
sensors

Article

Accelerating Families of Fuzzy K-Means Algorithms
for Vector Quantization Codebook Design

Edson Mata 1, Silvio Bandeira 1, Paulo de Mattos Neto 2, Waslon Lopes 3,* and Francisco Madeiro 1

1 Center of Science and Technology, Catholic University of Pernambuco (UNICAP), Recife 50050-900, Brazil;
edsonmata@hotmail.com (E.M.); silvio@c3.unicap.br (S.B.); madeiro@c3.unicap.br (F.M.)

2 Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife 50740-560, Brazil;
psgmn@cin.ufpe.br

3 Department of Electrical Engineering, Center of Alternative and Renewable Energy,
Federal University of Paraíba (UFPB), João Pessoa 58038-130, Brazil

* Correspondence: waslon@cear.ufpb.br; Tel.: +55-83-3216-7268

Academic Editor: Vittorio M. N. Passaro
Received: 24 August 2016; Accepted: 15 November 2016; Published: 23 November 2016

Abstract: The performance of signal processing systems based on vector quantization depends
on codebook design. In the image compression scenario, the quality of the reconstructed images
depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of
fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number
of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation
results concerning image vector quantization have shown that the acceleration obtained so far does
not decrease the quality of the reconstructed images. Codebook design time savings up to about 40%
are obtained by the accelerated versions with respect to the original versions of the algorithms.

Keywords: fuzzy K-means; vector quantization; computational complexity

1. Introduction

Signal compression techniques aim at decreasing the number of bits needed to represent the signal
(such as speech, image, audio and video), enhancing the efficiency both of transmission and storage.
Compression techniques are widely used in applications with storage and bandwidth constraints,
such as: storage of medical images, satellite transmissions, voice communication in mobile telephony
and videoconference. One of the many techniques used to achieve signal compression is vector
quantization (VQ), in which a codebook is used for signal reconstruction.

Vector quantization [1,2] is a lossy compression technique, which uses a mapping Q of a vector X,
in a K-dimensional Euclidean space, into another vector belonging to a finite subset W of RK:

Q : RK →W . (1)

The finite subset W is called a codebook. Each codebook element wj, 1 ≤ j ≤ N, is called a codevector.
The number of components in the codevectors is the dimension (K). The size of the codebook is the
number of codevectors, denoted by N. In several speech coding [3–5] and image coding [6–9] systems,
VQ has been used successfully, leading to high compression rates. VQ has also been used in other
applications, such as speaker identification [10,11], information security such as steganography and
digital watermarking [12–18], and classification of pathological voice signals [19].

Vector quantization is an extension of scalar quantization in a multidimensional space.
The performance of VQ depends on the designed codebooks. The prevailing algorithm for codebook
design is Linde-Buzo-Gray (LBG) [20], also known as Generalized Lloyd Algorithm (GLA) or K-means.

Sensors 2016, 16, 1963; doi:10.3390/s16111963 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1963 2 of 19

Other examples of codebook design algorithms are: fuzzy [7,21,22], competitive learning [23],
memetic [24], genetic [25], firefly [26] and honey bee mating optimization [27].

In vector quantization of a digital image, a codebook of size N is used, consisting in K-dimensional
vectors. The process replaces blocks of pixels from the corresponding image by the most similar blocks
of pixels in the codebook. So, the better the codebook, the higher the quantized image quality.

Typical grouping approaches used in VQ split in two categories: crisp and fuzzy clustering.
Traditionally, crisp clustering is executed by the K-means algorithm. Due to initialization dependency,
K-means can be stuck in undesired local minima. On the other hand, fuzzy clustering is usually
performed by the fuzzy K-means (FKM) algorithm [28]. FKM attributes each training pattern to every
other cluster with different pertinence degrees [29]. Therefore, FKM is able to reduce the random
initialization dependency [7,29–31] at a high computational cost.

The K-means (KM) and fuzzy clustering algorithms, e.g., fuzzy K-means (FKM), have been used in
a wide range of scenarios and applications, such as: digital soil pattern recognition [32], archaeology [33],
indoor localization [34], discrimination of cabernet sauvignon grapevine elements [35], white blood cell
segmentation [36], abnormal lung sounds diagnosis [37], intelligent sensor networks in agriculture [38],
magnetic resonance image (MRI) segmentation [39,40], speaker recognition [41] and image compression
by VQ [29,42,43].

The aforementioned works show that clustering algorithm applications include image coding,
biometric authentication, pattern recognition, among others. The performance evaluation of the
clustering algorithms depends on the application. In signal compression, an important aspect is the
quality of the reconstructed signal. In pattern recognition systems, an important figure of merit is the
recognition rate. The processing time of the clustering algorithms is also a relevant aspect. In this
paper, techniques are presented for accelerating families of fuzzy K-means algorithms applied to VQ
codebook design for image compression. Simulations show that the presented techniques lead to
a decrease in processing time for codebook design, while preserving its overall quality.

One of the many techniques used in this work is the Equal-average Nearest Neighbor Search
(ENNS) [44,45], which is usually used in the minimum distance coding phase of VQ. However,
in this paper, ENNS is used in some of fuzzy K-means families, precisely in the partitioning of the
training set. The acceleration of FKM algorithms is also obtained by the use of a lookahead approach
in the crisp phase of such algorithms, leading to a decrease in the number of iterations.

The remaining sections are organized as follows: Section 2 covers K-means algorithm and
fuzzy K-means families. Section 3 presents modified versions of fuzzy K-means families. In Section 4,
nearest neighbor search techniques are introduced with focus in the scenario of accelerating codebook
design. The results and final considerations are presented in Sections 5 and 6, respectively.

2. Codebook Desing Techniques

Vector quantization performance is highly dependent on codebook quality. The codebook is
a set of reference patterns or templates. In digital image coding, the codebook corresponds to a set
of reference blocks of pixels. In this paper, K-means algorithm and fuzzy K-means families are the
techniques under consideration for codebook design.

The main difference between K-means and fuzzy K-means algorithms is that, in the former,
each training vector belongs to one quantization cell. In the latter, each training vector can be associated
to more than one quantization cell, with some degree of pertinence to each cell.

K-means algorithm partitions the RK vector space by associating each training vector to a single
cluster using nearest neighbor search. Therefore, given an input vector xi, it belongs to the cluster
(cell or Voronoi region):

V(wj) if d
(
xi, wj

)
< d(xi, wa) ∀ a 6= j, (2)

where d
(

xi, wj
)

is a distance measure. Euclidean square distance between xi and wj is widely used
in digital image vector quantization. In this case, wj is the nearest neighbor (NN) of xi, that is, wj is
the quantized version of xi. This is equivalent to wj = Q (xi). The nearest neighbor search can be
associated to a pertinence function:

Sensors 2016, 16, 1963 3 of 19

µj(xi) =

{
1, if wj = NN (xi)

0, otherwise
. (3)

The distortion, obtained by representing the training vectors by their corresponding nearest
neighbors, is:

J1 = ∑N
j=1∑

M
i=1µj(xi)d

(
xi, wj

)
, (4)

in which xi is the i-th training vector, 1 ≤ i ≤ M. As J1 is a function of wj, in order to minimize the
distortion, vectors wj are updated according to:

wj =
∑M

i=1 µj (xi) xi

∑M
i=1 µj (xi)

, ∀ j = 1, 2, . . . , N. (5)

Equations (2) and (5) are related to the partitioning of the training set and to the codebook update.
The algorithm stops at the end of the n-th iteration if:

J1 (n− 1)− J1 (n)
J1 (n)

≤ ε. (6)

The input parameters of the K-means algorithm are: codebook size (N), codevectors dimension (K)
and a distortion threshold ε used as stop criterion.

The fuzzy K-means algorithm aims at minimizing the distortion between training vectors xi and
codevectors wj which compose the codebook. Unlike K-means algorithm, fuzzy K-means measures the
distortion by [29]:

Jm = ∑N
j=1∑

M
i=1µj (xi)

m d
(

xi, wj
)

, 1 < m < ∞, (7)

subject to the following conditions:
µj (xi) ε [0, 1] ∀ i, j,

0 < ∑M
i=1 µj (xi) < M,

∑N
j=1 µj (xi) = 1, ∀ i = 1, 2, . . . , M

(8)

As stated in [29], Jm function minimization results:

µj (xi) =
1

∑N
l=1

(
d(xi ,wj)
d(xi ,wl)

) 1
m−1

. (9)

Therefore, for a given pertinence degree set of functions, the codevectors evolve at each iteration
to minimize Jm, according to [29]:

wj =
∑M

i=1 µj (xi)
m xi

∑M
i=1 µj (xi)

m , ∀ j = 1, 2, . . . , N. (10)

The nebulosity at clusters transitions is controlled by parameter m and increases with
this parameter.

The input parameters of the FKM algorithm are: the codebook size (N), the codevector dimension
(K), the nebulosity control parameter m ε (1, ∞), and the distortion threshold ε.

This work uses two fuzzy K-means families, as proposed in [29]. The development of those
algorithms is based on transition from fuzzy to crisp mode, being the latter mode equivalent to K-means
algorithm strategy. The algorithm fuzzy 1 (FKM1) presents three modifications in its construction when
compared to FKM. The first is how the pertinence function is calculated:

Sensors 2016, 16, 1963 4 of 19

µj (xi) = f
(
d
(

xi, wj
)

, dmax (xi)
)
=

(
1−

d
(
xi, wj

)
dmax (xi)

)u

, (11)

in which dmax (xi) gives the maximum distance between the training vectors and codevectors, and u is
a positive integer. The second modification concerns the codebook update, defined by Equation (5).
The last modification is found in the transition from fuzzy to crisp mode. For that purpose, a distortion
threshold ε′ is defined, with ε′ > ε. Therefore, FKM1 algorithm has the following parameters as
input: N, K, u and two distortion thresholds—precisely, ε′ represents the fuzzy to crisp mode transition
threshold and ε represents the stop criterion.

The fuzzy 2 family (FKM2) uses the same codebook update and pertinence function calculations as
proposed by fuzzy K-means algorithm, that is, Equations (9) and (10), respectively. The only difference
is the inclusion of fuzzy to crisp mode transition.

