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Abstract: This study explores the ability of WorldView-2 (WV-2) imagery for bamboo mapping in
a mountainous region in Sichuan Province, China. A large area of this place is covered by shadows in
the image, and only a few sampled points derived were useful. In order to identify bamboos based
on sparse training data, the sample size was expanded according to the reflectance of multispectral
bands selected using the principal component analysis (PCA). Then, class separability based on the
training data was calculated using a feature space optimization method to select the features for
classification. Four regular object-based classification methods were applied based on both sets of
training data. The results show that the k-nearest neighbor (k-NN) method produced the greatest
accuracy. A geostatistically-weighted k-NN classifier, accounting for the spatial correlation between
classes, was then applied to further increase the accuracy. It achieved 82.65% and 93.10% of the
producer’s and user’s accuracies respectively for the bamboo class. The canopy densities were
estimated to explain the result. This study demonstrates that the WV-2 image can be used to identify
small patches of understory bamboos given limited known samples, and the resulting bamboo
distribution facilitates the assessments of the habitats of giant pandas.
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1. Introduction

As an endangered species, giant pandas (Ailuropoda melanoleuca) are threatened by continuous
habitat loss and a low birth rate. Giant pandas live in a few mountain ranges in central China, mainly
in Wolong, Sichuan Province, where bamboos act as the main food source for wild giant pandas.
Estimating and mapping suitable habitat are critical to endangered species conservation planning
and policy [1]. As a result, knowledge of the spatial distribution of bamboos becomes important
for identifying the habitat of giant pandas. The increasing availability of remotely-sensed data has
led to widespread use in habitat mapping. The common approach employed for habitat mapping
using remote sensing is land cover classification, combined with ancillary information, such as digital
elevation models (DEM) and the water system [2]. There have been ongoing studies for mapping
bamboos and other tree species using remote sensing [3–9]. Most of these studies applied classification
over large areas using medium or low spatial resolution imagery, such as Landsat TM/ETM+ [10–14]
and MODIS [1], or using multi-temporal data, for example Wide Field Sensor data [3] and hyperspectral
data [15].
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In recent decades, the rapid development of satellite techniques has enabled researchers to
work on tree species mapping using very high resolution (VHR) multispectral (MS) imagery [16].
Much research focused on extracting the desired land cover classes using VHR imagery. For example,
Kamagata et al. [17] applied pixel-based and object-based classifications of IKONOS images to identify
forest physiognomy. Ouma and Tateishi [18] estimated biomass by classifying QuickBird imagery.
Pouteau et al. [19] also utilized QuickBird imagery to map rare plants. Sasaki et al. [20] classified
tree species by integrating LiDAR and VHR imagery data. Hu et al. [21] explored the use of Google
Earth imagery for land cover mapping in urban area. An accurate bamboo mapping can be realized
with the increasing availability of VHR satellite imagery. For example, Araujo et al. [22] mapped
bamboo-dominated gaps using QuickBird imagery. Han et al. [23] performed Moso bamboo forest
mapping using SPOT-5 imagery.

WorldView-2 (WV-2), as a new satellite-borne sensor, was launched by DigitalGlobe Company in
2009. WV-2 is the first high resolution commercial satellite with eight MS bands. The data provider
postulates that all four new bands (coastal blue, yellow, red edge and Near Infrared 2) are strongly
related to vegetation properties [24]. Recent studies have also demonstrated that WV-2 imagery has
a high potential in the classification of tree species. Immitzer et al. [25] examined the suitability of
eight-band WV-2 satellite data for the identification of 10 tree species in Austria. Pu and Landry [26]
explored the potential of WV-2 for identifying and mapping urban tree species/groups and compared
capabilities between IKONOS and WV-2 imagery. Omer et al. [27] predicted the Leaf Area Index (LAI)
of endangered tree species using WV-2 data. Karlson et al. [28] used WV-2 imagery to map tree crown
in managed woodlands. Chuang and Shiu [29] used WV-2 pan-sharpened imagery to map tea crop.
WV-2 has shown advantages in classifying bamboo patches, as well. For example, Ghosh and Joshi [16]
compared classification algorithms for bamboo mapping using WV-2 imagery.

