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Abstract: The cognitive radio wireless sensor network (CR-WSN) has gained worldwide attention in
recent years for its potential applications. Reliable spectrum sensing is the premise for opportunistic
access to sensor nodes. However, as a result of the radio frequency (RF) front-end nonlinearity of
sensor nodes, distortion products can easily degrade the spectrum sensing performance by causing
false alarms and degrading the detection probability. Given the limitations of the widely-used
adaptive interference cancellation (AIC) algorithm, this paper develops several details to avoid these
limitations and form a new mitigation architecture to alleviate nonlinear distortions. To demonstrate
the efficiency of the proposed algorithm, verification tests for both simulations and actual RF front-end
measurements are presented and discussed. The obtained results show that distortions can be
suppressed significantly, thus improving the reliability of spectrum sensing. Moreover, compared to
AIC, the proposed algorithm clearly shows better performance, especially at the band edges of the
interferer signal.

Keywords: cognitive radio wireless sensor network (CR-WSN); spectrum sensing; nonlinear distortion;
singular value decomposition (SVD); adaptive interference cancellation (AIC)

1. Introduction

The proliferation of Micro-Electro-Mechanical Systems (MEMS) technology has facilitated the
development of smart sensors, enabling wireless sensor networks (WSNs) by providing smaller, cheaper,
and more intelligent sensors [1]. Current WSNs operate in the Industrial Scientific Medical (ISM) bands,
which are shared by many other successful communication technologies. This overcrowds the ISM
bands, limiting the development of new technologies. On the other hand, the traditional approach
of fixed-spectrum assignment causes many licensed spectrum bands to be either underutilized or
unutilized [2]. Cognitive radio (CR) has the ability to identify the unutilized spectrum in a licensed or
unlicensed spectrum band and then utilize it opportunistically. Therefore, the CR technique is probably
one of the most promising techniques for improving the efficiency of WSNs. The cognitive radio
wireless sensor network (CR-WSN) can effectively mitigate the current issue of spectrum inefficiency
and increase the network efficiency to some extent [3,4]. Research in this area is progressing rapidly but
is still in its infancy.

Although a number of papers, such as references [5–7], have been published on CR-WSN,
many issues still remain to be addressed, such as the reliability of spectrum sensing. One of the
main objectives of embedding a CR in a wireless sensor is to utilize the unused licensed spectrum
opportunistically. Here, “opportunistically” implies that secondary users (SUs) should protect the
access right of primary users (PUs) whenever necessary. However, distortion products due to strong
sub-bands or carriers, stemming from the radio frequency (RF) front-end nonlinearity of sensor
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nodes, can easily degrade the spectrum sensing performance by causing false alarms and missed
detections. A false alarm can cause spectrum under-utilization and a missed detection can cause
interference with the PUs. For this reason, spectrum sensing is key to the deployment of CR-WSN.
Previous works have dealt with improving the reliability of spectrum sensing by developing different
sensing techniques [8–14]. In comparison, this work focuses on analyzing and mitigating the RF
front-end nonlinearity of sensor nodes for reliable sensing.

The RF front-end of a sensor node might operate in a range where its components, such as the
Low Noise Amplifier (LNA), exhibit a nonlinear behavior [15,16]. Therefore, spurious frequencies are
generated in the form of harmonics, intermodulation (IM), and cross modulation (XM) [17]. As a result,
the presence of strong blockers, i.e., strong signals inside or outside the sub-band of interest, produce
distortion terms that affect the detection performance in other sub-bands, where weaker signals may
reside [17,18]. Under such scenarios, the detection performance might be degraded, causing the
CR network to either exhibit harmful interference with the PU or miss the opportunity to transmit
in a vacant sub-band. Rebeiz [19] was one of the first papers to study the impact of nonlinearities
on spectrum sensing performance. This was subsequently followed by [20], which first analytically
derived the theoretical false alarm and detection probabilities in closed form, for both energy and
cyclostationary detection in nonlinear front-ends. These probabilities were derived as functions of the
sensing time, powers, and modulation types of both the blockers and the Signal of Interest (SOI).

One approach to alleviate the RF impairments is the use of digital signal processing (DSP),
a procedure also known as “Dirty RF” [21]. By applying this post-correction algorithm, the RF front-end
linearity can be subsequently improved in the digital domain. A system-level approach to mitigate
nonlinear distortions in the digital domain, so-called adaptive interference cancellation (AIC), was
first presented in [22]. Subsequently [16,23], used this approach to improve the reliability of spectrum
sensing. This approach is based on the principle of feed forward mitigation, which regenerates
distortions with the help of a reference model and then adaptively subtracts them from the received
signal. Moreover, the applications of AIC in spectrum sensing have been presented in [19,20,23–26].
In [19], Rebeiz studied availability in the performance of spectrum sensing with/without AIC.

Although AIC has been mainly verified by both simulations and laboratory RF measurements, some
limitations still remain to be considered and form the focus of this paper. First, a bandpass/bandstop
filter pair is adopted in AIC to derive the desired and reference signals, and the achievable mitigation
performance depends on the filter characteristics. For this, a coarse energy detector [23] is needed to
obtain spectral sensing information about the level and spectral location of the strong blocker. To provide
a clean reference signal, the filters must have sufficient stopband attenuation. Thus, high filter orders
and significant DSP resources may be required to implement them [27]. Moreover, filter characteristics
are application-specific and depend on the actual center frequency and bandwidth of the desired and
blocker signals at hand [16]. If the channel of dynamic carrier allocation varies with varying center
frequencies and bandwidths, for example, for multicarrier signals, the bandsplit filters will be powerless.
This is the typical scenario considered for CRs [17,23,28]. To overcome these limitations, a singular value
decomposition (SVD)-based method is adopted in this paper to separate the reference signal from the
rest of the spectrum. This is advisable because only strong signals create significant distortions, and the
SVD-based method can extract signals according to the power level.

