects), the next step
is to choose the most relevant one. This region will be the focus of attention, conditioning the
subsequent foveation and segmentation processes. Following the general rules proposed by Jeremy
Wolfe and Todd Horowitz [20], we have chosen five low-level features for guiding attention. Two main
guidelines have been taken into account in this selection: attention guidance and computational cost.
Regarding attention guidance, Jeremy Wolfe proposes four features as undoubted to guide attention:
color contrast, motion, orientation and size. From this set of attributes, we have selected the color
contrast, size and orientation features. Motion has been discarded as an attribute due to its high
computational cost. Another used feature is the intensity contrast value, which is a special case of
the color contrast feature (it deals with the case of the gray values, including white or black). Finally,
we have added a feature more related with the shape of the proto-object: the roundness, which is a
measure about the closure and the contour of an object. It has been classified as a probable attribute to
guide attention in [20].

Size has been selected as a direct indicator of the probability that the region belongs to the
background because larger regions usually correspond with surfaces without relevance, such as walls
or floors. Furthermore, it is used to discard regions of a very small size, which will normally appear in
the fovea or close to it (as the segmentation of this area maintains minor details). It has been computed
as a size contrast measure. That is, it is obtained from the comparison with the mean area of the regions
on the image, area

SizeCONi = |areai − area| (14)

being areai the area of the proto-object Pi.
Color and intensity (brightness) contrast values measure how different a region is with respect

to the ones in its surroundings according to its color and brightness. The influence in the guidance
of the attention of a region is proportional to its contrast values. The more different in color and
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intensity is a region, the more influence it has in the guidance of attention. The color contrast feature is
computed as:

ColCONi =
Si
bi

∑
j∈Ni

bij · disColor(Ci, Cj) (15)

being Ni the set of proto-objects that are neighbors of Pi, bij the arc length between proto-objects
Pi and Pj and bi = ∑∀j∈Ni

bij (perimeter of Pi). disColor(Ci, Cj) is the HSV distance between the mean
color values of the proto-objects Pi and Pj, and Si is the mean saturation value of Pi. To avoid the
intermediate computing of the bij values, the feature can be calculated at the rexel level. This allows us
to compute the contrast by analyzing the set of rexels of the proto-object:

ColCONi =
Si
bi

∑
j∈Mi

∑
k∈

Nj
Mi

bjk · disColor(Cj, Ck) (16)

Mi defining the set of rexels that compose Pi and Nj the neighbors of rexel j. The value bjk is equal to
the length value of the side of a rexel (a known value). The color value of the rexel, Cj, coincides with
the color value of Pi.

Due to the use of the saturation value Si on the previous equations, the proto-objects whose color
value is close to white, black or gray are not considered as relevant regions. The intensity contrast
feature tries to compensate this effect. The computation is similar to Equation (16):

IntCONi =
1
bi

∑
j∈Mi

∑
k∈

Nj
Mi

bjk · disBrightness(Ij, Ik) (17)

but now, we employ the mean brightness values of the rexels and do not take into consideration the
saturation value Si.

The roundness feature measures the similarity of the proto-object with a circle. In our case, it is
computed using the classical approach based on moments. Specifically, we use three central moments:

µi
1,1 = ∑

i
wi(xi − x̄)(yi − ȳ) ∀(xi, yi) ∈ Pi (18)

µi
2,0 = ∑

i
wi(xi − x̄)2 ∀(xi, yi) ∈ Pi (19)

µi
0,2 = ∑

i
wi(yi − ȳ)2 ∀(xi, yi) ∈ Pi (20)

being (x̄, ȳ) the center of mass of the proto-object Pi.
Using them, it is possible to evaluate the eccentricity, i.e., the difference between the region and

a perfect circle:

ecci =
(µi

2,0 − µi
0,2)

2 + (2 · µi
1,1)

2

(µi
2,0 + µi

0,2)
2

(21)

This result is bounded to the range [0...1]. The roundness is easily obtained from the eccentricity
value ecci:

ROUNDi = 1− ecci (22)

The orientation of a region can be evaluated using the central moments:

φi =
1
2

atan

(
2µi

1,1

µi
2,0 − µi

0,2

)
(23)
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However, by itself, this measure does not reflect the relevance of the region. It will be similar
to using the color of the proto-object to determine its importance. For providing a salience measure,
the orientation of the proto-object must be compared with the one of the rest of the regions in the scene;
that is, to estimate an orientation contrast. This measure is obtained using:

OriCONi = ∑
j
|φi − φj| (24)

being j the set of regions that compose the image.
The final saliency of a region, sali, is determined by the weighted sum of these five features:

sali = ~λ · ~f (25)

~λ being the set of weights, which will be normalized (∑i λi = 1), and ~f is the feature vector. All features
will be also normalized to be in the range [0...255]. Thus, saliency values will be normalized to this
same range and could be visualized as gray-scale images. The set of weights to be used depends
on the final application of the proposed attention system; specifically, it depends on the type of
proto-objects needed by this final application. Therefore, it can be seen as a top down modulation
of the attention. When this modulation is not necessary because a general scene exploration task is
performed, these weights have all the same value (0.2).

Influence of the Foveal Lattice on the Salience Estimation

In the previous section, the different feature values used in our model were presented.
Their equations include perimeters, means or moments. It is important to note that our foveal lattice
will impose several requirements on these properties. For describing the problem, we will use as
an example the blue region in Figure 12. This region is composed by rexels of different resolution.
Additionally, there is no pixel-based, uniform representation. Thus, for instance, the perimeter of this
blue region, or the length of this perimeter shared with each one of the four regions on its vicinity,
cannot be computed by adding pixels. The perimeter bi of the blue region can be computed by:

bi = 5 · L + 7 · L/2 + 4 · L/4 (26)

being dependent on the size of the rexels (in this case, L is the side of the largest rexel within the
blue region). We should take this issue into account when we store the neighbors of each region.
Furthermore, as the BD3P algorithm does not store the whole neighborhood of the node (but only
those that are similar in color), we should memorize a new field for each node where storing all of
this information.

When we compute the centroid (x̄, ȳ) of a region, we should also take into account the different
area of each one of the rexels that compose the region. That is:

(x̄, ȳ) =
1

∑i wi
∑

i
wi(xi, yi) (27)

being wi the weight (i.e., the area) associated with each rexel (xi, yi). The (xi, yi) value is the center of
mass of the rexel.

Finally, the computation of each moment should be also weighted by this factor. For instance,
for the moment µ1,1:

µ1,1 = ∑
i

wi(xi − x̄)(yi − ȳ) (28)
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Figure 12. The region on a foveal image could be composed of rexels of different sizes. This will
influence the computation of perimeters, means or moments (see the text for details).

6. Experimental Results

6.1. Performance and Utilization of the PL Cores

The image acquisition, foveal mapping and color conversion were synthesized on the programmable
logic of the Zedboard. Table 1 shows the system resource utilization for providing these functionalities.
The loop latency shows the time required by each core to process the full image (the image size is
2592 × 1944 (5,038,848 pixels)). The AXI stream interface is used for transferring the image data.
This interface allows an IP core to start working before the previous core on the processing chain
finishes the processing of the whole image. Thus, the latency value between the input of the first pixel
of a frame to the first core and the output of this pixel to the last core is 5,227 clocks. Additionally, this
value is mainly due to the line buffer employed by the demosaicing process. The pipeline structure
ensures an initiation interval equal to one, i.e., the PL cores are able to process a new pixel datum
with each clock cycle. Briefly, each frame provided by the sensor is processed before a new one starts
to be acquired. Taking into account the latency, the preprocessing chain is almost transparent to the
full architecture.

Table 1. Estimated system resources and performance as reported by the synthesis tool (the max image
size is 2592 × 1944 pixels, and the target clock period is 10 ns).