When processing VHR imagery, such as WV-2, advanced classification techniques are important,
which have been studied for many years [30–33]. It is generally agreed that object-based image
analysis (OBIA) is superior to pixel-based image analysis (PBIA) for processing VHR remotely-sensed
data [34–39], because the former groups pixels into image objects (also known as segments),
thus overcoming the salt and pepper effect, which often occurs in the latter. OBIA is now widely
used to classify VHR images, mainly in land cover mapping of vegetation [32,40], forest [41], urban
areas [26], shaded areas [42], burned areas [43], etc. For PBIA, much research has proven that spatial
information can be used to improve classification results, such as geometry, homogeneity, entropy [44],
contrast, dissimilarity [45,46], grey-level co-occurrence matrix (GLCM) and grey-level difference vector
(GLDV) [47,48]. The OBIA approach also facilitates these features of image objects to be incorporated
into classifiers. However, the spatial dependency (e.g., spatial correlation and heterogeneity) is rarely
considered in OBIA. According to Tobler’s first law of geography, everything is related to everything
else, but near things are more related than distant things [49]. Therefore, the spatial correlation between
classes can be also incorporated to increase classification accuracy.

The Wolong natural reserve of giant pandas in Sichuan Province is a mountainous region.
In this area, bamboos are sparsely distributed as fragments, mixed with brush and covered by tree
canopies, thus causing difficulties in detecting and identifying bamboos. Therefore, this paper aims at
exploring the possibility to accurately map small patches of understory bamboos using a VHR image
in a complicated environment, which is critical to identifying habitats of giant pandas and supporting
the conservation of endangered animals.

2. Materials and Methods

2.1. Study Area

The Wolong natural reserve is located in the southwest of Wenchuan County, Aba Tibetan and
Qiang Autonomous Prefecture, Sichuan Province. This region is at the southeastern slope of Qionglai
Mountains and is 130 km away from the provincial capital Chengdu City. In Wolong region, the habitat
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of wild pandas has been greatly shrunken and fragmented, due to agricultural expansions, increasing
demands for timber products and infrastructure constructions. After the Wenchuan Earthquake
happened in 2008, landslides and mudslides have worsened the situation.

There is a high variation in topography, soils and climate that leads to a diverse flora and fauna in
Wolong reserve. Broadleaf forests are dominated by evergreen species below 1600 m and by a mixture
of evergreen and deciduous species between 1600 m and 2000 m. Above 2000 m, a mixed coniferous
and deciduous broadleaf forest gradually changes to a subalpine coniferous forest around 2600 m.
The forest reaches about 3600 m, until it is replaced by alpine meadows. Under forest canopies,
evergreen bamboo species dominate the understory layer [50].

The study area is the Wuyipeng research site (Figure 1), which was once a research facility of the
giant panda reserve center in Wolong, for researchers’ convenient access to the habitat of giant pandas.
With the establishment of other giant panda reserves, this site is no longer fully in service. A WV-2
subscene (30◦58′41′′–31◦0′10′′ N, 103◦8′57′′–103◦10′34′′ E) with a size of 1383 × 1263 pixels, acquired
on 14 January 2014 over the Wuyipeng area, is used in this study. The dataset consists of eight MS
bands with a spatial resolution of 2 m, including coastal blue (0.400–0.450 µm), blue (0.450–0.510 µm),
green (0.510–0.580 µm), yellow (0.585–0.625 µm), red (0.630–0.690 µm), red edge (0.705–0.745 µm),
Near-Infrared 1 (NIR1) (0.770–0.895 µm) and Near-Infrared 2 (NIR2) (0.860–1.040 µm).
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Figure 1. The study area in Wuyipeng (the true color composition of the WV-2 MS Bands 5, 3 and 2 
as red, green and blue channels, respectively). 