Second, in the reference branch, the idea of AIC is to reproduce the frequencies of distortion
components by feeding the blocker into a nonlinear model, with the amplitudes and phases being
further modified by an online adaptive filter (AF) stage. In a practical implementation, the effective
processing of second-order, third-order and higher-order nonlinearities is carried out individually,
and the corresponding AFs process each order nonlinearity parallelly. In this way, the number of
independent AFs is related to the number of coefficients specified in the reference model and the
filter length is related to the memory considered in the reference model [27]. For simplicity, most of
the existing literature adopts the memoryless polynomial model and only considers the third-order
IM [22,27]. However, in wideband applications, such a representation is not realistic. In this paper, the
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Volterra series [29], which is a well-known model for the analysis of nonlinear systems, is adopted.
We also consider all the distortions together. To do this, we design a blind identification criterion and
objective function to adjust the Volterra coefficients adaptively, so that no AF is needed. Additionally,
the use of bandstop filters in AIC, for stable coefficient adaptation, prevents the cancellation of
in-band nonlinear distortions on the blocker bands as well as on the bandstop filter transition bands.
The phenomenon is most pronounced when using limited-order filters, which is usually the case in true
implemented hardware [30]. However, in our mitigation structure, the reference branch is unfiltered.

Third, after the distortion terms are regenerated, the AF coefficients are adjusted by minimizing
the power of the mitigated output using the well-known least mean square (LMS) algorithm or
any of its variants [31] in nearly all the existing literature. The LMS algorithm has the problems of
convergence and complexity. In addition, the achievable mitigation performance depends on the
step-size of LMS. In this paper, by deriving a formula for our mitigation structure, we conclude that the
Volterra coefficients can be obtained simply by solving linear equations. We emphasize that despite the
fairly straightforward steps of the derivation, to our knowledge, this conclusion has not been reported
earlier in the existing literature of the field.

The outline of the remainder of this paper is as follows. Section 2 introduces the system
architecture of CR-WSN and the challenges in spectrum sensing. Section 3 presents the proposed
mitigation algorithm for nonlinear distortions generated by the RF front-end of sensor nodes. Then,
Section 4 provides the results of simulations and RF measurements. Additionally, comparisons with
AIC are provided to show the effectiveness of the proposed algorithm. Finally, conclusions are drawn
in Section 5.

2. System Model and Problem Analysis

2.1. CR-WSN Architecture

Taking advantage of the current liberalization of the spectrum utilization rules by the Federal
Communications Commission (FCC) and technical advancements in sensor technology, wireless
sensors with CR can exhibit increased spectrum utilization and network efficiency. A typical
CR-WSN consists of many base stations (BSs) and PUs, and hundreds of sensor nodes. For simplicity,
a minimalistic CR-WSN model is shown in Figure 1. Depending on the spectrum availability, sensor
nodes transmit their readings in an opportunistic manner to their next hop sensor nodes, and ultimately,
to the sink. In addition to the event readings, the sensors may exchange additional information with
the sink, including control data for group formation, spectrum allocation, and spectrum handoff-aware
route determination, depending on the specific topology.
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The sensor node of CR-WSN, whose main duty is to perform sensing on both the environment
and the spectrum, can reconfigure its operating frequency, modulation, channel coding, and output
power without hardware replacement. This is the most significant difference between CR-WSN and
WSN. The hardware structure of a CR-WSN node is mainly composed of a sensing unit, processing
unit, power unit, and CR transceiver unit, as shown schematically in Figure 2. The main difference
between the hardware structure of classical sensor nodes [32] and CR-WSN nodes is the CR transceiver
of CR-WSN nodes. For convenience, the term “sensor nodes” denotes CR-WSN nodes throughout the
rest of this paper.
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Software-defined radio (SDR)-based RF front-end transmitters and receivers are required for
reconfigurability of sensor nodes. However, implementing the RF front-end is a significant challenge
due to the low cost and resource-constrained nature of sensor nodes. Compared to several heterodyne
or homodyne architectures, a direct-digitization RF front-end can be adopted in order to reduce
costs and consumption. The structure of the direct-digitization RF front-end is illustrated in Figure 3.
After the LNA stage, the desired signal band will be selected by the adjustable reconfigurability
filter. By choosing an appropriate pulse sampling frequency, the signal is then down converted to a
certain Nyquist band, followed by a bandpass filter (BPF), and subsequently, by an analog-to-digital
converter (ADC). Finally, the baseband signal is achieved by a digital down converter (DDC), which is
suitable for signal processing on the digital back-end, such as spectrum sensing and demodulation.
This type of architecture can eliminate RF impairments caused by the analog mixer and the local
oscillator in a conventional RF front-end, thus simplifying the hardware design with fewer analog
components. Here, the main sources of nonlinear distortions are LNA and ADC, which are highlighted
in Figure 3. Therefore, there is no mirror image interference and in-phase/quadrature (I/Q) imbalance.
Moreover, several existing baseband post-distortion techniques [16,22] are limited to scenarios in
which interferers are in the proximity of the desired channel. However, in this architecture, distortions
from far interferers can also fall into the desired channel.
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2.2. Challenges in the Spectrum Sensing Method

In the last decade, CR has been proposed as a dynamic band allocation technology, through
which SUs exploit licensed spectrum holes to opportunistically access, without harmful interference
to the licensed PUs. As a result, reliable spectrum sensing is key to the deployment of a future
CR-WSN. At present, various sensing schemes have been proposed, e.g., energy detection (ED) [8–10],
matched-filter-based detection [11], cyclostationary-based detection [12], and eigenvalue-based
sensing [13]. These methods, which have different levels of complexity and performance, may require
an estimation or a priori knowledge of noise and signal models. Such information cannot always be
communicated to the receiver, especially in dynamic CR scenarios. However, ED, which detects signals
on the basis of the sensed energy, is a very popular technique, not only because of its simplicity but
also because it does not require prior knowledge of PUs. Therefore, in this paper, we consider ED as
the detection method for analysis.

ED estimates the energy in the sub-band of interest to determine whether the SOI is present
or otherwise, by comparing the estimated energy to a threshold. In this paper, we do not consider
the noise uncertainty problem of ED and only show the degradation of ED due to RF front-end
nonlinearities. The detector therefore computes the test statistic, given by

Rx =
1
N

N−1

∑
k=0
|x (k)|2 (1)

and performs the following hypothesis tests{
Rx < γ, H0 : SOI is absent

Rx ≥ γ, H1 : SOI is present
(2)

where N is the sub-band length of interest; x(k) is the sub-band signal; γ is the detection threshold that
is usually set to maintain a Constant Probability of False Alarm (CFAR), i.e.,

Pc f ar = Pf (Rx ≥ γ |H0 ) (3)

and γ is calculated by
γ = σ2

w

(
N +
√

2NQ−1(Pf )
)

(4)

where σ2
w is the noise variance of the sub-band; Q−1(·) is the inverse function of

Q(x) =
1

2π

w ∞

x
exp

(
−u2

2

)
du (5)

and Pf is the false-alarm probability, which is a metric to quantify the failure of CR-WSN to detect
the absence of the primary signal. For threshold calculations throughout the paper, a noise-only
measurement and false alarm probability Pf = 0.01 are used. It is noted that the threshold γ should
not be constant and may change with different observations for random noise. Even in the same
observation, the thresholds of different sub-bands are always different. However, for each sub-band in
one observation, a concrete threshold can be calculated from (4). The thresholds shown in the figures
of this paper only reflect the thresholds of the sub-bands of interest in one observation.