3. Accelerating Fuzzy K-Means Family Algorithm

One of the challenges in the clustering methods is to increase the convergence speed, that is,
the decrease in the number of iterations. Some alternatives have been proposed to accelerate K-means
algorithm, as the techniques of Lee et al. [46] and Paliwal-Ramasubramanian [47]. Both techniques
recalculate the codevectors at the end of each iteration, according to the expression:

wj
n+1 = wj

n + s
(
C
(
V
(
wj

n))− wj
n), (12)

where wj
n is the codevector at the n-th iteration, s is the scale and C

(
V
(
wj

n)) is the centroid of the
Voronoi region V

(
wj

n). Fixed scale s is used in [46]. The modification introduced in [46], proposed
in [47], consists in using a scale s which depends on the iteration n, that is:

s = 1 +
v

v + n
, (13)

for some v > 0.
In this paper, the fuzzy K-Means families accelerated version uses Equations (12) and (13) in

codevectors updating. According to simulation results, for FKM1 and FKM2 algorithms, the scale s
leads to savings in the number of iterations when applied to the crisp phase of the algorithms.

4. Nearest Neighbor Search Techniques for Accelerating the Codebook Design

When FKM1 and FKM2 algorithms change to crisp mode (which is equivalent to the conventional
K-means algorithm), the complexity of the nearest neighbor search, performed by the K-means, can be
minimized by efficient search techniques. Usually, K-means algorithm uses Full Search (FS) to compute
the nearest neighbor, which is highly time consuming.

A great number of operations can be saved by eliminating poor codevector candidates to the
nearest neighbor. This can be accomplished by using search techniques, such as Partial Distortion Search
(PDS) [48] and Equal-average Nearest Neighbor Search (ENNS) [44,45]. Both were originally proposed to
VQ encoding phase. Instead, in this paper, they are used in FKM1 and FKM2 algorithms. PDS and
ENNS apply rejection criteria on codevectors, decreasing, by that means, the time spent in the nearest
neighbor search.

PDS algorithm, as proposed in [48], consists of a traditional technique to computational complexity
reduction involved in nearest neighbor search. PDS determines, for any q ≤ K, if the accumulated
distance to the first q codevector components is greater than dmin (the minimum distance found in the
search so far). If the condition is true, that codevector does not represent the NN. So, it is assumed that
the following expression is satisfied:

∑q
l=1

(
xil − wjl

)2
≥ dmin, (14)

Sensors 2016, 16, 1963 5 of 19

where 1 ≤ q ≤ K, xil is the l-th component of training (input) vector xi and wjl is the l-th component of
codevector wj. When this condition is satisfied there is no need to perform the hole calculation for the
Euclidean distance between xi and wj. With this approach, the number of multiplications, subtractions
and additions is reduced, decreasing the search time and, therefore, accelerating the codebook design
in comparison to the full search.

In the ENNS algorithm, the mean for each codevector is calculated and sorted previously. Then,
a lookup is performed, using some search algorithm, to find the codevector with mean closest to the
mean mx of the current input vector x. When such codevector is found, searches do not need to be
performed for codevectors whose means mi satisfy the criterion:

mi ≥ mx +

√
dmin

K
or mi ≤ mx −

√
dmin

K
, (15)

where mi is the mean of the i-th codevector, mx is the mean of current input vector and dmin is the
distance between the input vector and the codevector with the nearest mean.

When the elimination criterion is not satisfied for a given vector, it enters in a waiting list to be
looked up later. After all winner candidates to that input vector are collected, a search is performed
calculating the square Euclidean distance and the PDS is used.

ENNS decreases the computational time compared to the full search with N (codebook size)
memory allocations penalty, compared to PDS. That fact is proved in [49]. Because ENNS was
originally used in coding phase, it performs one means sorting, since the codebook vectors were
previously designed. However, as for the codebook design, the K-means algorithm (on the crisp
mode of FKM families), at each iteration, updates its codevectors, hereby a new average sorting
is needed for each iteration. Acceleration alternatives in the scenario of FKM2 are presented as
follows (see Algorithms 1–3). The notation MFKM2 stands for modified fuzzy K-means family 2,
that is, an acceleration (savings in the number of iterations) obtaining by using the scale factor s in
codebook update.

Algorithm 1. Partitioning step of the conventional FKM2 algorithm in crisp mode

For 1 ≤ m ≤ M

Calculate d
(

xm, wj
)
= ∑K

l=1

(
xml − wjl

)2
, ∀ j = 1, 2, . . . , N

Determine the smallest of the N calculated distances. The nearest neighbor of xm is wj such that
d
(

xm, wj
)
< d (xm, wo) ∀ o 6= j . In this case, xm is allocated to the Voronoi region V

(
wj
)

Codebook update step of the FKM2 algorithm:

Calculate wj
n =

∑M
i=1 µj(xi)xi

∑M
i=1 µj(xi)

, ∀ j = 1, 2, . . . , N

Codebook update with wj
n+1 = wj

n, in which wj
n is the codevector at the n-th iteration

Algorithm 2. Partitioning step of the MFKM2 algorithm in crisp mode

For 1 ≤ m ≤ M

Calculate d
(

xm, wj
)
= ∑K

l=1

(
xml − wjl

)2
, ∀ j = 1, 2, . . . , N

Determine the smallest of the N calculated distances. The nearest neighbor of xm is wj such that
d
(

xm, wj
)
< d (xm, wo) ∀ o 6= j . In this case, xm is allocated to the Voronoi region V

(
wj
)

Codebook update step of the MFKM2 algorithm:

Calculate wj
n =

∑M
i=1 µj(xi)xi

∑M
i=1 µj(xi)

, ∀ j = 1, 2, . . . , N

Codebook update with wj
n+1 = wj

n + s
(
C
(
V
(
wj

n))− wj
n)

Sensors 2016, 16, 1963 6 of 19

It is worth mentioning that other approaches have been proposed in the literature for the purpose
of fast codebook search. As an example, the method introduced by Chang and Wu [50] is an interesting
partial-search technique based on a graph structure which leads to computational cost savings.

Algorithm 3. Partitioning step of the MFKM2 algorithm in crisp mode with the use of ENNS

(Calculate off -line the mean of each input vector)

Calculate the mean of each codevector and order the N means in ascending order

For 1 ≤ m ≤ M

Determine the codevector with the minimum absolute difference between its mean and the input
vector mean. Obtain dmin as the squared Euclidean distance between this codevector and the
input vector

Eliminate from the search process the codevectors that satisfy:

mi ≥ mx +

√
dmin

K
or mi ≤ mx −

√
dmin

K

For the remaining codevectors, i.e., those who were not eliminated from the search, apply the
PDS algorithm for calculating the distance and update dmin (the minimum distance found in the
search so far)

At the end of the process, the codevector wj corresponding to dmin is the nearest neighbor of xm.
In this case, xm is allocated to the Voronoi region V

(
wj
)

Codebook update step of the MFKM2 algorithm:

Calculate wj
n =

∑M
i=1 µj(xi)xi

∑M
i=1 µj(xi)

, ∀ j = 1, 2, . . . , N

Codebook update with wj
n+1 = wj

n + s
(
C
(
V
(
wj

n))− wj
n)

5. Results

Simulations have been performed in a core I5-2450m (2.50 GHz) Intel computer using nine
256 × 256 pixel images: Lena, Barbara, Elaine, Boat, Clock, Goldhill, Peppers, Mandrill and Tiffany.
Each image has 256 gray scale levels, as shown in Figure 1. The parameters used for the simulations
were: K = 16 (4 × 4 pixel blocks), N = 32, 64, 128 and 256, u = 2 and two distortion thresholds, ε′ = 0.1
and ε = 0.001. For each parameter combination of dimension K and codebook size N (for example
N = 32 and K = 16), 20 random initializations were used for each algorithm.

Sensors 2016, 16, 1963 6 of 19

Algorithm 3. Partitioning step of the MFKM2 algorithm in crisp mode with the use of ENNS
(Calculate off-line the mean of each input vector)

Calculate the mean of each codevector and order the means in ascending order

For 1 ≤ ≤
Determine the codevector with the minimum absolute difference between its mean and the
input vector mean. Obtain as the squared Euclidean distance between this codevector and
the input vector

Eliminate from the search process the codevectors that satisfy:

≥ + or ≤ −

For the remaining codevectors, i.e., those who were not eliminated from the search, apply the

PDS algorithm for calculating the distance and update (the minimum distance found in

the search so far)

At the end of the process, the codevector corresponding to is the nearest neighbor of

. In this case, is allocated to the Voronoi region 	
Codebook update step of the MFKM2 algorithm:

Calculate = ∑ ()∑ () , ∀	 = 1,2, … ,

Codebook update with = + −

5. Results

Simulations have been performed in a core I5-2450m (2.50 GHz) Intel computer using nine 256 × 256
pixel images: Lena, Barbara, Elaine, Boat, Clock, Goldhill, Peppers, Mandrill and Tiffany. Each image
has 256 gray scale levels, as shown in Figure 1. The parameters used for the simulations were: K = 16
(4 × 4 pixel blocks), N = 32, 64, 128 and 256, u = 2 and two distortion thresholds, = 0.1 and = 0.001.
For each parameter combination of dimension K and codebook size N (for example N = 32 and K = 16),
20 random initializations were used for each algorithm.

(a) (b) (c)

Figure 1. Cont.

Sensors 2016, 16, 1963 7 of 19
Sensors 2016, 16, 1963 7 of 19

(d) (e) (f)

(g) (h) (i)

Figure 1. Images 256 × 256 pixels, 8.0 bpp. (a) Lena; (b) Barbara; (c) Elaine; (d) Boat; (e) Clock;
(f) Goldhill; (g) Peppers; (h) Mandrill; (i) Tiffany.

Results are presented in terms of average number of iterations and average execution time (in
seconds) of the codebook design algorithms, as well as average peak signal noise ratio (PSNR) and
structural similarity (SSIM) index [51] of reconstructed images. The notation adopted for the methods
are presented in Table 1. Results are organized in Tables 2–15.

Table 1. Notation.