Image Demosaicing Foveal Mapping rgb2hsv

Digital Signal Processor (DSP) 3 0 3
Block Random Access Memory (BRAM_18K) 6 18 0

Flip-flop 500 1227 3305
LUT 543 1242 3006

Clock Period (ns) 9.40 5.42 8.91
Loop Latency (clocks) 5,043,391 5,038,862 5,038,879

Initiation Interval (clocks) 1 1 1
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6.2. Evaluation of the Segmentation Algorithm

Table 2 assesses the BD3P with other decimation approaches using 50 color images from the
Coil-100 database. Images have been resized to 256 × 256. Among the approaches, there are regular
ones, such as the linked pyramid (LRP) [21] or the probabilistic one with a weighted relinking
process (WRP) [22], and irregular approaches, such as the data-driven decimation process (D3P) [19],
the bounded irregular pyramid (BIP) [18], the hierarchy of partitions (HIP) [23] and the combinatorial
pyramid (CIP) [24]. The LRP [21] is built using an iterative process in which in the first iteration,
each 4× 4 set of vertexes of a level l generates a new vertex in level l + 1 by averaging their image
values (e.g., gray level). The set of 4× 4 windows are 50% overlapped (4× 4/4 pyramid), and then,
each vertex in level l + 1 has a set of 4× 4 candidate sons at level l and a set of 2× 2 candidate parents
at level l + 2. In each iteration, the whole structure is covered, and each vertex is linked to its most
similar candidate parent. After that, the values of the parents are recalculated. This process ends when
there are no modifications in the son-parent links between two consecutive iterations. The WRP [22] is
similar to the LRP, but each vertex maintains all of the links with its candidate parents. These links
are weighted edges, and the value of each weight depends on the son-parent similarity. The BIP [18]
is a mixture of regular and irregular data structures: a 2× 2/4 incomplete regular structure and
a simple graph. The regular structure is named incomplete because, although the whole storage
structure is built, only the vertexes with sons that are homogeneous in the used image value are
set in it. The irregular part is built using a union-find strategy. The idea of HIP [23] is to build a
minimum spanning tree (MST) of the input image to find the region borders in a bottom-up way
using a dual graph structure. In the CIP [24], the pyramidal structure is represented using a hierarchy
of combinatorial maps, which is built following a union-find strategy. These approaches have been
compared using the Q function, an estimator of the segmentation accuracy [18], which takes into
account the following:

• Obtained regions must be uniform and homogeneous.
• Regions must not have small holes inside.
• Neighbor regions must be significantly different according to the image value used during the

segmentation process.
• Regions must not have a small size.

Table 2. Q value and the number of levels of the pyramid for several decimation algorithms (see
the text). LRP, linked regular pyramid; BIP, bounded irregular pyramid; HIP, hierarchy of partitions;
CIP, the combinatorial pyramid.

Qmin Qave Qmax hmin have hmax

LRP 1052.1 1570.3 2210.3 9 9 9
WRP 1133.7 1503.5 2080.8 9 9 9
D3P 355.6 818.5 1301.1 11 32.9 64
BIP 343.2 1090.9 1911.3 8 8.7 15
HIP 460.5 955.1 1530.7 9 11.4 19
CIP 430.7 870.2 1283.7 9 74.2 202

BD3P 412.6 831.5 1497.1 9 13 18

The smaller the value of Q, the better the segmentation is. All of the approaches shown in Table 2
have been tuned for obtaining the best score on the Q parameter:

Q(I) =
1

1000 · N ·M
√

R ∑R
i=1[

e2
i

1+logAi
+ ( R(Ai)

Ai
)2]

(29)

being M× N the size of the image and R the number of segmented regions. Ai and ei are the area
of the region i and its average color error, respectively. Color error in the RGB space is computed
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as the Euclidean distance between the color components of each pixel of the original image and the
components of the color of the segmented region. R(Ai) is the number of segmented regions with area
equal to Ai.

In Table 2, the minimum, maximum and average values of Q (Qmin, Qmax and Qave, respectively)
obtained from the 50 color images of the Coil-100 database are shown. Furthermore, the minimum,
maximum and average structure height (hmin, hmax, have) are presented. This table shows that the
results provided by the BD3P are comparable to the ones obtained by the best approaches. However,
it is able to run at less than 100 ms on the Cortex-A9 processor.