Although ED requires the least amount of information about the signal to be detected, it does suffer
from the linearity problem due to the limited dynamic range of the RF front-end. The main objectives
for considering nonlinear distortions in the operation of a CR are reliable spectrum sensing under huge
dynamic range conditions, and proper demodulation of weak but desired signals for communication.
The distortion impact is three-fold. First, distorted products can show up as unwanted signals in free
frequency bands, where CR may operate as an SU. As a consequence, simple energy-based spectrum
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sensing would detect this band as occupied and the SU would miss its transmit opportunity. Second,
the distortions may mask weak signals so that the detectors are not able to discover them, which
increases the probability of missed detection and enables harmful transmission in busy bands. Third,
nonlinear distortions can be caused on top of a weak desired signal, causing an increased bit error
ratio (BER) and hence, difficulties during demodulation.

Figure 4 shows an example simulation of a distorted spectrum to imitate RF front-end
nonlinearities and illustrate the effects in spectrum sensing. Figure 4a gives the power spectrum
of the original signal, which is comprised of an interferer signal and three weak desired signals.
The power spectrum of the distorted signal is shown in Figure 4b, and the threshold in 1024 sub-bands
of the so-called false-alarm region for ED is depicted. In the false-alarm region, the detected “signal
present” is actually a false alarm due to IM induced by the nonlinear front-end. This results in the
loss of opportunity for SU. In the so-called miss-detection region, a weak desired signal is masked
by nonlinearities, resulting in missed detection. In the so-called polluted region, the distortions
overlap with another weak desired signal, because of which the desired signal cannot be demodulated.
All these scenarios can decrease the reliability of spectrum sensing.

Sensors 2016, 16, 1999 6 of 21 

 

Figure 4 shows an example simulation of a distorted spectrum to imitate RF front-end nonlinearities 
and illustrate the effects in spectrum sensing. Figure 4a gives the power spectrum of the original signal, 
which is comprised of an interferer signal and three weak desired signals. The power spectrum of the 
distorted signal is shown in Figure 4b, and the threshold in 1024 sub-bands of the so-called false-alarm 
region for ED is depicted. In the false-alarm region, the detected “signal present” is actually a false 
alarm due to IM induced by the nonlinear front-end. This results in the loss of opportunity for SU. In 
the so-called miss-detection region, a weak desired signal is masked by nonlinearities, resulting in 
missed detection. In the so-called polluted region, the distortions overlap with another weak desired 
signal, because of which the desired signal cannot be demodulated. All these scenarios can decrease 
the reliability of spectrum sensing. 

 
Figure 4. Typical simulation results of a distorted spectrum and the energy detection (ED) threshold: 
(a) original signal; (b) distorted signal.  

In some systems, spectrum sensing problems can be avoided by using a centralized database to 
provide information about vacant channels [33]. However, spectrum access itself may be challenging 
due to the RF front-end nonlinearity. In particular, non-contiguous spectrum access is challenging 
because there might be strong blockers between the desired channels, causing nonlinear distortions [17]. 
Therefore, mitigation of RF front-end nonlinearity is expected to enhance the reliability of detection. 

3. Proposed Mitigation Architecture for RF Front-End Nonlinearity 

The digital approaches that are currently widely-used to mitigate nonlinearity are based on AIC, 
originally presented in [16,22]. However, most of the existing literature is characterized by the 
following: focus on baseband correction, adoption of a bandpass/bandstop filter pair to derive the 
desired and reference signals, parallel processing of nonlinear distortions of every order, adoption of 
the memoryless polynomial model and consideration of only third-order IM, and use of the LMS 
algorithm to adjust the adaptive filter coefficients. In this paper, we develop these details to avoid 
some of the resulting limitations, as mentioned in the introduction. 

3.1. Mitigation Structure 

The block scheme of the proposed mitigation algorithm is illustrated in Figure 5 for the case of a 
spectrum sensing scenario, where the goal is to eliminate distortions from the whole reception 
bandwidth in order to enhance spectrum sensing [17,23]. Due to the adoption of a direct-digitization 
RF front-end, the mitigation algorithm works at the waveform level of a real signal rather than a 
complex baseband signal. Thus, the I/Q imbalance can be avoided and the algorithm structure can be 

Figure 4. Typical simulation results of a distorted spectrum and the energy detection (ED) threshold:
(a) original signal; (b) distorted signal.

In some systems, spectrum sensing problems can be avoided by using a centralized database to
provide information about vacant channels [33]. However, spectrum access itself may be challenging
due to the RF front-end nonlinearity. In particular, non-contiguous spectrum access is challenging
because there might be strong blockers between the desired channels, causing nonlinear distortions [17].
Therefore, mitigation of RF front-end nonlinearity is expected to enhance the reliability of detection.

3. Proposed Mitigation Architecture for RF Front-End Nonlinearity

The digital approaches that are currently widely-used to mitigate nonlinearity are based on
AIC, originally presented in [16,22]. However, most of the existing literature is characterized by the
following: focus on baseband correction, adoption of a bandpass/bandstop filter pair to derive the
desired and reference signals, parallel processing of nonlinear distortions of every order, adoption
of the memoryless polynomial model and consideration of only third-order IM, and use of the LMS
algorithm to adjust the adaptive filter coefficients. In this paper, we develop these details to avoid
some of the resulting limitations, as mentioned in the introduction.
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3.1. Mitigation Structure

The block scheme of the proposed mitigation algorithm is illustrated in Figure 5 for the case
of a spectrum sensing scenario, where the goal is to eliminate distortions from the whole reception
bandwidth in order to enhance spectrum sensing [17,23]. Due to the adoption of a direct-digitization
RF front-end, the mitigation algorithm works at the waveform level of a real signal rather than a
complex baseband signal. Thus, the I/Q imbalance can be avoided and the algorithm structure
can be simplified. The entire front-end and ADC are considered as a single nonlinear system, i.e.,
a black-box model. Therefore, the algorithm has no relation to the concrete structure of the front-end
and the physical origins of the distortions, and can thus be inserted in front of any system-specific
baseband processing.