KM K-means
FKM Fuzzy K-means
MFKM Modified Fuzzy K-means (accelerated version with scale)
FKM1 Fuzzy K-means Family 1
MFKM1 Modified Fuzzy K-means Family 1 (accelerated version with scale)
FKM1-PDS Fuzzy K-means Family 1 with Partial Distortion Search in the crisp phase

MFKM1-PDS
Modified Fuzzy K-means Family 1 (accelerated version with scale) with Partial
Distortion Search in the crisp phase

FKM1-ENNS
Fuzzy K-means Family 1 with Equal-Average Nearest Neighbor Search in the crisp
phase

MFKM1-ENNS
Modified Fuzzy K-means Family 1 (accelerated version with scale) with Equal-
Average Nearest Neighbor Search in the crisp phase

FKM2 Fuzzy K-means Family 2
MFKM2 Modified Fuzzy K-means Family 2 (accelerated version with scale)
FKM2-PDS Fuzzy K-means Family 2 with Partial Distortion Search in the crisp phase

MFKM2-PDS
Modified Fuzzy K-means Family 2 (accelerated version with scale) with Partial
Distortion Search in the crisp phase

FKM2-ENNS
Fuzzy K-means Family 2 with Equal-Average Nearest Neighbor Search in the crisp
phase

MFKM2-ENNS
Modified Fuzzy K-means Family 2 (accelerated version with scale) with Equal-
Average Nearest Neighbor Search in the crisp phase

Regarding Table 2, all algorithms under consideration led to close values of PSNR. It can be
noted that the use of the scale factors led to a decrease in the average number of iterations. In other
words, it is observed, for instance, that the average number of iterations of MFKM is smaller than
that of FKM. The decrease in the number of iterations is also observed when one compares MFKM1

Figure 1. Images 256 × 256 pixels, 8.0 bpp. (a) Lena; (b) Barbara; (c) Elaine; (d) Boat; (e) Clock;
(f) Goldhill; (g) Peppers; (h) Mandrill; (i) Tiffany.

Results are presented in terms of average number of iterations and average execution time
(in seconds) of the codebook design algorithms, as well as average peak signal noise ratio (PSNR) and
structural similarity (SSIM) index [51] of reconstructed images. The notation adopted for the methods
are presented in Table 1. Results are organized in Tables 2–15.

Table 1. Notation.

KM K-means

FKM Fuzzy K-means

MFKM Modified Fuzzy K-means (accelerated version with scale s)

FKM1 Fuzzy K-means Family 1

MFKM1 Modified Fuzzy K-means Family 1 (accelerated version with scale s)

FKM1-PDS Fuzzy K-means Family 1 with Partial Distortion Search in the crisp phase

MFKM1-PDS Modified Fuzzy K-means Family 1 (accelerated version with scale s) with Partial Distortion
Search in the crisp phase

FKM1-ENNS Fuzzy K-means Family 1 with Equal-Average Nearest Neighbor Search in the crisp phase

MFKM1-ENNS Modified Fuzzy K-means Family 1 (accelerated version with scale s) with Equal-Average
Nearest Neighbor Search in the crisp phase

FKM2 Fuzzy K-means Family 2

MFKM2 Modified Fuzzy K-means Family 2 (accelerated version with scale s)

FKM2-PDS Fuzzy K-means Family 2 with Partial Distortion Search in the crisp phase

MFKM2-PDS Modified Fuzzy K-means Family 2 (accelerated version with scale s) with Partial Distortion
Search in the crisp phase

FKM2-ENNS Fuzzy K-means Family 2 with Equal-Average Nearest Neighbor Search in the crisp phase

MFKM2-ENNS Modified Fuzzy K-means Family 2 (accelerated version with scale s) with Equal-Average
Nearest Neighbor Search in the crisp phase

Regarding Table 2, all algorithms under consideration led to close values of PSNR. It can be noted
that the use of the scale factors led to a decrease in the average number of iterations. In other words,

Sensors 2016, 16, 1963 8 of 19

it is observed, for instance, that the average number of iterations of MFKM is smaller than that of
FKM. The decrease in the number of iterations is also observed when one compares MFKM1 with
FKM1, as well as when one compares MFKM2 with FKM2. The use of PDS for nearest neighbor search
contributes to reduce the time spent for codebook design. For instance, considering Elaine image,
for FKM1 and FKM1-PDS, the use of PDS in the partitioning step of the second phase (crisp phase) of
FKM1 led to a codebook design average time 0.34 s, which is lower than 0.38 s spent for codebook
design using the full search (FS) or brute force in that phase. If the ENNS is used in substitution to
FS, the time spent is 0.27 s. The highest time savings, concerning FKM1, is obtained by using the
scale factor s to decrease the number of iterations combined with the use of ENNS for efficient nearest
neighbor search. Indeed, regarding Elaine image, that combination led to an average time spent for
codebook design equals 0.25 s.

Table 2. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Lena,
Barbara and Elaine, using N = 32.

Algorithm
Lena Barbara Elaine

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 26.61 17.20 0.16 24.76 15.20 0.12 27.75 18.15 0.16
FKM 26.57 19.65 1.53 24.71 16.00 1.11 27.70 19.75 1.65

MFKM 26.61 14.75 1.12 24.72 12.30 0.86 27.72 15.80 1.31
FKM1 26.60 22.35 0.35 24.77 19.00 0.38 27.77 24.35 0.38

MFKM1 26.62 18.25 0.28 24.79 16.05 0.31 27.77 18.55 0.30
FKM1-PDS 26.60 22.35 0.33 24.77 19.00 0.34 27.77 24.35 0.34

MFKM1-PDS 26.62 18.25 0.26 24.79 16.05 0.28 27.77 18.55 0.29
FKM1-ENNS 26.60 22.35 0.26 24.77 19.00 0.28 27.77 24.35 0.27

MFKM1-ENNS 26.62 18.25 0.22 24.79 16.05 0.25 27.77 18.55 0.25
FKM2 26.60 15.35 0.39 24.77 14.25 0.30 27.77 18.50 0.40

MFKM2 26.63 12.70 0.35 24.78 11.75 0.24 27.80 14.40 0.33
FKM2-PDS 26.60 15.35 0.35 24.77 14.25 0.27 27.77 18.45 0.37

MFKM2-PDS 26.63 12.70 0.33 24.78 11.75 0.22 27.80 14.40 0.30
FKM2-ENNS 26.60 15.35 0.33 24.77 14.25 0.24 27.77 18.50 0.29

MFKM2-ENNS 26.63 12.70 0.30 24.78 11.75 0.20 27.80 14.40 0.26

With respect to Table 3, it is observed that the highest time spent for codebook design was for
FKM algorithm. It is important to mention that this behavior is observed for all images and codebook
sizes considered in the present work. As an example, for the Boat image and codebook size N = 32,
the codebook design average time spent by FKM is 1.64 s, which is 8.2 times higher than the average
time spent by KM and about 3.8 times higher than the average time spent by FKM2. Table 3 results also
confirm the benefits of using the modified versions of the codebook design algorithms (M versions,
with the use of the scale factor s) and nearest search algorithms for codebook design time savings
when compared to the standard versions of the codebook design algorithms. For each image under
consideration, it is observed that all algorithms lead to close PSNR values.

From the results presented in Tables 4 and 5, it is observed that the codebook design average time
spent by FKM2 is higher than that one of FKM1. It is important to mention that the same behavior
is observed for all the images under consideration, for codebook sizes 128 and 256. Regarding the
number of iterations, it is observed in Tables 4 and 5 that the modified versions with the use of the scale
factor s (algorithms MFKM, MFKM1 and MFKM2) have and average execution time lower than that of
the corresponding standard versions (FKM, FKM1 and FKM2 respectively)—due to the savings in the
number of iterations. Tables 4 and 5 point out that the lowest codebook design average time is obtained
with the combination of the scale factor s and ENNS. Indeed, considering for instance fuzzy K-means
family 2 and Clock image, in Table 5 the average time of MFKM2-ENNS is 0.92 s, which is lower
than the average time presented by all the other versions (FKM2, MFKM2, FKM2-PDS, MFKM2-PDS
and FKM2-ENNS).

Sensors 2016, 16, 1963 9 of 19

Table 3. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Boat,
Clock and Goldhill, using N = 32.

Algorithm
Boat Clock Goldhill

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 24.92 18.95 0.20 26.16 26.10 0.32 26.66 17.00 0.34
FKM 24.84 21.20 1.64 26.23 41.00 1.78 26.67 18.60 3.05

MFKM 24.87 16.20 0.98 26.28 35.55 1.08 26.70 16.30 2.57
FKM1 24.91 25.75 0.42 26.19 33.40 0.55 26.67 22.25 0.46

MFKM1 24.93 19.80 0.33 26.25 25.80 0.45 26.68 18.85 0.36
FKM1-PDS 24.91 25.75 0.40 26.19 33.40 0.50 26.67 22.25 0.43

MFKM1-PDS 24.93 19.80 0.31 26.25 25.80 0.41 26.68 18.85 0.32
FKM1-ENNS 24.91 25.75 0.32 26.19 33.40 0.39 26.67 22.25 0.35

MFKM1-ENNS 24.93 19.80 0.27 26.25 25.80 0.34 26.68 18.85 0.30
FKM2 24.91 18.90 0.43 26.26 23.30 0.46 26.67 16.20 0.63

MFKM2 24.93 15.20 0.37 26.32 20.50 0.40 26.70 13.55 0.55
FKM2-PDS 24.91 18.90 0.41 26.26 23.30 0.43 26.67 16.20 0.58

MFKM2-PDS 24.93 15.20 0.35 26.32 20.50 0.39 26.70 13.55 0.51
FKM2-ENNS 24.91 18.90 0.36 26.26 23.30 0.40 26.67 16.20 0.47

MFKM2-ENNS 24.93 15.20 0.32 26.32 20.50 0.34 26.70 13.55 0.46

Table 4. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Lena,
Barbara and Elaine, using N = 64.

Algorithm
Lena Barbara Elaine

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 27.74 17.80 0.32 25.68 16.25 0.25 29.06 18.00 0.24
FKM 27.69 22.85 5.81 25.64 21.15 4.03 29.09 24.05 4.91

MFKM 27.73 17.90 4.51 25.64 15.40 3.31 29.13 18.60 3.98
FKM1 27.67 23.15 0.61 25.74 20.65 0.55 29.01 23.55 0.62

MFKM1 27.75 19.10 0.48 25.77 17.95 0.48 29.07 19.90 0.53
FKM1-PDS 27.67 23.15 0.53 25.74 20.65 0.51 29.01 23.55 0.54

MFKM1-PDS 27.75 19.10 0.46 25.77 17.95 0.44 29.07 19.90 0.47
FKM1-ENNS 27.67 23.15 0.39 25.74 20.65 0.43 29.01 23.55 0.46

MFKM1-ENNS 27.75 19.10 0.35 25.77 17.95 0.36 29.07 19.90 0.40
FKM2 27.80 14.50 0.81 25.73 15.00 0.71 29.05 16.45 0.81

MFKM2 27.85 12.85 0.71 25.75 12.85 0.61 29.10 13.70 0.75
FKM2-PDS 27.80 14.50 0.70 25.73 15.00 0.62 29.05 16.45 0.74

MFKM2-PDS 27.85 12.85 0.67 25.75 12.85 0.55 29.10 13.70 0.68
FKM2-ENNS 27.80 14.50 0.62 25.73 14.95 0.57 29.05 16.40 0.62

MFKM2-ENNS 27.85 12.85 0.60 25.75 12.85 0.52 29.10 13.70 0.60

Table 5. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Boat,
Clock and Goldhill, using N = 64.