The BD3P algorithm has been also evaluated using the precision-recall metric and the database
of natural images proposed by the group of Prof. Jitendra Malik from the University of Berkeley
(BSDB500) [25,26]. Precision (P) measures the percentage of boundary pixels in the obtained
segmentation that match the boundary pixels in the ground truth. Recall (R) measures the percentage
of boundary pixels of the ground truth image that are in the segmented image. Both measures are
independent of the input parameters used by the segmentation methods. Our algorithm has two main
parameters: the tc value employed for thresholding the intra-level edges; and the maximum number
of neighbors nmax for the vertex. This second parameter has been set for providing a maximum bound
to the number of neighbors. This section analyzes how to choose correct values for these parameters
and what results are obtained by using the BSDB500 dataset (for foveal processing, the images on this
dataset will be converted from a 481 × 321 size to 480 × 320). The width and length of the FoV should
be a multiple of the side of the maximum rexel on the lattice (in our case, 32 × 32 pixels).

On the other hand, it is important to determine how the segmentation scheme applies to a static
image. That is, as we mentioned in Section 1, the use of a foveal strategy does not make sense if the
fovea cannot be swiftly moved over possible regions of interest [3]. For verifying the performance
of the foveal segmenter, we firstly obtain a segmentation result centering the fovea in the image.
The saliency of the regions composing this segmentation image is evaluated (with each weight λi set
to 0.2), and we choose the five most salient regions. Once these regions are chosen, we segment the
image by setting the fovea over each one of these regions. Figure 13 schematizes the procedure. The
borders within each segmentation image are obtained and labeled according to the rings where they
are detected (strong borders are associated with rexels of a minor size). This provides us five sets of
contours per input image. They are finally combined in the contour map that is evaluated using the
precision-recall metric.

6.2.1. Choosing the Parameters

The BSDS500 provides a set of images for learning and a different set for testing. Using the first set,
we have set the tc value to 200 and the nmax value to 10. With respect to the sensibility of the approach
to changes on the parameters, we can conclude that setting the nmax value to 10, the tc value can range
from 150 to 250, and the recall value typically remains over 0.9. When the tc value is greater than
250, the recall value diminishes as some real contours are lost. When the tc value is lower than 150,
the number of vertexes on each level of the hierarchy grows and, with them, the height of the pyramid
and the space occupied by the structure on the system memory. Furthermore, the precision value
decreases, as contours that are not present in the human segmentation arise. In fact, if the recall value
maintains high values relatively easily, this will not be the same for the precision value. Figure 14
shows that the approach does not only provide the real contours, strongly marked when the fovea is
close to the regions where they are, but also other contours, weakly marked on these same regions,
which will be generated when these regions are perceived by the peripheral vision. The precision
value decreases because of these last contours as, being for instance defined by rexels of 32 × 32 pixels,
they are not really very precise. To compensate for this effect, we propose to label these contours by
lower values (see Figure 14).
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Figure 13. Obtaining the contour map associated with an input image as a combination of
five foveations.

Figure 14. (a) Image #310007 of the BSDB500; (b) One foveal image; (c) Segmentation image; and
(d) Associated contour map.

6.2.2. Evaluation on the BSDB500

In order to perform the evaluation of a segmentation algorithm using the precision and recall
approach [25,26], it is needed to threshold the obtained contour map using different threshold
values. For each threshold, the contour map is compared with the ground truth data (a collection of
human-marked boundaries), obtaining its precision and recall values. This set of precision and recall
values forms the precision and recall curve. Therefore, this curve shows the trade-off between misses
and false positives (the higher the value of precision, the smaller the number of false positives, and the
higher the value of recall, the smaller the number of missed positives).
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Figure 15 compares the performance of the proposed segmentation approach with respect to
the ones provided by other approaches. Precision and recall values can be combined in a unique
measure (the F-measure), defined as their harmonic mean. For each algorithm, the maximum obtained
F-value is shown. The light green line of Figure 15 is the function F(P, R) obtained comparing the
human segmentations among them. It represents the reference with respect to which the performance
of the different segmentation algorithms has been evaluated. Our approach is overcome by the
gPb-owt-ucm [26] and the Ultrametric Contour Map (UCM) [27], obtaining better results than other
methods [28–30]. However, it is important to note that our approach is processing these images to
more than 10 fps. As five foveations are used (see Section 6.2), we are able to provide the contours
of the image in less than 500 ms. In a real scenario, the system will not need to perform these static
foveations. In less than 100 ms, the fovea will be moved through the FoV to the next salient region.
It is important to note that we are able to provide similar results as those approaches that process the
entire FoV at uniform resolution.