In the Wuyipeng area, there is an uphill route existing from northwest to southeast of the image, 
and the altitude changes from 1900 m–3450 m. There are mainly two bamboo species in this area: arrow 
bamboos (Bashania fabri) and umbrella bamboos (Fargesia robusta); and both of them are favored by giant 
pandas. Most umbrella bamboos grow taller than arrow bamboos, and both are sparsely distributed 
and covered by tree canopies at an altitude above 2000 m. However, the spectra of these two bamboo 
species are similar in the WV-2 imagery, and it is difficult to identify small patches of bamboo species 
using remote sensing techniques without hyperspectral information involved. Therefore, we did not 
identify tree species in this study, and the land cover types we focused on were classified as bamboo, 
coniferous, broadleaved, mixed woodland, brush and barren land. 

Figure 1. The study area in Wuyipeng (the true color composition of the WV-2 MS Bands 5, 3 and 2 as
red, green and blue channels, respectively).

In the Wuyipeng area, there is an uphill route existing from northwest to southeast of the image,
and the altitude changes from 1900 m–3450 m. There are mainly two bamboo species in this area:
arrow bamboos (Bashania fabri) and umbrella bamboos (Fargesia robusta); and both of them are favored
by giant pandas. Most umbrella bamboos grow taller than arrow bamboos, and both are sparsely
distributed and covered by tree canopies at an altitude above 2000 m. However, the spectra of these
two bamboo species are similar in the WV-2 imagery, and it is difficult to identify small patches
of bamboo species using remote sensing techniques without hyperspectral information involved.
Therefore, we did not identify tree species in this study, and the land cover types we focused on were
classified as bamboo, coniferous, broadleaved, mixed woodland, brush and barren land.
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2.2. Fieldwork

Extensive fieldwork at Wuyipeng was carried out in two field visits. The first one was on
11 June 2014, with the aim of measuring feature points for image geometric correction and collecting
training data for classification. The second field visit was on 11–12 September 2014, for the purpose of
testing the accuracy of the classification results. In both field trips, a Trimble® GeoXH™ 6000 handheld
GPS receiver (Trimble Mexico S. de R.L., Mexico City, Mexico) was used to collect sample points.
An antenna was connected to the GPS with a 2-m centering rod to ensure that the GPS signals from
multiple navigation satellites could be received under the canopy of large trees. The GeoXH handheld
uses both EVEREST™ multipath rejection technology and H-Star™ technology to provide decimeter
(10 cm) positioning accuracy. Finally, eight feature points were measured at the road junctions and the
corners of houses, which were then used for geometric correction.

In the first fieldwork, about 300 points were sampled with their locations and vegetation categories
recorded. However, since we did not know the precise locations of the image in the first fieldwork,
many points fell into shadows after geometric correction, and their spectral information could not be
used for training. Thus, these samples were discarded for classification. In the remaining training data,
only three points were labelled as bamboos, and four for each of the remaining classes (coniferous,
broadleaved, mixed woodland, brush and barren land). Commonly, the training and testing data
should be sampled from different areas to make a fair comparison. However, only one route could be
accessed to get to the top of the mountain, and there were no other routes in a different area nearby.
There were still some small landslides in this area, making the place very dangerous to perform the
fieldwork; therefore, the same area was explored in the second fieldwork, and 432 points were recorded
as testing data. It should be noted that the shadow class was also used as a category for classification,
which can be easily identified from the image. However, since it is not a typical land cover class type,
the shadow class was not listed in the classification results.

2.3. Classification Methods

Several classification methods were used in the experiment, and a brief review of the related
methods is presented in this section.

The Bayesian classification is based on Bayes’ theorem. It can predict class membership
probabilities and then allocate a pixel to a class based on the maximum a posteriori decision rule.