Algorithm
Boat Clock Goldhill

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 25.90 18.45 0.46 27.17 22.05 0.62 27.69 16.15 0.36
FKM 25.84 23.30 6.31 27.41 42.70 8.11 27.68 19.55 5.81

MFKM 25.85 16.05 4.61 27.46 33.85 5.53 27.70 15.20 4.51
FKM1 25.85 24.35 0.73 27.08 25.10 1.05 27.69 21.80 0.64

MFKM1 25.91 18.90 0.62 27.16 20.10 0.80 27.71 18.05 0.53
FKM1-PDS 25.85 24.35 0.68 27.08 25.65 0.88 27.69 21.85 0.60

MFKM1-PDS 25.91 18.90 0.56 27.16 20.10 0.70 27.71 18.05 0.49
FKM1-ENNS 25.85 24.35 0.55 27.08 25.10 0.68 27.69 21.80 0.48

MFKM1-ENNS 25.91 18.90 0.44 27.16 20.10 0.52 27.71 18.05 0.43
FKM2 25.92 17.50 0.94 27.32 18.90 1.09 27.70 15.60 1.04

MFKM2 25.96 13.80 0.85 27.40 16.10 1.01 27.73 13.10 0.89
FKM2-PDS 25.92 17.45 0.87 27.32 18.90 1.03 27.70 15.55 0.96

MFKM2-PDS 25.96 13.80 0.83 27.40 16.10 0.98 27.73 13.10 0.93
FKM2-ENNS 25.92 17.50 0.84 27.32 18.90 0.94 27.70 15.60 0.83

MFKM2-ENNS 25.96 13.80 0.70 27.40 16.10 0.92 27.73 13.10 0.75

Sensors 2016, 16, 1963 10 of 19

It is observed in Tables 2–5 that the best PSNR results, for five out of six images under
consideration, for N = 32 and N = 64, are obtained by using algorithms MFKM2, MFKM2-PDS
and MFKM2-ENNS.

From Tables 6 and 7, for all images under consideration and for all codebook sizes, the modified
versions (those using the scale factor s) of the algorithms led to average number of iterations smaller
than that of the original versions. For instance, for Lena image, the average number of iterations
of MFKM is 21.25 and the corresponding number of FKM is 27.60; for Goldhill image, MFKM1
average number of iterations is 16.30 and FKM1 average number of iterations is 20.60; for Boat image,
the average number of iterations of MFKM2 is 14.15, and the corresponding number of FKM2 is 16.25.
The use of ENNS has proved to be an effective alternative for codebook design time savings. Consider,
for instance, Elaine image, for which the codebook design average time of FKM1-ENNS is 0.77 s,
while the corresponding time for FKM1 is 1.13 s. For all images under consideration, for each family
of fuzzy K-means algorithm, the highest codebook design time savings is obtained by combining the
use of scale factor s (M version of the codebook design algorithm) with ENNS. As an example, for all
images under consideration, the codebook design average time spent by MFKM2-ENNS is lower than
the corresponding one of FKM2, MFKM2, FKM2-PDS, MFKM2-PDS and FKM2-ENNS.

Table 6. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Lena,
Barbara and Elaine, using N = 128.

Algorithm
Lena Barbara Elaine

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 28.83 18.10 0.51 26.68 14.95 0.45 30.27 16.30 0.51
FKM 28.91 27.60 22.31 26.61 20.35 13.45 30.40 26.15 18.47

MFKM 28.95 21.25 16.32 26.64 16.70 11.57 30.44 19.50 13.11
FKM1 28.73 22.20 1.10 26.74 20.80 1.06 30.17 23.10 1.13

MFKM1 28.92 17.55 0.91 26.81 16.05 0.85 30.30 18.55 0.91
FKM1-PDS 28.73 22.25 0.96 26.74 20.90 0.96 30.17 23.10 1.05

MFKM1-PDS 28.92 17.55 0.81 26.81 15.95 0.75 30.30 18.55 0.82
FKM1-ENNS 28.73 22.20 0.79 26.74 20.80 0.77 30.17 23.10 0.77

MFKM1-ENNS 28.92 17.55 0.68 26.81 16.05 0.63 30.30 18.55 0.68
FKM2 28.97 14.45 1.97 26.74 14.30 1.60 30.34 14.35 1.83

MFKM2 29.07 12.55 1.76 26.79 12.85 1.54 30.45 12.70 1.73
FKM2-PDS 28.97 14.45 1.76 26.74 14.30 1.55 30.34 14.35 1.72

MFKM2-PDS 29.07 12.55 1.65 26.79 12.85 1.48 30.45 12.70 1.66
FKM2-ENNS 28.97 14.45 1.60 26.74 14.30 1.47 30.34 14.30 1.59

MFKM2-ENNS 29.07 12.55 1.56 26.79 12.85 1.39 30.45 12.70 1.57

Table 7. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Boat,
Clock and Goldhill, using N = 128.

Algorithm
Boat Clock Goldhill

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 26.90 17.80 0.53 28.28 16.60 0.65 28.67 15.05 0.41
FKM 26.91 26.85 25.38 28.48 31.40 39.61 28.66 20.30 13.51

MFKM 26.94 20.70 22.56 28.55 26.05 36.47 28.69 15.35 11.02
FKM1 26.59 24.15 1.22 28.04 20.50 1.36 28.69 20.60 1.15

MFKM1 26.70 17.20 0.98 28.24 17.50 1.13 28.77 16.30 0.99
FKM1-PDS 26.59 24.15 1.17 28.04 20.35 1.26 28.69 20.75 1.02

MFKM1-PDS 26.70 17.20 0.93 28.24 17.50 1.03 28.77 16.30 0.95
FKM1-ENNS 26.59 24.15 0.90 28.04 20.50 0.85 28.69 20.60 0.90

MFKM1-ENNS 26.70 17.20 0.72 28.24 17.50 0.73 28.77 16.30 0.83
FKM2 26.97 16.25 2.04 28.28 14.40 2.56 28.69 14.30 1.80

MFKM2 27.07 14.15 1.85 28.40 13.15 2.48 28.75 12.95 1.75
FKM2-PDS 26.97 16.25 1.97 28.28 14.40 2.47 28.69 14.30 1.76

MFKM2-PDS 27.07 14.15 1.76 28.40 13.15 2.45 28.75 12.95 1.70
FKM2-ENNS 26.97 16.25 1.77 28.28 14.40 2.32 28.69 14.35 1.64

MFKM2-ENNS 27.07 14.15 1.68 28.40 13.15 2.30 28.75 12.95 1.52

Sensors 2016, 16, 1963 11 of 19

As can be observed in Tables 8 and 9, in comparison with FKM1 family, the modified version
MFKM1 has a smaller average number of iterations, which lead to a lower codebook design average
time. Additional time savings is obtained by the use of efficient nearest neighbor search methods,
that is, PDS or ENNS. It is important to observe that the modified versions generally lead to higher
PSNR values when compared to the original versions. As an example, for Lena image, MFKM1 led to
30.13 dB average PSNR, while the original version led to a corresponding 29.74 dB PSNR; for the same
image, the substitution of FKM2 by MFKM2 led to an increase of 0.20 dB in terms of average PSNR.

Table 8. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Lena,
Barbara and Elaine, using N = 256.

Algorithm
Lena Barbara Elaine

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 29.89 14.70 0.62 27.76 13.60 0.58 31.46 14.40 0.66
FKM 30.21 38.20 90.19 27.74 25.25 66.32 31.80 31.65 79.91

MFKM 30.24 27.10 73.28 27.76 20.00 57.34 31.87 24.30 75.85
FKM1 29.74 21.80 1.99 27.78 18.40 1.89 31.16 20.65 1.97

MFKM1 30.13 16.20 1.78 27.97 15.15 1.71 31.53 17.10 1.75
FKM1-PDS 29.74 21.80 1.78 27.78 18.40 1.74 31.16 20.65 1.73

MFKM1-PDS 30.13 16.20 1.56 27.97 15.15 1.59 31.53 17.10 1.52
FKM1-ENNS 29.74 21.75 1.40 27.78 18.50 1.41 31.16 20.75 1.46

MFKM1-ENNS 30.13 16.20 1.36 27.97 15.15 1.40 31.53 17.10 1.38
FKM2 30.23 14.10 5.04 27.88 13.35 5.10 31.65 13.10 5.32

MFKM2 30.43 12.75 5.17 28.00 12.05 5.04 31.77 12.25 5.79
FKM2-PDS 30.23 14.10 4.92 27.88 13.35 4.81 31.65 13.10 5.16

MFKM2-PDS 30.43 12.75 5.22 28.00 12.05 4.65 31.77 12.25 5.42
FKM2-ENNS 30.23 14.10 4.63 27.88 13.30 4.65 31.65 13.10 4.92

MFKM2-ENNS 30.43 12.75 4.94 28.00 12.05 4.58 31.77 12.25 5.37

Table 9. PSNR (in dB), number of iterations and codebook design time (in seconds) for images Boat,
Clock and Goldhill, using N = 256.

Algorithm
Boat Clock Goldhill

PSNR Iter Time PSNR Iter Time PSNR Iter Time

KM 27.91 13.30 0.63 29.47 13.70 0.65 29.73 13.30 0.61
FKM 28.04 32.05 84.26 29.82 35.65 81.15 29.83 24.70 63.14

MFKM 28.08 23.65 70.18 29.85 26.00 75.34 29.86 18.50 54.12
FKM1 27.57 24.05 2.44 29.09 19.75 1.81 29.68 19.30 2.12

MFKM1 27.87 17.55 1.93 29.41 16.10 1.59 29.90 15.80 1.88
FKM1-PDS 27.57 24.05 2.25 29.09 19.75 1.64 29.68 19.30 1.96

MFKM1-PDS 27.87 17.55 1.79 29.41 16.10 1.42 29.90 15.80 1.76
FKM1-ENNS 27.57 23.95 1.77 29.09 19.70 1.29 29.68 19.35 1.51

MFKM1-ENNS 27.87 17.55 1.43 29.41 16.10 1.12 29.90 15.80 1.42
FKM2 28.05 13.40 5.29 29.56 12.75 5.10 29.80 12.10 5.12

MFKM2 28.22 11.85 5.53 29.75 12.40 5.35 29.92 11.80 5.62
FKM2-PDS 28.05 13.40 5.09 29.56 12.75 4.82 29.80 12.10 5.05

MFKM2-PDS 28.22 11.85 5.15 29.75 12.40 5.12 29.92 11.80 5.34
FKM2-ENNS 28.05 13.40 4.76 29.56 12.75 4.52 29.80 12.10 4.83

MFKM2-ENNS 28.22 11.85 5.06 29.75 12.40 4.50 29.92 11.80 5.21

According to Tables 8 and 9, for codebook size N = 256, for four out of six images under
consideration, the best PSNR results are obtained by using algorithms MFKM2, MFKM2-PDS and
MFKM2-ENNS. Particularly, for Lena image, the substitution of KM by MFKM2-ENNS lead to a PSNR
gain of 0.54 dB.