A SVD-based method is adopted to split the distorted signal into the main branch ydes, and the
reference branch yref. The latter contains only the interferer signal, i.e., the blocker, while the main
branch contains all the other received signal contents except the interferer signal. The nonlinear
distortion generated by the front-end is re-generated in the reference branch by applying a Volterra
model with adjustable coefficients to the interferer signal. To minimize the power of the mitigated
output, the Volterra coefficients can be adapted by solving linear equations. The re-generated nonlinear
distortion is then subtracted from the main branch, thus compensating the nonlinear distortion in
the received signal. To also receive the interferer signal, the re-generated nonlinear distortion can be
directly subtracted from the received signal, as suggested by the red dashed branch in Figure 5. In the
existing literature, the interferer signal is added back to the main branch, which may lead to additional
distortion if the interferer signal itself is not well and truly extracted in the bandsplit stage. Finally,
each sub-band of interest can be selected individually by a DDC to achieve the baseband signal for
spectrum sensing.
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Figure 5. Proposed mitigation structure for RF front-end nonlinearity.

The following analyses deal with the SVD-based method for the bandsplit stage and the
adjustment of Volterra coefficients in the proposed mitigation algorithm, which are also the main
contributions of this work.

3.2. SVD-Based Method for Bandsplit Stage

The key idea of the proposed mitigation algorithm is to extract the crucial interferers contained
in the received signal and to reproduce the distortions caused by them. Therefore, the achievable
mitigation performance depends on the correctness and veracity of the extracted interferer signal in
the bandsplit stage. Generally, bandsplit filters need coarse energy detection and sufficient stopband
attenuation. Additionally, they are powerless when faced with multi-interferers or dynamic channel
allocation. It is likely that only strong signals create significant distortions. Thus, only strong interferers
in the received band should be identified. The SVD-based method extracts signals according to the
power level, and is therefore most suitable for separating the interferer signal.
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First, the elements of the distorted signal ỹ are embedded into a m × n dimensional matrix

Ỹm×n =


ỹ (1) ỹ (2) · · · ỹ (n)

ỹ (n + 1) ỹ (n + 2) · · · ỹ (2n)
...

...
. . .

...
ỹ ((m− 1) n + 1) ỹ ((m− 1) n + 2) · · · ỹ (mn)

 (6)

where the data length is N = m× n. Then, the SVD is extended to the matrix Ỹm×n

Ỹm×n = Um×pΣp×pVT
p×n (7)

where p = min(m, n) and the main diagonal elements σi(i = 1, 2, · · · , p) of the diagonal matrix Σ are
called singular values of Ỹ, which are non-negative and in descending order. According to the theory
of SVD, larger singular values mainly reflect stronger signals. By keeping the largest q singular values
and zeroing the rest, a new main diagonal matrix can be obtained

Σ̂q×q = diag(σ1, σ2, · · · , σq) (8)

Then, the estimated interferer signal matrix can be achieved by

Ym×n = Um×qΣ̂q×qVT
q×n (9)

Finally, the estimated interferer signal yref can be obtained from matrix Y. By subtracting this from
the distorted signal ỹ, the main branch signal ydes can be achieved.

According to the above SVD-based method, the performance of the extracted interferer signal
is largely determined by the selection of an effective order q. A lower order will lead to incomplete
interferer signal information, while a higher order will introduce certain nonlinearity or information
about weak desired signals. Since the types of actual multicarrier signals received by the RF front-end
of CR nodes are complex, it is very difficult to determine q. Thus far, a widely-used method relies
on the asymptotic property of singular entropy increment [34]. However, there is essentially little
difference between the curve shape for a singular value and singular entropy increment apart from
amplitude variation. No obvious characteristics can be used to determine the effective order.

In this paper, a method is presented according to increments of the singular value. The increment
curve reflects the difference between the adjacent singular values, so that a larger increment represents
a larger difference of signal strength. In general, the power of the interferer signal is far stronger than
that of nonlinear distortions and the weak desired signal. Therefore, the largest difference exists at
the boundary between the interferer signal and the other signals, which is shown as the minimum
increment for the descending order of singular values. The increments are always zero in the noise
platform. Therefore, the corresponding order of minimum increment can safely be chosen to be the
effective order q.

To evaluate the availability of the proposed methods of selecting effective order and extracting
interferer signals, we take the simulation signal in Figure 4 as an example. The simulation results are
shown in Figure 6. Figure 6a gives the curve of singular values and we can see that the order is hard
to choose. On the other hand, in Figure 6b, it is obvious that the order can be determined easily and
reliably (q = 10) by the increment curve. The power spectra of the extracted interferer signal and all
other signals for a selected order of 10 are shown in Figure 6c,d, respectively. Clearly, good signal
extraction performance is achieved.
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where  kyref  is the extracted interferer signal,  kv  represents the output signal of the discrete 

Volterra model of the kth discrete sample, d is the nonlinear order, D is the maximum value of d, dN  
is the memory depth of the dth-order Volterra kernel, and  drrrh ,,, 21   is the dth-order Volterra 
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Figure 6. Simulation results of the signal used in Figure 4: (a) Curve of singular value; (b) Increment
curve of singular value; (c) Power spectrum of the extracted interferer signal; (d) Power spectrum of
the distorted signal except the interferer signal.

3.3. Adjustment of Volterra Coefficients

The mitigation performance also depends on the degree of matching between the reference model
and the real-world nonlinear behaviors of the actual RF front-end. Therefore, it is necessary to achieve
accurate coefficients of the reference model. Most existing literature adopts the memoryless polynomial
model and mitigates each order nonlinearity parallelly. Thus, multiple LMS AFs are needed, which
may exhibit the problems of convergence and complexity. In this paper, a modified reference branch
processing is explained.