The support vector machine (SVM) classifier is a supervised learning model with associated
learning algorithms that analyze data and recognize patterns used for classification and regression
analysis. Given a set of training data, each marked as belonging to one of two categories, an SVM
training algorithm builds a model that assigns new data into one category or the other, making it
a non-probabilistic binary linear classifier.

The classification and regression tree (CART) classifier is a non-parametric method, and its main
idea is to recursively partition the data into smaller and smaller strata in order to improve the fit as
best as possible. CART partitions the sample space into a set of rectangles and fits a regression model
in each one. The sample space is originally split into two regions. The optimal split is found over all
variables at all possible split points. For each of the two regions created, this process is repeated again.
The major components of the CART method are the selection and stopping rules. The selection rule
determines which stratification to perform at every stage, and the stopping rule determines the final
strata to be formed. Once the strata are created, the impurity of each stratum is measured. The least
squares model is used to measure the impurity of the nodes in regression trees. The heterogeneity of
the outcome categories within a stratum is referred to as “node impurity”.

The k-nearest neighbor (k-NN) method classifies a pixel by majority voting according to its k
neighbors in the feature space [51]. The geostatistically-weighted k-NN (gk-NN) classification was
proposed by Atkinson and Naser [52] and was tested for the object-based method later [53]. In this
method, the probability that a pixel u belongs to class m can be evaluated as follows:
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pgk−NN [c (u) = m] =

K
∑

k=1

[
Sg × pm,m (huk)×ωuk +

(
1− Sg

)
×ωuk

]
M
∑

m′=1

K
∑

k=1

[
Sg × pm,m′ (huk)×ωuk +

(
1− Sg

)
×ωuk

] (1)

where h is the separation lag; the subscript uk of h indicates the lag between pixel u and its neighbor
k. pm,m (huk) is the fitted model of the spatial covariance, which also refers to the class-conditional
probability. m′ is a class index for m′ = 1, . . . , M classes, and m is the class of interest. Sg is a proportional
weight between 0 and 1. The larger the Sg, the larger the weight given to the geographical component
feeding into the probability. The class-conditional probability pm,m′ (huk) of a pixel u belonging to class
m, given a neighbor k in class m′ at a given lag h, is estimated as follows:

pm,m′ (huk) =

N
∑

i=1
I [c (h) = m′|c (u) = m]

N
∑

i=1
I [c (u) = m]

(2)

where N is the number of training pixels in the image, and c(h) represents the class value at a lag h
(i.e., the class at the neighboring pixel location k). I is an indicator function. The function I takes a value
of one if the condition is satisfied, otherwise zero. The spherical, exponential and Gaussian models are
usually fitted to the class-conditional probability plot. The gk-NN method can account for the spatial
dependence between the unknown location and its nearest neighboring (in the feature space) sample
locations. Therefore, both spectral and spatial information iteratively affect the classification result.

3. Data Processing

The OBIA classification scheme was adopted given such a high spatial resolution image, so the
salt and pepper effect can be avoid in the classification. Furthermore, OBIA facilitates the incorporation
of the geometry, texture and contextual information, which may be beneficial to classification.
The flowchart is shown in Figure 2.

A multi-resolution image segmentation was first applied to the WV-2 image of all the eight MS
bands. Then, 63,356 image segments were delineated given a scale parameter of 10, with a mean size
of 27.6 pixels. The segmentation result was not further edited since it is difficult to visually identify
boundaries in the image. However, the size of the training data (i.e., 23) sampled in the field is rather
small relative to the total number of the image objects (i.e., 63,356), which may severely suppress the
classification accuracy; it is therefore necessary to expand the size of training data to achieve a high
classification accuracy. Thus, the principal component analysis (PCA) was performed to initially
select important features, and then, a reflectance analysis was used to seek a method to expand the
training data. After deriving the expanded training data, a feature space optimization method was
tested on two sets of the training data to further select the features for classification. Then the original
and expanded training data were both involved for classification, in which several methods were
used to test the abilities of different classifiers given both sets of training data. The most effective
classification scheme was selected, and an enhanced classifier was applied to increase the accuracy.
Finally, the canopy densities were estimated to further explain the result.
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3.1. Principal Component Analysis