According to Table 10, the best performance in terms of SSIM is obtained by using MFKM
codebooks—the highest SSIM values are observed for MFKM in five out of seven training sets. P-M-T
is a training set corresponding to the concatenation of images Peppers, Mandrill and Tiffany. It is

Sensors 2016, 16, 1963 12 of 19

important to point out that, for a fixed training set (with the exception of Lena), the absolute difference
between the best SSIM result and the worst SSIM result is below 0.0090.

Table 10. SSIM for images Lena, Barbara Elaine, Boat, Clock, Goldhill and P-M-T, using N = 32.

Algorithm
SSIM

Lena Barbara Elaine Boat Clock Goldhill P-M-T

KM 0.7790 0.6800 0.7637 0.7081 0.8373 0.7078 0.7492
FKM 0.7838 0.6809 0.7687 0.7118 0.8447 0.7105 0.7501

MFKM 0.7840 0.6807 0.7688 0.7120 0.8457 0.7111 0.7496
FKM1 0.7816 0.6807 0.7678 0.7109 0.8381 0.7105 0.7481

MFKM1 0.7813 0.6813 0.7674 0.7095 0.8386 0.7110 0.7502
FKM1-PDS 0.7816 0.6807 0.7678 0.7109 0.8381 0.7105 0.7481

MFKM1-PDS 0.7813 0.6813 0.7674 0.7095 0.8386 0.7110 0.7502
FKM1-ENNS 0.7816 0.6807 0.7678 0.7109 0.8381 0.7105 0.7481

MFKM1-ENNS 0.7813 0.6813 0.7674 0.7095 0.8386 0.7110 0.7502
FKM2 0.7731 0.6787 0.7617 0.7083 0.8383 0.7083 0.7483

MFKM2 0.7736 0.6793 0.7622 0.7075 0.8395 0.7087 0.7490
FKM2-PDS 0.7731 0.6787 0.7617 0.7083 0.8383 0.7083 0.7483

MFKM2-PDS 0.7736 0.6793 0.7622 0.7075 0.8395 0.7087 0.7490
FKM2-ENNS 0.7731 0.6787 0.7617 0.7083 0.8383 0.7083 0.7483

MFKM2-ENNS 0.7736 0.6793 0.7622 0.7075 0.8395 0.7087 0.7490

It is observed in Table 11 that MFKM leads to the highest SSIM values for five out of seven training
sets. For a fixed training set (with the exception of Elaine and Clock), the absolute difference between
the best SSIM result and the worst SSIM result is below 0.0090.

Table 11. SSIM for images Lena, Barbara Elaine, Boat, Clock, Goldhill and P-M-T, using N = 64.

Algorithm
SSIM

Lena Barbara Elaine Boat Clock Goldhill P-M-T

KM 0.8225 0.7323 0.8094 0.7652 0.8667 0.7613 0.7897
FKM 0.8260 0.7325 0.8136 0.7657 0.8749 0.7628 0.7902

MFKM 0.8261 0.7318 0.8137 0.7653 0.8756 0.7631 0.7910
FKM1 0.8228 0.7355 0.8105 0.7655 0.8656 0.7629 0.7900

MFKM1 0.8224 0.7351 0.8096 0.7643 0.8661 0.7622 0.7902
FKM1-PDS 0.8228 0.7355 0.8105 0.7655 0.8657 0.7629 0.7900

MFKM1-PDS 0.8224 0.7351 0.8096 0.7643 0.8661 0.7622 0.7902
FKM1-ENNS 0.8228 0.7355 0.8105 0.7655 0.8656 0.7629 0.7900

MFKM1-ENNS 0.8224 0.7351 0.8096 0.7643 0.8661 0.7622 0.7902
FKM2 0.8177 0.7312 0.8031 0.7646 0.8680 0.7605 0.7900

MFKM2 0.8179 0.7316 0.8032 0.7645 0.8692 0.7610 0.7897
FKM2-PDS 0.8177 0.7312 0.8031 0.7646 0.8680 0.7604 0.7900

MFKM2-PDS 0.8179 0.7316 0.8032 0.7645 0.8692 0.7610 0.7897
FKM2-ENNS 0.8177 0.7312 0.8031 0.7646 0.8680 0.7605 0.7900

MFKM2-ENNS 0.8179 0.7316 0.8032 0.7645 0.8692 0.7610 0.7897

For N = 256, it is observed in Table 13 that MFKM leads to the best SSIM results for 5 out of 7 traning
sets considered. An interesting performance nuance must be pointed out—MFKM2, MFKM2-PDS
and MFKM2-ENNS are the techniques that lead to the highest PSNR results (according to Tables 2–9),
but do not lead to the best SSIM results (as can be observed from Tables 10–13). It is important
to observe that codebook design aims to decrease the distortion (mean square error) obtained in
representing the training vectors by the corresponding nearest neighbors, that is, by the corresponding
codevectors with minimum distance. In other words, higher PSNR values are obtained by codebooks
that are more “tuned” with the training set, that is, by codebooks that introduce less distortion in
terms of MSE, which do not necessarily correspond to higher SSIM values. PSNR and SSIM results are
presented in Table 14 for images reconstructed by codebooks designed with the training set P-M-T.

Sensors 2016, 16, 1963 13 of 19

The method MFKM2-ENNS was used for codebooks designed for K = 16 and N = 32, 64, 128 and 256,
leading to corresponding code rates 0.3125 bpp, 0.375 bpp, 0.4375 bpp and 0.5 bpp. It is observed that,
for a given image, both PSNR and SSIM increases with N, that is, the distortion decreases with the
code rate.

Table 12. SSIM for images Lena, Barbara Elaine, Boat, Clock, Goldhill and P-M-T, using N = 128.

Algorithm
SSIM

Lena Barbara Elaine Boat Clock Goldhill P-M-T

KM 0.8583 0.7863 0.8487 0.8141 0.8941 0.8050 0.8232
FKM 0.8617 0.7864 0.8523 0.8143 0.9006 0.8066 0.8219

MFKM 0.8616 0.7864 0.8523 0.8138 0.9014 0.8063 0.8224
FKM1 0.8579 0.7881 0.8481 0.8035 0.8876 0.8076 0.8231

MFKM1 0.8575 0.7855 0.8475 0.8024 0.8889 0.8062 0.8233
FKM1-PDS 0.8579 0.7881 0.8481 0.8035 0.8876 0.8076 0.8231

MFKM1-PDS 0.8575 0.7856 0.8475 0.8024 0.8889 0.8062 0.8233
FKM1-ENNS 0.8579 0.7881 0.8481 0.8035 0.8876 0.8076 0.8231

MFKM1-ENNS 0.8575 0.7855 0.8475 0.8024 0.8889 0.8062 0.8233
FKM2 0.8518 0.7823 0.8387 0.8124 0.8899 0.8041 0.8236

MFKM2 0.8520 0.7833 0.8394 0.8128 0.8906 0.8048 0.8244
FKM2-PDS 0.8518 0.7823 0.8387 0.8124 0.8899 0.8041 0.8236

MFKM2-PDS 0.8520 0.7833 0.8394 0.8128 0.8906 0.8048 0.8244
FKM2-ENNS 0.8518 0.7823 0.8387 0.8124 0.8899 0.8041 0.8236

MFKM2-ENNS 0.8520 0.7833 0.8394 0.8128 0.8906 0.8048 0.8244

Table 13. SSIM for images Lena, Barbara Elaine, Boat, Clock, Goldhill and P-M-T, using N = 256.

Algorithm
SSIM

Lena Barbara Elaine Boat Clock Goldhill P-M-T

KM 0.8893 0.8351 0.8808 0.8514 0.9173 0.8450 0.8534
FKM 0.8935 0.8371 0.8843 0.8540 0.9226 0.8478 0.8516

MFKM 0.8935 0.8372 0.8843 0.8539 0.9231 0.8479 0.8518
FKM1 0.8875 0.8349 0.8764 0.8478 0.9095 0.8452 0.8530

MFKM1 0.8877 0.8322 0.8761 0.8490 0.9100 0.8442 0.8529
FKM1-PDS 0.8875 0.8349 0.8764 0.8478 0.9095 0.8452 0.8530

MFKM1-PDS 0.8877 0.8322 0.8761 0.8490 0.9100 0.8442 0.8529
FKM1-ENNS 0.8875 0.8349 0.8764 0.8478 0.9096 0.8452 0.8530

MFKM1-ENNS 0.8877 0.8322 0.8761 0.8490 0.9100 0.8442 0.8529
FKM2 0.8842 0.8333 0.8690 0.8520 0.9145 0.8450 0.8550

MFKM2 0.8852 0.8339 0.8696 0.8527 0.9155 0.8460 0.8553
FKM2-PDS 0.8842 0.8333 0.8690 0.8520 0.9145 0.8450 0.8550

MFKM2-PDS 0.8852 0.8339 0.8696 0.8527 0.9155 0.8460 0.8553
FKM2-ENNS 0.8842 0.8333 0.8690 0.8519 0.9145 0.8450 0.8550

MFKM2-ENNS 0.8852 0.8339 0.8696 0.8527 0.9155 0.8460 0.8553

Table 14. PSNR (in dB) and SSIM of reconstructed images by using codebooks designed with the
training set P-M-T, using MFKM2-ENNS.