The Volterra series is considered to be suitable for any nonlinear system. The input/output
relationship for a nonlinear system can be expressed by the discrete Volterra model [29]

v (k) =
D
∑

d=2

[
Nd−1

∑
r1=0
· · ·

Nd−1
∑

rd=rd−1
h (r1, r2, · · · , rd)

d
∏
j=1

yre f
(
k− rj

)]
, 2 ≤ d ≤ D (10)

where yre f (k) is the extracted interferer signal, v (k) represents the output signal of the discrete Volterra
model of the kth discrete sample, d is the nonlinear order, D is the maximum value of d, Nd is the
memory depth of the dth-order Volterra kernel, and h (r1, r2, · · · , rd) is the dth-order Volterra kernel
coefficient, of which the total number is given by

Nh =
D

∑
d=2

(Nd + d− 1) !
(Nd − 1) ! d !

(11)

Define u (k) = [y2
re f (k) yre f (k)yre f (k − 1) · · · y2

re f (k − Nd + 1) y3
re f (k) y2

re f (k)yre f (k − 1) · · ·
yD

re f (k− Nd + 1)] ∈ R1×Nh as the memory nonlinear vector of each order, which consists of yre f (k) and

ω = [h(0, 0) h(0, 1) · · · h(N2 − 1, N2 − 1) h(0, 0, 0) h(0, 0, 1) · · · h(ND − 1, · · · , ND − 1)]T ∈ RNh×1

as the Volterra kernel vector of the corresponding order and memory depth. Then, the mitigated
output signal of the kth discrete sample can be written as

ŷ(k) = ydes(k)− u(k)ω (12)
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When the reference model is matched perfectly with the nonlinear distortions, the mitigated
output only contains the desired signal. Therefore, a blind identification criterion for minimizing
the short-time energy of the mitigated output is designed in order to construct the objective function
required by the adaptive adjustment of Volterra coefficients. The short-time energy of the mitigated
output is

E(ω) =
N

∑
k=1

[ŷ(k)]2 = ŶTŶ = [Ydes −Uω]T [Ydes −Uω] (13)

where
Ŷ = [ ŷ (1) ŷ (2) · · · ŷ (N) ]

T ∈ RN×1

Ydes = [ ydes (1) ydes (2) · · · ydes (N) ]
T ∈ RN×1

U = [ u (1) u (2) · · · u (N) ]
T ∈ RN×Nh

To minimize the objective function, take the partial derivative of E(ω) with respect to ω and let

∂E(ω)

∂ω
= −2UTYdes + 2UTUω = 0 (14)

then, the Volterra coefficients can be obtained simply by solving the linear equation

UTUω = UTYdes (15)

hence,
ω = (UTU)

−1
UTYdes (16)

Since low-order nonlinearities are the key factors causing the deterioration of the Spurious-Free
Dynamic Range (SFDR) performance of the entire digital RF front-end, the mitigation algorithm in
this study only requires the Volterra model with low orders and short memory lengths. Therefore,
the dimensions of UTU are small, with less resource consumption in matrix inversion. For example,
when D = 3 and Nd = [4, 2], the number of Volterra coefficients is 14 and the dimensions of UTU
are 14 × 14. If the condition number of UTU is very large, there are several techniques for solving
such an ill-conditioned system of equations, such as the augmented system method, residue iteration
algorithm, weight-iterative improvement method [35], generalized inverse algorithm, etc. In this paper,
the weight-iterative improvement method is adopted for ill-conditioned situations.

The mitigated output signal can be achieved by substituting ω into (12). If the interferer signal is
also desired, the mitigated output signal will be

ŷ = ỹ−Uω (17)

Based on the above analysis, we can formulate a mitigation algorithm to alleviate the nonlinear
distortions of the RF front-end of sensor nodes. The concrete implementation steps are as follows:

(1) Create the distorted signal matrix Ỹ from distorted signal ỹ according to (6);

(2) Extend SVD to matrix Ỹ;
(3) Choose the effective order q according to the minimum increment of singular values and obtain

the new main diagonal matrix Σ̂ from (8);
(4) Reconstruct the estimated interferer signal matrix Y according to (9), and achieve the estimated

interferer signal yre f ;

(5) Achieve the main branch signal ydes by subtracting yre f from ỹ;

(6) Calculate U from yre f according to (10), and calculate ω from (16);

(7) Depending on the desire to retain the interferer signal or otherwise, the mitigated output signal ŷ
can be achieved by (17) or (12).
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3.4. Complexity Analysis

CR wireless sensors are power constraint devices with a limited energy source. The cost of CR
sensors, which are generally deployed in large numbers, should be very low. Therefore, energy-efficient
and low-cost sensor nodes should be designed. However, the introduction of the proposed mitigation
architecture inevitably causes extra energy consumption and production costs.

In addition to the energy needed for spectrum sensing, CR sensors also require energy for channel
negotiation, route discovery, transmission and reception of data packets, backoff, data processing, and
frequent spectrum handoff. The transmission of control information and retransmission upon failure
to transmit data packets result in unnecessary energy consumption. Nonlinear distortions significantly
increase the BER and interruption probability of transmission, thus increasing the above-mentioned
unnecessary energy consumption. Therefore, though the nonlinearity mitigation module itself will
increase the energy consumption to a certain extent, it also certainly helps to reduce the energy
consumption. Furthermore, the energy consumption of CR-WSN also depends on the spectrum
sensing technique, sensing strategy, spectrum decision, clustering scheme, modulation technique, etc.
It is hard to obtain a qualitative and quantitative analysis of the change in energy consumption by
embedding the proposed mitigation architecture. Several solutions for energy efficiency have been
proposed in recent years, such as cooperative spectrum sensing [14], a distributed spectrum-aware
clustering scheme, and energy harvesting.

For the above reasons, in this section, we only consider the complexity introduced by the proposed
mitigation architecture, which requires extra hardware resources and cost. According to the concrete
implementation steps addressed in the previous section, the computational complexity is shown
as follows.

(1) Let the data length N = m × m. Extending SVD to matrix Ỹm×m by QR
decomposition (The name “QR” is derived from the use of the letter Q to denote
orthogonal matrices and the letter R to denote right triangular matrices.), the required
calculations include: 1

3
[
10m3 + (12P− 5)m2 + (27P + 23)m− (18P + 60)

]
times addition,

1
3
[
16m3 + (24P− 1)m2 + (36P + 10)m− (30P + 14)

]
times multiplication, 2m2 + (4P + 4)m−

(3P + 10) times division, and (2P + 2)m− (P + 3) times square-root. Here, P is the number of
QR iterations.