The PCA was applied to all of the MS bands, along with three geometry features (the ratio of length
to width, border index and shape index) and eight contextual features extracted from the grey-level
co-occurrence matrix (GLCM) (mean, standard deviation, homogeneity, contrast, dissimilarity, entropy,
correlation and angular second moment). The aim of PCA was to select the appropriate features for
expanding training data and for classification, as well. The statistics and the loadings of the resulting
principal components (PCs) are shown in Tables 1 and 2, respectively. Only the statistics of the first ten
PCs are shown in the tables.

Table 1 suggests that the first four PCs are critical, achieving a cumulative proportion of 1.0.
The standard deviation of the first PC (PC1) is almost four-times more than that of the second PC
(PC2), and the proportion of the variance of PC1 accounts for 0.91. Table 2 shows that Bands 6, 7 and 8
have the largest loadings (only depending on the absolute value) for PC1, which correspond to the
red edge, and NIR1 and NIR2 bands, respectively. Band 3, corresponding to the green band, has the
largest loading for PC2, whereas GLCM contrast has the largest loading for the third PC (PC3).
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Table 1. Importance of PCs.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Standard deviation 188 50 22 15 10 6 4 2 2 1
Proportion of variance 0.91 0.06 0.01 0.01 0 0 0 0 0 0
Cumulative proportion 0.91 0.98 0.99 1 1 1 1 1 1 1

Table 2. Loadings of PCs (grey-level co-occurrence matrix (GLCM) Layers 1–8 represent the mean,
standard deviation, homogeneity, contrast, dissimilarity, entropy, correlation and angular second
moment, respectively).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Band 1 −0.20 0.47 0.43
Band 2 −0.35 −0.14 −0.24 0.63 0.39 −0.74
Band 3 −0.14 −0.54 −0.22 −0.46 −0.65 0.48
Band 4 −0.12 −0.53 −0.11 0.11 −0.36 0.67 −0.11
Band 5 −0.40 −0.14 −0.18 −0.44 −0.33 0.59 0.30
Band 6 −0.48 0.32 0.77 0.14 0.20 −0.35
Band 7 −0.57 0.23 −0.76 −0.10 0.16
Band 8 −0.63 0.17 0.48 −0.55 −0.14

Length/width −0.14
Border index
Shape index

GLCM 1 −0.45
GLCM 2 −0.56
GLCM 3
GLCM 4 0.97 −0.15
GLCM 5 −0.52
GLCM 6 −0.43
GLCM 7
GLCM 8

3.2. Expand Sample Size

As mentioned before, the proportion of classes and distribution of features may not be properly
reflected due to a small sample size. Therefore, the sample size needs to be expanded to reduce its
effects on the classification result. Here, a reflectance analysis was performed to check the spectral
distribution of different classes across different bands, seeking a method to expand the training data.

According to the selected 23 training data, box-and-whisker plots of the spectral variability of
the training data of six land cover types across eight MS bands are shown in Figure 3. The spectral
reflectance is the mean value of the pixels within the segmented object. The bottom and top of the
box are the first and third quartiles, respectively, and the band inside the box is the median value.
As shown, the red edge and two NIR bands have stronger spectral separability of classes than other
bands. The reflectance of bamboo is separable from all of the other classes across these three bands,
but the spectral ranges of mixed woodland and brush overlap. The bamboo class also shows a great
difference from other classes across the green and yellow bands. As indicated in Table 2, PC1 is exactly
the combination of these five bands. Therefore, according to the reflectance analysis above, it is possible
to utilize the mean value and the standard deviation of the reflectance for each class across these five
bands to expand the training data.