Images N = 32 N = 64 N = 128 N = 256

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena 25.62 0.7211 26.34 0.7604 26.91 0.7816 27.50 0.8133
Barbara 24.09 0.6350 24.66 0.6679 25.19 0.6982 25.68 0.7293
Elaine 26.62 0.7223 27.51 0.7626 28.11 0.7848 28.88 0.8134
Boat 24.16 0.6575 24.88 0.7038 25.31 0.7259 25.89 0.7633

Clock 25.21 0.7991 26.05 0.8207 26.81 0.8470 27.32 0.8618
Goldhill 25.71 0.6391 26.34 0.6788 26.92 0.7132 27.45 0.7435
Tiffany 28.21 0.7493 29.10 0.7917 30.40 0.8365 31.38 0.8647

Sensors 2016, 16, 1963 14 of 19

The last set of simulations show that vector quantization in the Discrete Wavelet Transform (DWT)
domain (that is, by quantizing the wavelet coefficients) lead to reconstructed images with better quality
when compared to the ones obtained by VQ in the spatial domain (that is, by quantizing the gray
scale values of pixels). For the purpose of DWT VQ [52] at the code rate 0.3125 bpp, a three level
multiresolution wavelet decomposition was performed [53] with the wavelet family Daubechies 6.
The resulting subbands Sij are submitted to quantization schemes according to Figure 2.

Sensors 2016, 16, 1963 14 of 19

The last set of simulations show that vector quantization in the Discrete Wavelet Transform
(DWT) domain (that is, by quantizing the wavelet coefficients) lead to reconstructed images with
better quality when compared to the ones obtained by VQ in the spatial domain (that is, by quantizing
the gray scale values of pixels). For the purpose of DWT VQ [52] at the code rate 0.3125 bpp, a three
level multiresolution wavelet decomposition was performed [53] with the wavelet family Daubechies 6.
The resulting subbands are submitted to quantization schemes according to Figure 2.

Figure 2. Image encoding using DWT.

Subbands , and are submitted to the respective wavelet VQ codebooks with N = 256
and K = 16 (blocks of 4 × 4 wavelet coefficents). Subbands , and are submitted to the
respective wavelet VQ codebooks with N = 256 and K = 4 (blocks of 2 × 2 wavelet coefficents). Subband

 is submitted to scalar quantization (SQ) with 8.0 bpp. Subbands , and are excluded (that
is, code rate 0 bpp)—one can observe in Figure 3 that the application of the inverse discrete wavelet
transform after exclusion of subbands , and , preserving all the other subbands with the
wavelet coefficients unchanged, leads to images close to the respective original ones (Figure 1), with
good quality, as revealed by visual inspection.

It is worth mentioning that, in the general case, after the application of a multiresolution discrete
wavelet transform (DWT) with resolution levels, the subbands , with = 1, 2… , and = 1, 2, 3,
are submitted to multiresolution VQ codebooks. In other words, with the exception of subband
(corresponding to the approximation component in the lowest resolution level), each subband is
quantized with a specific codebook. The subband is submitted to 8.0 bpp scalar quantization,
since it is the subband with the highest importance to the quality of the image obtained from the
inverse discrete wavelet transform (IDWT).

Assume the general case of an image with 	 × 	 pixels. The number of wavelet coefficients in
, with 1 ≤ ≤ , is 	×		×	 . Let 	 be the code rate (in bpp or, correspondingly, in bit/coefficient) of

VQ for subband , 1 ≤ ≤ and 1 ≤ ≤ 3, and 	 be the code rate (in bpp) of scalar quantization
for subband . The final code rate (in bpp) of the image coding using DWT (with resolution
levels) and VQ is given by:

Figure 2. Image encoding using DWT.

Subbands S21, S22 and S23 are submitted to the respective wavelet VQ codebooks with N = 256
and K = 16 (blocks of 4 × 4 wavelet coefficents). Subbands S31, S32 and S33 are submitted to the
respective wavelet VQ codebooks with N = 256 and K = 4 (blocks of 2 × 2 wavelet coefficents).
Subband S30 is submitted to scalar quantization (SQ) with 8.0 bpp. Subbands S11, S12 and S13 are
excluded (that is, code rate 0 bpp)—one can observe in Figure 3 that the application of the inverse
discrete wavelet transform after exclusion of subbands S11, S12 and S13, preserving all the other
subbands with the wavelet coefficients unchanged, leads to images close to the respective original
ones (Figure 1), with good quality, as revealed by visual inspection.

It is worth mentioning that, in the general case, after the application of a multiresolution discrete
wavelet transform (DWT) with L resolution levels, the subbands Sij, with i = 1, 2 . . . , L and j = 1, 2, 3,
are submitted to multiresolution VQ codebooks. In other words, with the exception of subband SL0

(corresponding to the approximation component in the lowest resolution level), each subband is
quantized with a specific codebook. The subband SL0 is submitted to 8.0 bpp scalar quantization,
since it is the subband with the highest importance to the quality of the image obtained from the
inverse discrete wavelet transform (IDWT).

Assume the general case of an image with P × P pixels. The number of wavelet coefficients in
Sij, with 1 ≤ i ≤ L, is P × P

2i × 2i . Let RSij be the code rate (in bpp or, correspondingly, in bit/coefficient) of
VQ for subband Sij, 1 ≤ i ≤ L and 1 ≤ j ≤ 3, and RSL0 be the code rate (in bpp) of scalar quantization
for subband SL0. The final code rate RT (in bpp) of the image coding using DWT (with L resolution
levels) and VQ is given by:

Sensors 2016, 16, 1963 15 of 19

RT =
1

P × P

(
P × P

2L × 2L RSL0 + ∑L
i=1∑

3
j=1

P × P
2i × 2i RSij

)
, (16)

that is:

RT =
RSL0

22L + ∑L
i=1∑

3
j=1

RSij

22i . (17)

For VQ with dimension K and codebook size N, it follows that the corresponding code rate is
1
K log2N. Hence, according to Figure 2, it follows that:

RS21 = RS22 = RS23 =
1
16

log2256 = 0.5 bpp (18)

and:
RS31 = RS32 = RS33 =

1
4

log2256 = 2.0 bpp (19)

Sensors 2016, 16, 1963 15 of 19

= 	 1	×	 	 ×2 × 2 0 + ∑ ∑ ×2 × 23=1=1 , (16)

that is: = + ∑ ∑ . (17)

For VQ with dimension and codebook size , it follows that the corresponding code rate is 	 log . Hence, according to Figure 2, it follows that:

	 = 	 = = 116 log 256 = 0.5 bpp (18)

and:

	 = 	 = = log 256 = 2.0 bpp. (19)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Images obtained from the inverse discrete wavelet transform with the exclusion of subbands
S11, S12 and S13. (a) Lena PSNR = 30.05 dB; (b) Barbara PSNR = 25.54 dB; (c) Elaine PSNR = 31.88 dB;
(d) Boat PSNR = 26.07 dB; (e) Clock PSNR = 29.02 dB; (f) Goldhill PSNR = 27.77 dB; (g) Peppers PSNR
= 30.74 dB; (h) Mandrill PSNR = 24.93 dB; (i) Tiffany PSNR = 31.69 dB.

From Figure 2, it follows that 	 = 8.0	bpp and 	 = 	 	 = 	 	 = 0	bpp . Thus, from
Equation (17), the corresponding overall code rate under the conditions presented in Figure 2 is =0.3125	bpp. It is worth mentioning that the importance of subbands for the image quality increases
with —that is the reason why 	 > 	 	, for = 1, 2, 3.

Figure 3. Images obtained from the inverse discrete wavelet transform with the exclusion of subbands
S11, S12 and S13. (a) Lena PSNR = 30.05 dB; (b) Barbara PSNR = 25.54 dB; (c) Elaine PSNR = 31.88 dB;
(d) Boat PSNR = 26.07 dB; (e) Clock PSNR = 29.02 dB; (f) Goldhill PSNR = 27.77 dB; (g) Peppers
PSNR = 30.74 dB; (h) Mandrill PSNR = 24.93 dB; (i) Tiffany PSNR = 31.69 dB.

From Figure 2, it follows that RS30 = 8.0 bpp and RS11 = RS12 = RS13 = 0 bpp. Thus,
from Equation (17), the corresponding overall code rate under the conditions presented in Figure 2
is RT = 0.3125 bpp. It is worth mentioning that the importance of subbands Sij for the image quality
increases with ithat is the reason why RS3j > RS2j , for j = 1, 2, 3.

Sensors 2016, 16, 1963 16 of 19

As can be observed in Figures 4 and 5, visual inspections of the reconstructed images reveal
the superiority of DWT VQ over vector quantization in the spatial domain. The superiority is also
confirmed in terms of PSNR and SSIM values.

Sensors 2016, 16, 1963 16 of 19

As can be observed in Figures 4 and 5, visual inspections of the reconstructed images reveal the
superiority of DWT VQ over vector quantization in the spatial domain. The superiority is also
confirmed in terms of PSNR and SSIM values.

(a) (b) (c)

Figure 4. Images Lena: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.62 dB and SSIM = 0.7211); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR =
29.35 dB and SSIM = 0.8367). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

(a) (b) (c)

Figure 5. Images Goldhill: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.71 dB and SSIM = 0.6391); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR =
26.81 dB and SSIM = 0.7640). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

The superiority of DWT VQ over spatial domain VQ is also observed in Table 15. As an example,
by using P-M-T as the training set, PSNR gain of 3.10 dB for Elaine image is obtained by substituting
spatial domain VQ by DWT VQ. For a given image, one can observe that better PSNR and SSIM
results are obtained by DWT VQ with codebooks designed by P-M-T when compared to spatial
domain VQ with codebook designed by the image itself. Consider, for instance, the Lena image. If
the Lena image is reconstructed using spatial domain VQ with codebook designed by itself as training
set, a PSNR 26.72 dB and a SSIM 0.7791 are obtained. If the Lena image is reconstructed in the DWT
domain with multiresolution codebooks designed by P-M-T as training set, a PSNR 29.35 dB and a
SSIM 0.8367 are obtained.

As a final comment, image coding based on VQ is one of the possible applications of the families
of fuzzy K-means algorithms considered in this paper. The focus of the present work is to assess the
fact that the proposed acceleration techniques make VQ codebook design faster, since other efficient
image coding techniques exist.

Figure 4. Images Lena: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.62 dB and SSIM = 0.7211); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR = 29.35 dB
and SSIM = 0.8367). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

Sensors 2016, 16, 1963 16 of 19

As can be observed in Figures 4 and 5, visual inspections of the reconstructed images reveal the
superiority of DWT VQ over vector quantization in the spatial domain. The superiority is also
confirmed in terms of PSNR and SSIM values.