Figure 15. Comparison of our segmentation proposal with other approaches. The data to compute the
precision-recall curves for these other approaches have been downloaded from [26].

6.3. Evaluation of the Attention Model

The attention model was evaluated using the Toronto database [14], the most popular one
according to the review paper by Ali Borji and Laurent Itti [31]. This dataset consists of 120 images
(681 × 511 pixels) with information of eye tracking from 20 people. The scenario is a free-viewing
one, i.e., any specific task was not set, such as face or person detection. People looked at the image for
four seconds. Figure 16a,b shows two images from the database. Eye fixations have been drawn over
the images. Based on these fixation points, it is possible to obtain a density map for each image [14].
We illustrated two of them in Figure 16c,d. These ground truth saliency maps are basically built
by inserting a value of one at eye fixation points and convolving the result with a Gaussian for
smoothing. Figure 16e,f shows the maps obtained using the proposed framework. The foveal lattice
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has five rings (rexel sizes ranging from 32 × 32 to 2 × 2) and a fovea of 176 × 140 pixels. The original
images were slightly resized to 672 × 512 pixels, to make height and weight values divisible by 32.
The segmentation parameters were heuristically set to obtain the better results on all of the Toronto
database, but they remain the same for evaluating all of the images. The relevance of all regions
provided by the segmenter was evaluated using a set of weights where each λi = 0.2, and the obtained
saliency map was smoothed by a Gaussian filter. This procedure is illustrated in Figure 17.

Figure 16. (a,b) Images from the Toronto database, annotated with the eye fixation points (see the text
for details); (c,d) Density maps obtained from the fixation points from 20 people; and (e,f) Density
maps obtained using the proposed framework.
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Figure 17. (a) Image #67 of the Toronto database; (b) Segmentation provided by the BD3P (centered
fovea of 176 × 140 pixels and five resolution rings); (c) Saliency map provided by the attention model
(λ = {0.2, 0.2, 0.2, 0.2, 0.2}); and (d) Density map obtained by Gaussian smoothing (σ = 10.0).

The quantitative evaluation of the proposal employs the area under the ROC (receiver operating
characteristic) curve [31] for scoring. The area under the curve (AUC) considers eye fixations as the
positive set and random points from the image as the negative set. To eliminate center-bias effects,
these negative sets can be built by the union of all fixations of all subjects across all other images in
the database, except for the positive set. Then, the saliency map is considered as a binary classifier
to discriminate positive and negative samples. The ROC curve associated with each image on the
database is obtained by thresholding over the saliency map and plotting true positive rate versus false
positive rate. A global ROC curve averages the curves of all images, and the area underneath this final
curve provides the final score. A score equal to one indicates a perfect prediction. Is it possible to
reach this value? On the Toronto database, the density maps obtained from the fixations of one person
provide a mean score of 0.878. This could be considered the real upper limit [31]. Using this evaluation
framework, our proposal provides a final score of 0.669 on the Toronto database. Within the whole
set of 28 models evaluated by Borji et al. [31], the method takes fifth place. The AWS [32] model is
significantly better than all other models over this database, followed by the HouNIPS [33], AIM [34]
and Judd [35] models. Only these approaches are over 0.675 (see [31] for further details).