A parameter t is given for µ ± tσ, where µ and σ stand for the mean value and standard deviation
of the reflectance, respectively. Two rules are followed: (i) the spectral range of each band is allowed
little or no overlap between different classes; and (ii) an appropriate size of the expanded training data
should be considered. Here, five MS bands of PC1 were considered for expanding the training data
because the cumulative proportion of PC1 achieves above 90%. Another reason is that if too many
features are included, the parameter t would take a large value in order to select enough training data,
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thus loosening the constraint of the features of training data. The parameters are shown in Table 3,
and the spectral ranges of the expanded training data are indicated using arrows in Figure 4.
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Figure 4. Distributions of the reflectance of different land cover types across five bands and expanded
training data.

In Figure 4, the arrows show spectral ranges of the expanded training data for different classes
across five bands. It can be seen that the red edge, NIR1 and NIR2 bands distinguish well all of
the classes, but the spectral ranges of barren land and vegetation overlap in the green and yellow
bands. After expanding the training data, as shown in Table 3, the total number of training data is 801
(including 83 samples of the shadow class), accounting for 1.26% of the total image objects (63,356).
The spatial distributions of the expanded training data and the testing data collected in the second
fieldwork are shown in Figure 5. The testing points are located within different segments to avoid
redundancy of information, which may affect the reported accuracy.
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Table 3. The parameters to control the spectral range and the numbers of expanded training data.

Class t Spectral Range (Green, Yellow, Red Edge, NIR1, NIR2) Sample Size

Bamboo 0.25 (150.6, 154.0), (95.6, 99.9), (120.7, 129.9), (116.7, 126.9), (132.6, 143.7) 49
Coniferous 0.65 (183.0, 190.2), (116.6, 122.1), (328.0, 368.7),(368.7, 415.1), (390.8, 446.5) 212

Broadleaved 0.4 (190.2, 196.4), (124.5, 131.3), (289.1, 325.5),(313.1, 352.6), (337.3, 381.2) 103
Mixed woodland 0.25 (175.4, 183.2), (112.8, 119.6), (201.4, 248.1),(213.7, 268.5), (227.4, 286.5) 209

Brush 0.2 (160.0, 166.4), (102.4, 109.5), (159.5, 172.7),(166.3, 182.6), (186.0, 206.9) 107
Barren land 0.85 (166.0, 215.7), (97.4, 129.7), (78.3, 109.7),(55.8, 82.1), (52.3, 79.6) 38
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3.3. Feature Space Optimization

It is common to use geometry and contextual features for object-based classification. However,
the previous PCA result shows that only GLCM contrast has a great weight for PC3; the other geometry
and contextual information do not contribute to the first four PCs. This is because there are rarely large
vegetation patches in such a mountainous area; the geometry and contextual information do not show
distinctive differences between small segments; thus this information cannot be effectively used.

Here, a feature space optimization method was used to further select the appropriate features
for classification. We do not merely use the PCA selected features because PCA is estimated based
on the whole image, whereas the class separability is also dependent on the features of training data.
Therefore, nine features contributing to the first four PCs (the cumulative proportion achieves 1.0
using the first four PCs), including all eight MS bands and GLCM contrast, were used for feature space
optimization based on two sets of training data. The barren land and shadow classes are easier to be
identified, so these two classes were exclusive to avoid causing a dominated influence when estimating
the optimized features. The method mathematically calculates the distances between the training
samples of different classes in the feature space and chooses features that produce the largest average
minimum distance as the best combination. The chart of the feature dimension against separation
distance is shown in Figure 6. It turns out that five features (Bands 4–8) produced the largest distance
(0.16) for the original training data, whereas the same five features and the GLCM contrast layer
resulted in the largest distance (0.23) for the expanded training data.



Sensors 2016, 16, 1957 10 of 21
Sensors 2016, 16, 1957 10 of 22 

 

 
Figure 6. Feature space optimization using nine features based on two sets of training data. 

In order to make a fair comparison using different training data, the same features should be 
involved for classification. Therefore, referring to the optimization result, we chose the six features 
selected based on the expanded training data. As a result, the yellow, red, red edge, NIR1 and NIR2 
bands and a GLCM contrast layer were included for classification. 