(a) (b) (c)

Figure 4. Images Lena: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.62 dB and SSIM = 0.7211); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR =
29.35 dB and SSIM = 0.8367). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

(a) (b) (c)

Figure 5. Images Goldhill: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.71 dB and SSIM = 0.6391); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR =
26.81 dB and SSIM = 0.7640). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

The superiority of DWT VQ over spatial domain VQ is also observed in Table 15. As an example,
by using P-M-T as the training set, PSNR gain of 3.10 dB for Elaine image is obtained by substituting
spatial domain VQ by DWT VQ. For a given image, one can observe that better PSNR and SSIM
results are obtained by DWT VQ with codebooks designed by P-M-T when compared to spatial
domain VQ with codebook designed by the image itself. Consider, for instance, the Lena image. If
the Lena image is reconstructed using spatial domain VQ with codebook designed by itself as training
set, a PSNR 26.72 dB and a SSIM 0.7791 are obtained. If the Lena image is reconstructed in the DWT
domain with multiresolution codebooks designed by P-M-T as training set, a PSNR 29.35 dB and a
SSIM 0.8367 are obtained.

As a final comment, image coding based on VQ is one of the possible applications of the families
of fuzzy K-means algorithms considered in this paper. The focus of the present work is to assess the
fact that the proposed acceleration techniques make VQ codebook design faster, since other efficient
image coding techniques exist.

Figure 5. Images Goldhill: (a) Original; (b) Reconstructed using spatial domain VQ with 0.3125 bpp
(PSNR = 25.71 dB and SSIM = 0.6391); (c) Reconstructed using DWT VQ with 0.3125 bpp (PSNR = 26.81 dB
and SSIM = 0.7640). Codebooks were designed with training set P-M-T by MFKM2-ENNS.

The superiority of DWT VQ over spatial domain VQ is also observed in Table 15. As an example,
by using P-M-T as the training set, PSNR gain of 3.10 dB for Elaine image is obtained by substituting
spatial domain VQ by DWT VQ. For a given image, one can observe that better PSNR and SSIM results
are obtained by DWT VQ with codebooks designed by P-M-T when compared to spatial domain VQ
with codebook designed by the image itself. Consider, for instance, the Lena image. If the Lena image
is reconstructed using spatial domain VQ with codebook designed by itself as training set, a PSNR
26.72 dB and a SSIM 0.7791 are obtained. If the Lena image is reconstructed in the DWT domain with
multiresolution codebooks designed by P-M-T as training set, a PSNR 29.35 dB and a SSIM 0.8367
are obtained.

As a final comment, image coding based on VQ is one of the possible applications of the families
of fuzzy K-means algorithms considered in this paper. The focus of the present work is to assess the fact
that the proposed acceleration techniques make VQ codebook design faster, since other efficient image
coding techniques exist.

Sensors 2016, 16, 1963 17 of 19

Table 15. PSNR (in dB) and SSIM of reconstructed images. Codebooks were designed using
MFKM2-ENNS in spatial domain as well as by the DWT domain for code rate 0.3125 bpp.

Images

Spatial Domain VQ.
Performance Inside the

Training Set

Spatial Domain VQ with
Codebooks Designed by

Using P-M-T Training Set

DWT VQ with Multiresolution
Codebooks Designed by Using

P-M-T Training Set

PSNR SSIM PSNR SSIM PSNR SSIM

Lena 26.72 0.7791 25.62 0.7211 29.35 0.8367
Barbara 24.78 0.6822 24.09 0.6350 25.00 0.7573
Elaine 27.79 0.7566 26.62 0.7223 29.72 0.8304
Boat 24.90 0.7047 24.16 0.6575 25.49 0.7581

Clock 26.27 0.8364 25.21 0.7991 28.22 0.8672
Goldhill 26.76 0.7085 25.71 0.6391 26.81 0.7640
Tiffany 29.01 0.8078 28.21 0.7493 30.21 0.8099

6. Conclusions

In this work, alternatives were presented for accelerating families of fuzzy K-means algorithms
applied to vector quantization codebook design. A lookahead approach was used with the purpose of
decreasing the number of iterations of the algorithms. The approach consists in using a scale factor in
the computation of the codevectors.

An additional acceleration was obtained by accommodating efficient nearest neighbor search
techniques in the partitioning step of the algorithms. With such approach, savings are obtained in
the number of operations spent by the algorithms. The combination of the scale factor (lookahead
approach) with efficient nearest neighbor search was evaluated in the scenario of image vector
quantization codebook design. Savings up to 40% in the time spent for codebook design were obtained,
without sacrificing the quality of the codebook, assessed by the peak signal-to-noise ratio (PSNR) as
well as by structural similarity (SSIM) index of the reconstructed images.

Acknowledgments: The authors would like to thank CNPq and PIBITI program of the Catholic University of
Pernambuco for supporting this research. The authors also would like to thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of the paper.

Author Contributions: Edson Mata and Francisco Madeiro have proposed the alternative of accelerating
fuzzy K-means algorithms. Edson Mata implemented the techniques, with the support of Silvio Bandeira. All the
authors have contributed to simulation results analysis and to the manuscript writing. All authors have read and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gersho, A.; Gray, R.M. Vector Quantization and Signal Compression; Kluwer Academic Publishers: Boston, MA,
USA, 1992.

2. Gray, R.M. Vector Quantization. IEEE ASSP Mag. 1984, 1, 4–29. [CrossRef]
3. Ma, Z.; Taghia, J.; Kleijn, W.B.; Guo, J. Line Spectral Frequencies Modeling by a Mixture of Von Mises-Fisher

Distributions. Signal Proc. 2015, 114, 219–224. [CrossRef]
4. Paliwal, K.K.; Atal, B.S. Efficient Vector Quantization of LPC Parameters at 24 Bits/Frame. IEEE Trans. Audio

Speech Lang. Proc. 1993, 1, 3–14. [CrossRef]
5. Yahampath, P.; Rondeau, P. Multiple-Description Predictive-Vector Quantization with Applications to Low

Bit-Rate Speech Coding Over Networks. IEEE Trans. Audio Speech Lang. Proc. 2007, 15, 749–755. [CrossRef]
6. Akhtarkavan, E.; Salleh, M.F.M. Multiple Descriptions Coinciding Lattice Vector Quantizer for Wavelet

Image Coding. IEEE Trans. Image Proc. 2012, 21, 653–661. [CrossRef] [PubMed]
7. Tsolakis, D.; Tsekouras, G.E.; Tsimikas, J. Fuzzy Vector Quantization for Image Compression Based on

Competitive Agglomeration and a Novel Codeword Migration Strategy. Eng. Appl. Artif. Intell. 2012, 25,
1212–1225. [CrossRef]

http://dx.doi.org/10.1109/MASSP.1984.1162229
http://dx.doi.org/10.1016/j.sigpro.2015.02.015
http://dx.doi.org/10.1109/89.221363
http://dx.doi.org/10.1109/TASL.2006.885937
http://dx.doi.org/10.1109/TIP.2011.2164419
http://www.ncbi.nlm.nih.gov/pubmed/21843990
http://dx.doi.org/10.1016/j.engappai.2011.09.014

Sensors 2016, 16, 1963 18 of 19

8. Wen, J.; Ma, C.; Zhao, J. FIVQ Algorithm for Interference Hyper-Spectral Image Compression. Opt. Commun.
2014, 322, 97–104. [CrossRef]

9. Hu, Y.C.; Chen, W.L.; Lo, C.C.; Wu, C.M.; Wen, C.H. Efficient VQ-Based Image Coding Scheme Using Inverse
Function and Lossless Index Coding. Signal Proc. 2013, 93, 2432–2439. [CrossRef]

10. Hanilçi, C.; Ertas, F. Investigation of the Effect of Data Duration and Speaker Gender on Text-Independent
Speaker Recognition. Comput. Electr. Eng. 2013, 39, 441–452. [CrossRef]

11. Madeiro, F.; Fechine, J.M.; Lopes, W.T.A.; Aguiar Neto, B.G.; Alencar, M.S. Identificação Vocal por
Frequência Fundamental, QV e HMMS. In Em-TOM-Ação: A Prosódia em Perspectiva, 1st ed.; Aguiar, M.A.M.,
Madeiro, F., Eds.; Editora Universitária da UFPE: Recife, Brazil, 2007; pp. 91–120.

12. Qin, C.; Chang, C.-C. A Novel Joint Data-Hiding and Compression Scheme Based on SMVQ and Image
Inpainting. IEEE Trans. Image Proc. 2014, 23, 969–978.

13. Chang, C.-C.; Wu, W.-C. Hiding Secret Data Adaptively in Vector Quantisation Index Tables. IEEE Proc. Vis.
Image Signal Proc. 2006, 153, 589–597. [CrossRef]

14. Qin, C.; Hu, Y.-C. Reversible Data Hiding in VQ Index Table with Lossless Coding and Adaptive Switching
Mechanism. Signal Proc. 2016, 129, 48–55. [CrossRef]

15. Chang, C.C.; Nguyen, T.S.; Lin, C.C. A Reversible Compression Code Hiding Using SOC and SMVQ Indices.
Inf. Sci. 2015, 300, 85–99. [CrossRef]

16. Tu, T.Y.; Wang, C.H. Reversible Data Hiding with High Payload Based on Referred Frequency for VQ
Compressed Codes Index. Signal Proc. 2015, 108, 278–287. [CrossRef]

17. Kieu, T.D.; Ramroach, S. A Reversible Steganographic Scheme for VQ Indices Based on Joint Neighboring
Coding. Exp. Syst. Appl. 2015, 42, 713–722. [CrossRef]

18. Hu, H.T.; Hsu, L.Y.; Chou, H.H. Variable-Dimensional Vector Modulation for Perceptual-Based DWT Blind
Audio Watermarking with Adjustable Payload Capacity. Digit. Signal Proc. 2014, 31, 115–123. [CrossRef]

19. Vieira, R.T.; Brunet, N.; Costa, S.C.; Correia, S.; Aguiar Neto, B.G.; Fechine, J.M. Combining Entropy
Measurements and Cepstral Analysis for Pathological Voice Assessment. J. Med. Biol. Eng. 2012, 32, 429–435.
[CrossRef]

20. Linde, Y.; Buzo, A.; Gray, R.M. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1950, 28,
84–95. [CrossRef]

21. Tsolakis, D.; Tsekouras, G.E.; Niros, A.D.; Rigos, A. On the Systematic Development of Fast Fuzzy Vector
Quantization for Grayscale Image Compression. Inf. Sci. 2012, 36, 83–96. [CrossRef] [PubMed]

22. Hunga, W.-L.; Chen, D.-H.; Yang, M.-S. Suppressed Fuzzy-Soft Learning Vector Quantization for MRI
Segmentation. Inf. Sci. 2011, 52, 33–43. [CrossRef] [PubMed]

23. Krishnamurthy, A.K.; Ahalt, S.C.; Melton, D.E.; Chen, P. Neural Networks for Vector Quantization of Speech
and Images. IEEE J. Sel. Areas Commun. 1990, 8, 1449–1457. [CrossRef]

24. Azevedo, C.R.B.; Azevedo, F.E.A.G.; Lopes, W.T.A.; Madeiro, F. Terrain-Based Memetic Algorithms
to Vector Quantization Design. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2008);
Krasnogor, N., Ed.; DEU: Berlin, Germany, 2009; Volume 236, pp. 197–211.