However, the goal of our proposal is to be able to actively explore a scene, moving the fovea from
one location to a new one, while the whole scene is segmented and evaluated. This behavior is shown
in Figure 18. For evaluating the ability of our proposal for exploring a scene using a foveal strategy,
we have also tested the whole framework using the JUDDdatabase [35]. This dataset provides eye
tracking data of 15 viewers on 1003 images. To compare with other approaches using this scheme,
we will characterize each proto-object by its centroid. Thus, the sequence of proto-objects is converted
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into a sequence of positions. Using the similarity index proposed by Liu et al. [36], we can compare
this sequence with a reference pattern. This metric employs a gap parameter, which penalizes when it
is necessary to insert or remove a fixation on the trajectory during the matching of both sequences.
Following the guidelines on this work, this gap has been set to −0.5 in our experiments. Finally,
our scan path was compared to the 15 reference patterns (one per viewer). The mean value was
0.95, improving the results from other approaches, such as the one from Walther and Koch [37].
The score is under the 1.15 obtained by Liu et al. [36]. It must be noted that this approach combines
low-level features with the properties of a higher significance level, which are not considered within
our approach.

Figure 18. Active exploration of Image #157055 of the BSDS500: from the top-left corner to the
bottom-right, the figure shows the sequence of fixations.

7. Discussion

The basis of active vision lays on the existence of a mechanism able to autonomously detect what
is the most relevant region of interest in the scene. Thus, it is possible to direct the focus of attention
on it. The goal is to maintain the impression that the entire scene is perceived in real time because
a continuous stream of relevant parts of the image are explored and analyzed. This ‘what’ stream,
which is not the topic covered in this paper, is complemented with a ‘where’ stream. Additionally,
the feasibility of processing the whole scene is achieved by using a space-variant sampling of the
whole field of view and a multiscale segmentation of this foveal lattice. This paper describes how
both solutions are implemented on the different parts (programmable logic and processing system)
of the Zynq AP SoC. The hardware-software division in our work responds to the nature of the
modules. The ones in charge of providing the stream of foveal images are grouped into a subsystem
and implemented in programmable logic. With the visual sensor, they successfully synthesize a camera
that is able to provide a stream of foveal images without significant latency. These images are available
for the ARM core in real time.

The segmentation of the sequence of foveal images has been accelerated by using a hierarchical
approach. Our proposal is based on the D3P algorithm, but uses a foveal lattice to build the base
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level. This minor detail introduces two significant differences with respect to previous approaches:
(i) the full FoV is encoded in all levels of the hierarchy; and (ii) the region of all levels associated
with the fovea is better defined than the rest of the level. However, when using the original D3P,
each vertex of the structure is linked to a very large number of neighbors. The memory resources and
computation cost were excessive for running the algorithm in the ARM. With the aim of reducing
both parameters, we designed the bounded D3P. The performances of the D3P and BD3P algorithms
are practically the same, but the BD3P works significantly faster. This issue is illustrated in Table 2.
The average height of the BD3P is almost half the one of the D3P. The segmenter divides up the
image into regions, whose saliency is then estimated. The computation of the features employed for
computing the saliency is also accelerated by using the rexel decomposition present at the base level of
the hierarchy. Thus, the proposed object-based saliency model runs at 10 fps with images that cover
a FoV of five megapixels at uniform resolution. The verification of the segmentation scheme was
conducted using the BSDS500 database. It is significant to note that our approach never works with
the whole uniform image. However, five foveations were sufficient to draw the significant contours
on the image. According to the obtained precision-recall curve, there exist better approaches, but our
approach only manages a compressed (i.e., foveated) version of the image. This allows our proposal to
be very fast and to employ lesser memory resources. Finally, the validation of the whole framework
was provided by testing it using the Toronto and JUDD databases. The parameters of the segmenter
were maintained constant in all of these tests, and the obtained scores were similar to the ones provided
by the best approaches. We can conclude that the approach is robust and able to deal with natural
scenes (as these scenes are present in all tested databases (BSDS500, Toronto and JUDD)).

This paper mainly focuses on two lines of work, complementary to the design of the mechanism
of gaze control: the design of the whole architecture and the concrete development of a hardware
capable of generating foveal color images. We are currently working on including the segmenter in
the programmable logic of the AP SoC. We also focus on improving the mechanism of attention,
which currently does not include basic elements, such as an efficient inhibition of return [34].
This will imply migrating the solution to larger platforms, such as the Zynq UltraScale+ MPSoC
series from Xilinx.
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