4. Results 

4.1. Initial Classification Results 

Four popular classification algorithms, including the CART, k-NN, Bayesian and SVM methods, 
were applied in this study. Both the original and expanded training data were used for classification based 
on the mean values of the yellow, red, red edge, NIR1 and NIR2 bands and the GLCM contrast layer. 

In the CART method, the maximum depth of the decision tree was set to six; the minimum 
number of sample data for each node was set to five; and a six-fold cross-validation was performed. 
Figure 7 shows the decision rules of the regression tree. However, as can be seen, the original training 
data only involved three MS bands, and the brush class was missed in the decision rule, whereas the 
expanded training data distinguished all of the classes, but only using two MS bands. In the k-NN 
method, the k-value was set to five. In the SVM methods, a five-fold cross-validation was applied to 
select the cost of constraints violation C and the kernel parameter γ for the radial basis function (RBF) 
kernel. The optimal parameters C = 1 and γ = 0.2 and C = 2 and γ = 0.33 were used for the original and 
expanded training data, respectively. The classification results are shown in Figures 8 and 9. 

Comparing Figures 8 and 9, the classification results using the Bayesian method show the most 
distinctive difference based on both sets of training data. The misclassification was caused by the 
non-normal distribution of the features and the inaccurate estimation of the covariance matrix. For 
the rest of the methods, the brush was not classified using the CART method based on the original 
training data. The results based on the expanded training data generally show more brush than those 
based on the original training data. The CART and SVM methods classify more areas as bamboos, 
and the k-NN method allocates more pixels as broadleaved based on the original training data. 
Comparing the four classification methods based on the expanded training data in Figure 9, brush is 
dominated in the Bayesian result. The SVM result has the highest number of pixels classified as 
bamboos, whereas the Bayesian result has the least. The broadleaved and mixed woodland classes 
appear more in the SVM result, and the broadleaved class also appears more in the k-NN result. 

Figure 6. Feature space optimization using nine features based on two sets of training data.

In order to make a fair comparison using different training data, the same features should be
involved for classification. Therefore, referring to the optimization result, we chose the six features
selected based on the expanded training data. As a result, the yellow, red, red edge, NIR1 and NIR2
bands and a GLCM contrast layer were included for classification.

4. Results

4.1. Initial Classification Results

Four popular classification algorithms, including the CART, k-NN, Bayesian and SVM methods,
were applied in this study. Both the original and expanded training data were used for classification
based on the mean values of the yellow, red, red edge, NIR1 and NIR2 bands and the GLCM
contrast layer.

In the CART method, the maximum depth of the decision tree was set to six; the minimum
number of sample data for each node was set to five; and a six-fold cross-validation was performed.
Figure 7 shows the decision rules of the regression tree. However, as can be seen, the original training
data only involved three MS bands, and the brush class was missed in the decision rule, whereas the
expanded training data distinguished all of the classes, but only using two MS bands. In the k-NN
method, the k-value was set to five. In the SVM methods, a five-fold cross-validation was applied to
select the cost of constraints violation C and the kernel parameter γ for the radial basis function (RBF)
kernel. The optimal parameters C = 1 and γ = 0.2 and C = 2 and γ = 0.33 were used for the original and
expanded training data, respectively. The classification results are shown in Figures 8 and 9.

Comparing Figures 8 and 9, the classification results using the Bayesian method show the most
distinctive difference based on both sets of training data. The misclassification was caused by the
non-normal distribution of the features and the inaccurate estimation of the covariance matrix. For the
rest of the methods, the brush was not classified using the CART method based on the original training
data. The results based on the expanded training data generally show more brush than those based
on the original training data. The CART and SVM methods classify more areas as bamboos, and the
k-NN method allocates more pixels as broadleaved based on the original training data. Comparing the
four classification methods based on the expanded training data in Figure 9, brush is dominated in the
Bayesian result. The SVM result has the highest number of pixels classified as bamboos, whereas the
Bayesian result has the least. The broadleaved and mixed woodland classes appear more in the SVM
result, and the broadleaved class also appears more in the k-NN result.
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Figure 7. Decision rules of the CART classification based on (a) original training data and (b) expanded
training data.
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Figure 8. Classified maps generated using (a) CART; (b) k-NN; (c) Bayesian and (d) SVM methods
based on the original training data.
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based on the expanded training data.