(2) m− 1 iterations of subtraction are required to choose the effective order q.
(3) The required iterations of addition and multiplication for reconstructing the estimated interferer

signal are m2 (q− 1) + mq (q− 1) and m2q + mq2, respectively.

(4) To obtain U, N ·
D
∑

d=2

(Nd+d−1) !(d−1)
(Nd−1) ! d ! iterations of multiplication are needed.

(5) The required iterations of addition and multiplication of the automoment matrix UTU generation
module are Nh

2 (N − 1) and Nh
2N, respectively.

(6) The automoment matrix inversion is implemented by LU decomposition (The name “LU” is
derived from the use of the letter L to denote upper triangular matrices and the letter U to denote
lower triangular matrices.). The required iterations of addition and multiplication are Nh (Nh − 1)
and (Nh − 1)3, respectively.

(7) To calculate UTYdes, Nh (N − 1) iterations of addition and NhN iterations of multiplication
are needed.

(8) To calculate ω from (16), the required iterations of addition and multiplication are Nh (Nh − 1)
and Nh

2, respectively.
(9) Real-time mitigation of nonlinear distortions is performed according to (17). The required

iterations for both addition and multiplication are NNh.
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Table 1 shows the computational complexity statistics of the proposed mitigation architecture.
For N = m × m and N >> Nh, we adopt m to be the measurement base of complexity. It is true
that the proposed architecture results in significant resource consumption for large quantities of data.
In engineering applications, a faster SVD algorithm can be adopted.

Table 1. Computational complexity of the proposed mitigation architecture.

Operator Computational Complexity

Addition O
(
m3)

Multiplication O
(
m3)

Division O
(
m2)

square-root O (m)

4. Simulation Experiments and Analysis of Results

This section provides the results of simulations and actual RF measurements, which show the
impact of RF nonlinearity on the detection performance of ED and evaluate the performance of the
proposed mitigation architecture. To the best of our knowledge, AIC is one of the most widely-used
approaches for nonlinearity mitigation because of its good performance, practicability, and applicability.
As described in the previous sections, the proposed architecture, which incorporates several details to
avoid the limitations caused by AIC, can be considered as an improved AIC. Therefore, we also provide
explicit comparisons to AIC, reported earlier in [16,23], to illustrate the superiority of the proposed
algorithm. Throughout this section, we consider the interferer signal remaining in the mitigated output
signal as discussed in Section 3.

4.1. Verification Test Using Simulation Signals

The first example considers a multi-tone signal constellation, as sketched in Figure 4, which is
comprised of an interferer signal and a weak signal. The interferer is a five-tone sine at 13.3 MHz with
−20 dB (500 kHz tone spacing). The weak signal is a combined signal of a five-tone sine at 19.5 MHz
with −69.5 dB (800 kHz tone spacing), a 16-QAM (quadrature amplitude modulation) at 28.6 MHz
with −89 dB (1 MHz bandwidth), and another weak 16-QAM at 39.4 MHz with −95 dB (200 kHz
bandwidth). The sample rate is 100 MHz. The signal and carrier frequencies are chosen arbitrarily, the
only condition being that the 16-QAM signals should be located in distortion regions. In the proposed
algorithm, the power spectra of the extracted signals are shown in Figure 6, and a Volterra model with
D = 3 and Nd = [2, 2] is adopted. To demonstrate the advantages of the SVD-based bandsplit method
and Volterra coefficients adjustment method, the same model is adopted in AIC. Moreover, in AIC,
the order of the filter pair is 100 and the number of iterations of LMS is 600. Figure 7 illustrates how
well the mitigation algorithms are able to remove the distortions. While both mitigation algorithms
perform adequately, the algorithm proposed here shows slightly better overall performance.



Sensors 2016, 16, 1999 13 of 21
Sensors 2016, 16, 1999 13 of 21 

 

 
Figure 7. Simulation results with the signal used in Figure 4 and mitigation with (a) adaptive 
interference cancellation (AIC); (b) the proposed algorithm. 

Specifically, the weak 16-QAM signals in the miss-detection regions are clearly observable from 
the output spectra of both mitigation algorithms, i.e., the detection probability of ED is improved. In 
the polluted regions, the 16-QAM signals can be demodulated well by both mitigation algorithms, as 
shown by the constellations in Figure 8. This means that the reception performance of weak signals 
is enhanced. However, in the false-alarm regions, a spectrum hole can be found after the proposed 
algorithm while a false alarm is still observed after AIC. This is because AIC uses a bandpass filter to 
the pick interferer signal and the mitigation is not perfect in the filter transition bands. In fact, Figure 
7b clearly shows that the mitigated output of the proposed algorithm is almost clear of unwanted RF 
components in the whole band. In comparison, in Figure 7a, the mitigated output of AIC still 
presents a few distortion components above the ED threshold for Pf = 0.01. 

 
Figure 8. Demodulated constellations of the 16-QAM (quadrature amplitude modulation) signals in 
the polluted regions: (a) unmitigated signal; (b) output of AIC; (c) output of the proposed algorithm. 

Figure 8 shows that the 16-QAM signals are indeed better after mitigation. For the whole 
multi-tone simulation signal, the normalized mean squared error (NMSE) can be considered as a 
metric to evaluate the efficiency of the proposed algorithm. NMSE is defined as 

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

(a)
-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

(b)
-4 -2 0 2 4

-4

-3

-2

-1

0

1

2

3

4

(c)

Figure 7. Simulation results with the signal used in Figure 4 and mitigation with (a) adaptive
interference cancellation (AIC); (b) the proposed algorithm.