25. Pan, J.S.; Mclnnes, F.R.; Jack, M.A. VQ Codebook Design Using Genetic Algorithms. Electron. Lett. 1995, 31,
1418–1419. [CrossRef]

26. Horng, M.-H. Vector Quantization Using the Firefly Algorithm for Image Compression. Inf. Sci. 2012, 39,
1078–1091. [CrossRef]

27. Horng, M.-H.; Jiang, T.-W. Image Vector Quantization Algorithm via Honey Bee Mating Optimization.
Inf. Sci. 2012, 38, 1382–1392. [CrossRef]

28. Karayiannis, N.B.; Bezdek, J.C. An Integrated Approach to Fuzzy Learning Vector Quantization and Fuzzy
C-Means Clustering. IEEE Trans. Fuzzy Syst. 1997, 5, 622–628. [CrossRef]

29. Karayiannis, N.B.; Pai, P.I. Fuzzy Vector Quantization Algorithms and Their Application in Image
Compression. IEEE Trans. Image Proc. 1995, 4, 1193–1201. [CrossRef] [PubMed]

30. Tsao, E.C.K.; Bezdek, J.C.; Pal, N.R. Fuzzy Kohonen Clustering Networks. Pattern Recognit. 1994, 27, 757–764.
[CrossRef]

31. Tsekouras, G.E.; Mamalis, A.; Anagnostopoulos, C.; Gavalas, D.; Economou, D. Improved Batch Fuzzy
Learning Vector Quantization for Image Compression. Inf. Sci. 2008, 178, 3895–3907. [CrossRef]

32. Triantafilisa, J.; Gibbsb, I.; Earla, N. Digital Soil Pattern Recognition in the Lower Namoi Valley Using
Numerical Clustering of Gamma-Ray Spectrometry Data. Geoderma 2013, 192, 407–421. [CrossRef]

http://dx.doi.org/10.1016/j.optcom.2014.02.016
http://dx.doi.org/10.1016/j.sigpro.2013.03.034
http://dx.doi.org/10.1016/j.compeleceng.2012.09.014
http://dx.doi.org/10.1049/ip-vis:20050153
http://dx.doi.org/10.1016/j.sigpro.2016.05.032
http://dx.doi.org/10.1016/j.ins.2014.12.028
http://dx.doi.org/10.1016/j.sigpro.2014.09.021
http://dx.doi.org/10.1016/j.eswa.2014.09.001
http://dx.doi.org/10.1016/j.dsp.2014.04.014
http://dx.doi.org/10.5405/jmbe.928
http://dx.doi.org/10.1109/TCOM.1980.1094577
http://dx.doi.org/10.1016/j.neunet.2012.09.009
http://www.ncbi.nlm.nih.gov/pubmed/23072930
http://dx.doi.org/10.1016/j.artmed.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21435851
http://dx.doi.org/10.1109/49.62823
http://dx.doi.org/10.1049/el:19951031
http://dx.doi.org/10.1016/j.eswa.2011.07.108
http://dx.doi.org/10.1016/j.eswa.2010.07.037
http://dx.doi.org/10.1109/91.649915
http://dx.doi.org/10.1109/83.413164
http://www.ncbi.nlm.nih.gov/pubmed/18292016
http://dx.doi.org/10.1016/0031-3203(94)90052-3
http://dx.doi.org/10.1016/j.ins.2008.05.017
http://dx.doi.org/10.1016/j.geoderma.2012.08.021

Sensors 2016, 16, 1963 19 of 19

33. Malinverni, E.S.; Fangi, G. Comparative Cluster Analysis to Localize Emergencies in Archaeology.
J. Cult. Herit. 2009, 10, e10–e19. [CrossRef]

34. Chen, G.; Meng, X.; Wang, Y.; Zhang, Y.; Tian, P.; Yang, H. Integrated WiFi/PDR/Smartphone Using
an Unscented Kalman Filter Algorithm for 3D Indoor Localization. Sensors 2015, 15, 24595–24614. [CrossRef]
[PubMed]

35. Fernández, R.; Montes, H.; Salinas, C.; Sarria, J.; Armada, M. Combination of RGB and Multispectral Imagery
for Discrimination of Cabernet Sauvignon Grapevine Elements. Sensors 2013, 13, 7838–7859. [CrossRef]
[PubMed]

36. Zhang, C.; Xiao, X.; Li, X.; Chen, Y.-J.; Zhen, W.; Chang, J.; Zheng, C.; Liu, Z. White Blood Cell Segmentation
by Color-Space-Based K-Means Clustering. Sensors 2014, 14, 16128–16147. [CrossRef] [PubMed]

37. Chen, C.-H.; Huang, W.-T.; Tan, T.-H.; Chang, C.-C.; Chang, Y.-J. Using K-Nearest Neighbor Classification to
Diagnose Abnormal Lung Sounds. Sensors 2015, 15, 13132–13158. [CrossRef] [PubMed]

38. Liu, N.; Cao, W.; Zhu, Y.; Zhang, J.; Pang, F.; Ni, J. The Node Deployment of Intelligent Sensor Networks
Based on the Spatial Difference of Farmland Soil. Sensors 2015, 15, 28314–28339. [CrossRef] [PubMed]

39. Adhikaria, S.K.; Singb, J.K.; Basub, D.K.; Nasipurib, M. Conditional Spatial Fuzzy C-Means Clustering
Algorithm for Segmentation of MRI Images. Appl. Soft Comput. 2015, 34, 758–769. [CrossRef]

40. Mekhmoukh, A.; Mokrani, K. Improved Fuzzy C-Means Based Particle Swarm Optimization (PSO)
Initialization and Outlier Rejection with Level Set Methods for MR Brain Image Segmentation.
Comput. Methods Prog. Biomed. 2015, 122, 266–281. [CrossRef] [PubMed]

41. Kinnunen, T.; Sidoroff, I.; Tuononen, M.; Fränti, P. Comparison of Clustering Methods: A Case Study of
Text-Independent Speaker Modeling. Pattern Recognit. Lett. 2011, 32, 1604–1617. [CrossRef]

42. Alkhalaf, S.; Alfarraj, O.; Hemeida, A.M. Fuzzy-VQ Image Compression based Hybrid PSOGSA Optimization
Algorithm. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul,
Turkey, 2–5 August 2015; pp. 1–6.

43. Bhattacharyya, P.; Mitra, A.; Chatterjee, A. Vector Quantization Based Image Compression Using Generalized
Improved Fuzzy Clustering. In Proceedings of the International Conference on Control, Instrumentation,
Energy and Communication (CIEC14), Kolkata, India, 31 January–2 February 2014; pp. 662–666.

44. Guan, L.; Kamel, M. Equal-Average Hyperplane Partitioning Method for Vector Quantization of Image Data.
Pattern Recognit. Lett. 1992, 13, 693–699. [CrossRef]

45. Ra, S.W.; Kim, J.K. A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm for Image Vector
Quantization. IEEE Trans. Circuits Syst. II 1993, 40, 576–579. [CrossRef]

46. Lee, D.; Baek, S.; Sung, K. Modified K-Means Algorithm for Vector Quantizer Design. IEEE Signal Proc. Lett.
1997, 4, 2–4.

47. Paliwal, K.K.; Ramasubramanian, V. Comments on Modified K-Means Algorithm for Vector Quantizer
Design. IEEE Trans. Image Proc. 2000, 9, 1964–1967. [CrossRef] [PubMed]

48. Bei, C.D.; Gray, R.M. An Improvement of the Minimum Distortion Enconding Algorithm for Vector
Quantization. IEEE Trans. Commun. 1985, 33, 1132–1133.

49. Chu, S.C.; Lu, Z.M.; Pan, J.S. Hadamard Transform Based Fast Codeword Search Algorithm for
High-Dimensional VQ Enconding. Inf. Sci. 2007, 177, 734–746. [CrossRef]

50. Chang, C.-C.; Wu, W.-C. Fast Planar-Oriented Ripple Search Algorithm for Hyperspace VQ Codebook.
IEEE Trans. Image Proc. 2007, 16, 1538–1547. [CrossRef]

51. Wang, Z.; Bovik, A.C.; Sheikh, H.R. Image Quality Assessment: From Error Visibility to Structural Similarity.
IEEE Trans. Image Proc. 2004, 13, 600–612. [CrossRef]

52. Averbuch, A.; Lazar, D.; Israeli, M. Image Compression Using Wavelet Transform and Multiresolution
Decomposition. IEEE Trans. Image Proc. 1996, 5, 4–15. [CrossRef] [PubMed]

53. Mallat, S.G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans.
Pattern Anal. Mach. Int. 1996, 5, 4–15.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.culher.2009.07.004
http://dx.doi.org/10.3390/s150924595
http://www.ncbi.nlm.nih.gov/pubmed/26404314
http://dx.doi.org/10.3390/s130607838
http://www.ncbi.nlm.nih.gov/pubmed/23783736
http://dx.doi.org/10.3390/s140916128
http://www.ncbi.nlm.nih.gov/pubmed/25256107
http://dx.doi.org/10.3390/s150613132
http://www.ncbi.nlm.nih.gov/pubmed/26053756
http://dx.doi.org/10.3390/s151128314
http://www.ncbi.nlm.nih.gov/pubmed/26569243
http://dx.doi.org/10.1016/j.asoc.2015.05.038
http://dx.doi.org/10.1016/j.cmpb.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26299609
http://dx.doi.org/10.1016/j.patrec.2011.06.023
http://dx.doi.org/10.1016/0167-8655(92)90098-K
http://dx.doi.org/10.1109/82.257335
http://dx.doi.org/10.1109/83.877216
http://www.ncbi.nlm.nih.gov/pubmed/18262930
http://dx.doi.org/10.1016/j.ins.2006.06.010
http://dx.doi.org/10.1109/TIP.2007.894256
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/83.481666
http://www.ncbi.nlm.nih.gov/pubmed/18285085
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Codebook Desing Techniques
	Accelerating Fuzzy K-Means Family Algorithm
	Nearest Neighbor Search Techniques for Accelerating the Codebook Design
	Results
	Conclusions