Specifically, the weak 16-QAM signals in the miss-detection regions are clearly observable from
the output spectra of both mitigation algorithms, i.e., the detection probability of ED is improved.
In the polluted regions, the 16-QAM signals can be demodulated well by both mitigation algorithms,
as shown by the constellations in Figure 8. This means that the reception performance of weak signals
is enhanced. However, in the false-alarm regions, a spectrum hole can be found after the proposed
algorithm while a false alarm is still observed after AIC. This is because AIC uses a bandpass filter to
the pick interferer signal and the mitigation is not perfect in the filter transition bands. In fact, Figure 7b
clearly shows that the mitigated output of the proposed algorithm is almost clear of unwanted RF
components in the whole band. In comparison, in Figure 7a, the mitigated output of AIC still presents
a few distortion components above the ED threshold for Pf = 0.01.
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Figure 8. Demodulated constellations of the 16-QAM (quadrature amplitude modulation) signals in
the polluted regions: (a) unmitigated signal; (b) output of AIC; (c) output of the proposed algorithm.
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Figure 8 shows that the 16-QAM signals are indeed better after mitigation. For the whole
multi-tone simulation signal, the normalized mean squared error (NMSE) can be considered as a
metric to evaluate the efficiency of the proposed algorithm. NMSE is defined as

NMSE = 10lg


N
∑

n=1
|ẑ(n)− z(n)|2

N
∑

n=1
|z(n)|2

 (18)

where z(n) is the known ideal signal; for explicit comparisons of the mitigation performance, ẑ(n) is
set to be the distorted signal, the output of AIC and the output of the proposed algorithm, respectively.
Because the mitigated power of nonlinear distortions is extremely small relative to the power of the
interferer signal, the interferer signals are not contained in both z(n) and ẑ(n) for the calculations of
NMSE presented here.

Since the generated nonlinear distortions increase with increasing input power of the interferer
signal, the obtained NMSEs at different input power levels for the above simulation signal are
illustrated in Figure 9. Figure 9a shows that both mitigation algorithms can improve the desired
weak signals greatly. The magnified view in Figure 9b shows that the proposed algorithm performs
slightly better than AIC, especially in the presence of stronger distortions.
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Figure 9. Normalized mean squared errors (NMSEs) of the weak desired signals at different input
power levels: (a) comparison of the unmitigated signal with the outputs of AIC and the proposed
algorithm; (b) comparison between the outputs of AIC and the proposed algorithm.

To further demonstrate the impact of nonlinear distortions on the miss-detection of ED, we give
another example in which the weak signal is almost masked by the distortions of the interferer signal,
as shown in Figure 10b. In Figure 10a, the interferer signal is a two-tone 4-MHz-wide blocker signal
at center frequencies of 10 MHz and 20 MHz, and the weak signal is a 16-QAM at 15 MHz with
−73 dB (2 MHz bandwidth). The sample rate is 100 MHz. It is evident from the magenta spectra of the
distorted signal that the reception of weak signals is impossible due to the vast quantity of nonlinear
distortions. Similarly, a Volterra model with D = 3 and Nd = [2, 2] is adopted in both mitigation
algorithms. In AIC, the bandsplit stage filters have to be designed with two passbands. The order of
the filter pair is 500 and the number of iterations of LMS is 1000.
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Figure 10. Simulation results with the two-tone interferer signal: (a) original signal; (b) distorted
algorithm; (c) output of AIC; (d) output of the proposed algorithm.

Figure 10c shows the mitigated result of AIC. It can be seen that the weak 16-QAM signal can be
detected, but the performance is poor, as shown by the constellations in Figure 11b. Figures 10d and 11c
illustrate that the performance of the proposed algorithm is better than that of AIC. This is also
because the reference signal extraction in AIC suffers from in-band distortions of the interferer signal,
which causes degraded mitigation performance at interferer band edges due to the bandpass filter
transition bands.
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Figure 11. Demodulated constellations of the weak 16-QAM signals: (a) unmitigated signal; (b) output
of AIC; (c) output of the proposed algorithm.

To evaluate the efficiency of the proposed algorithm, NMSE is also used in this example. Similarly,
the NMSEs of the weak 16-QAM are obtained by adjusting the input power levels of the two-tone
interferer signal. As shown in Figure 12, both mitigation algorithms can improve the 16-QAM to a
great degree, but the improvement of the proposed algorithm is much larger than that of AIC.
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Figure 12. NMSEs of the weak 16-QAM at different input power levels for the unmitigated signal and
the outputs of both AIC and the proposed algorithm.

4.2. Verification Test Using Actual RF Measurements

Real-world measurements were also conducted to demonstrate and verify the mitigation
capabilities of the proposed algorithm with true RF signals and components. A vector signal
generator with satisfactory SFDR was used to generate clean test signals, which were delivered to a
direct-digitization RF front-end to produce nonlinear distortions.

Figure 13 illustrates the mitigation performance achieved with a three-tone input. The tone
frequencies are 4.5 MHz, 12.3 MHz, and 26.4 MHz, and the power is −20 dB. The sample rate is
100 MHz. A Volterra model with D = 3 and Nd = [6, 4] is adopted in both mitigation algorithms.
In AIC, the bandsplit stage filters have to be designed with three extremely narrow passbands with
sufficient stopband attenuation. Therefore, the order of the filter pair is set to 2000 and the number
of iterations of LMS is 4000. Unlike the simulation signals, there is no knowledge about the noise
variance. For threshold calculation, a noise-only signal is captured beforehand. The used front-end
indicates good linearity with mild nonlinear distortions. However, both mitigation algorithms can still
alleviate distortions dramatically. With the proposed algorithm in particular, there are almost no more
unwanted components present above the noise floor in the whole band.
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Figure 13. Simulation results with a three-tone interferer signal: (a) distorted signal; (b) mitigated
output of AIC; (c) mitigated output of the proposed algorithm.
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To further demonstrate the performance improvement of the mitigation algorithms for spectrum
sensing, the cyan band in Figure 13 is chosen as the band of interest for analysis. Figure 14 illustrates
the receiver operating characteristics (ROC) for each case, showing the detection of spurious signals.
For the distorted signal, the spurious signal detection probability Pd, or equivalently, the false alarm
probability due to distortions is always one, except for Pf < 0.2. This means that ED will always detect
this band as occupied and SU will miss its transmit opportunity. The ROC curve of the AIC output
is highly improved, but is still always above the ideal noise-only characteristic (Pd ≈ Pf). In other
words, certain distortions still exist in this band, especially at large Pf. In comparison, the ROC curve
of the mitigated output of the proposed algorithm is always below the ideal noise-only characteristic,
indicating that there are no more distortions in this band. The effect of nonlinear distortions is fully
compensated, thus improving the reliability of spectrum sensing.
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Figure 14. Receiver operating characteristics (ROC) before and after mitigation by different algorithms.

We give another example to demonstrate the impact of nonlinear distortions on the reception
capability of weak signals. A signal composed of a three-tone signal (the frequencies are 6.3 MHz,
14.3 MHz, and 26.3 MHz) and a weak 16-QAM signal (the center frequency is 8.1 MHz, and the
bandwidth is 0.25 MHz) is used, as shown in Figure 15. The power spectrum value of the 16-QAM
signal is approximately 65 dB lower than that of the three-tone signal, and the sample rate is 100 MHz.
A Volterra model with D = 3 and Nd = [8, 4] is adopted in both mitigation algorithms. In AIC, the order
of the filter pair is 2000 and the number of iterations of LMS is 6000. Obviously, AIC is more complex.
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Figure 15. Simulation results with a 3-tone interferer signal with a weak 16-QAM signal: (a) distorted
signal; (b) output of AIC algorithm; (c) output of the proposed algorithm.



Sensors 2016, 16, 1999 18 of 21

In view of both the power spectra shown in Figure 15 and the constellations shown in Figure 16,
the proposed algorithm provides better performance than AIC. As shown in Figure 16, the distorted
signal and the AIC output signal cannot be demodulated. On the other hand, the output signal of
the proposed algorithm can be demodulated. Although the convergence effect in Figure 16c is also
not very good, this is because the signal-to-noise ratio (SNR) of the weak 16-QAM signal itself is not
high enough. In other words, the reception performance of weak signals is enhanced by the proposed
mitigation algorithm.

Sensors 2016, 16, 1999 18 of 21 

 

very good, this is because the signal-to-noise ratio (SNR) of the weak 16-QAM signal itself is not high 
enough. In other words, the reception performance of weak signals is enhanced by the proposed 
mitigation algorithm. 

 
Figure 16. Demodulated constellations of the weak 16-QAM signals: (a) unmitigated signal; (b) 
output of AIC algorithm; (c) output of the proposed algorithm. 
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algorithm is suitable and effective in CR applications for enabling flexible sensing and processing of 
the RF spectrum. 

5. Conclusions  

Rather than developing different sensing techniques, in this paper, we consider ways to 
mitigate the RF front-end nonlinearity of sensor nodes to improve the reliability of spectrum sensing 
in CR-WSN. Compared to the widely-used AIC algorithm, the main advantages of the proposed 
mitigation algorithm are as follows:  

(1) A SVD-based bandsplit method is adopted instead of using bandpass/bandstop filter pairs. 
Thus, the coarse energy detector is not needed to achieve spectral sensing information about the 
level and spectral location of strong blocking signals. More importantly, the SVD-based method 
can effectively avoid the problem of poor compensation performance at blocker band edges due 
to the bandpass filter transition bands. 

(2) The proposed algorithm adopts the Volterra model and obtains the Volterra coefficients simply 
by solving a linear equation. There is no need to use AFs, and the selection of the iteration 
step-size as well as the problems of the convergence and complexity of LMS can be 
circumvented. 

In summary, the proposed algorithm can improve the reliability of spectrum sensing and 
outperforms the AIC algorithm. It is predicted to have broad and promising applications in 
CR-WSN. However, a major challenge in a CR-WSN is to produce low-cost, very small sensor nodes. In 
other words, a single sensor node cannot sustain very complicated signal processing. This further 
development offers an interesting and relevant topic for our future studies. 
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Figure 16. Demodulated constellations of the weak 16-QAM signals: (a) unmitigated signal; (b) output
of AIC algorithm; (c) output of the proposed algorithm.

In summary, mitigation algorithms can improve the reliability of spectrum sensing in CR-WSN
from three aspects: reduce the false alarm probability, enhance the reception performance of weak
signals, and decrease the miss-detection probability. From the verification tests of both simulations
and actual RF front-end measurements, the proposed algorithm clearly outperforms AIC, especially
at the interference signal band edges. Therefore, it is justifiable to say that the proposed mitigation
algorithm is suitable and effective in CR applications for enabling flexible sensing and processing of
the RF spectrum.

5. Conclusions

Rather than developing different sensing techniques, in this paper, we consider ways to mitigate
the RF front-end nonlinearity of sensor nodes to improve the reliability of spectrum sensing in CR-WSN.
Compared to the widely-used AIC algorithm, the main advantages of the proposed mitigation
algorithm are as follows:

(1) A SVD-based bandsplit method is adopted instead of using bandpass/bandstop filter pairs. Thus,
the coarse energy detector is not needed to achieve spectral sensing information about the level
and spectral location of strong blocking signals. More importantly, the SVD-based method can
effectively avoid the problem of poor compensation performance at blocker band edges due to
the bandpass filter transition bands.

(2) The proposed algorithm adopts the Volterra model and obtains the Volterra coefficients simply by
solving a linear equation. There is no need to use AFs, and the selection of the iteration step-size
as well as the problems of the convergence and complexity of LMS can be circumvented.

In summary, the proposed algorithm can improve the reliability of spectrum sensing and
outperforms the AIC algorithm. It is predicted to have broad and promising applications in
CR-WSN. However, a major challenge in a CR-WSN is to produce low-cost, very small sensor nodes.
In other words, a single sensor node cannot sustain very complicated signal processing. This further
development offers an interesting and relevant topic for our future studies.
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Abbreviations

The following abbreviations are used in this manuscript:

CR-WSN Cognitive Radio Wireless Sensor Network
RF Radio Frequency
AIC Adaptive Interference Cancellation
SVD Singular Value Decomposition
MEMS Micro-Electro-Mechanical Systems
WSN Wireless Sensor Network
ISM Industrial Scientific Medical
CR Cognitive Radio
SU Secondary User
PU Primary User
LNA Low Noise Amplifier
IM Intermodulation
XM Crossmodulation
SOI Signal of Interest
DSP Digital Signal Processing
AF Adaptive Filter
LMS Least Mean Square
FCC Federal Communications Commission
BS Base Station
SDR Software-Defined Radio
BPF Bandpass Filter
ADC Analog-to-Digital Converter
DDC Digital Down Converter
I/Q In-phase/Quadrature
ED Energy Detection
CFAR Constant Probability of False Alarm
BER Bit Error Ratio
SFDR Spurious-Free Dynamic Range
QAM Quadrature Amplitude Modulation
NMSE Normalized Mean Squared Error
ROC Receiver Operating Characteristics
SNR Signal-to-Noise Ratio
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