4.2. Accuracy Assessment

The accuracies are reported as radar charts in Figure 10. As shown from Figure 10a, the overall
accuracies are greater based on the expanded training data than for the original training data using all
four classification methods. The SVM method has the greatest overall accuracy based on the original
training data, but it only has a 4.4% increase in the overall accuracy, which indicates that the SVM
is the most stable classifier; thus, sample size has little effect on it. The overall accuracies using the
Bayesian method are the lowest based on both training data, but the increase in accuracy is great,
which achieves 12.77%. The CART method increased 9.4% in accuracy based on the expanded training
data, and its overall accuracy is greater than for the SVM method. The k-NN has the greatest overall
accuracy based on the expanded training data, where the increase in accuracy is 34.98%.

Comparing the producer’s accuracies based on different training data, the SVM method shows
a sharp decrease for the broadleaved class and an increase for the mixed woodland class based on the
expanded training data. It reflects in Figures 8b and 9b, where the dominant vegetation turned from
broadleaved to mixed woodland. A similar situation also occurred for the CART method, where the
dominant broadleaved class turned into brush, causing an increase in producer’s accuracy for the latter
class. The classes of mixed woodland, brush and barren land suffer a severe misclassification based on
the original training data using the Bayesian method; the brush and barren land classes were corrected
based on the expanded training data, but the accuracy reduced for the bamboo class. The producer’s
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accuracies of all of the classes increased using the k-NN method, except for broadleaved forest, since it
was classified more based on the original training data, as mentioned before. The user’s accuracies
of all of the classes are generally greater based on the expanded training data than for the original
training data, leading to an increase in the overall accuracy. Therefore, the expanded training data
successfully increased the accuracies for all of the classification methods.

Sensors 2016, 16, 1957 13 of 22 

 

based on the original training data using the Bayesian method; the brush and barren land classes 
were corrected based on the expanded training data, but the accuracy reduced for the bamboo class. 
The producer’s accuracies of all of the classes increased using the k-NN method, except for 
broadleaved forest, since it was classified more based on the original training data, as mentioned 
before. The user’s accuracies of all of the classes are generally greater based on the expanded training 
data than for the original training data, leading to an increase in the overall accuracy. Therefore, the 
expanded training data successfully increased the accuracies for all of the classification methods. 

 
Figure 10. Radar charts of the accuracies using different classification methods based on the original 
and expanded training data (unit: %). Figure 10. Radar charts of the accuracies using different classification methods based on the original

and expanded training data (unit: %). (a) Overall accuracy; (b) Producer’s accuracy using original
training data; (c) User’s accuracy using original training data; (d) Producer’s accuracy using expanded
training data; (e) User’s accuracy using expanded training data.

4.3. Improving the Classifier

Here, the k-NN method based on the expanded training data produced the most accurate result.
In order to further increase the classification accuracy, a spatial weighting scheme was performed to
improve the k-NN classifier and derive a contextual classification result. As described in Section 2.3,
a geostatistical modelling was first performed to estimate class-conditional probability for each class
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in the gk-NN classification method and provided spatial information for the k-NN classifier. In the
geostatistical model, the conditional probability is a function of distance. The Euclidean distance
between segments was calculated to build the geostatistical model. In order to do so, the point located
at the center of each segment was extracted using the FeatureToPoint tool (inside option) in ArcGIS.
The central locations were recorded, and so, the distance between any two segments could be inferred.

Class-conditional probability plots were estimated from 801 sample points and then fitted with
the covariance models without considering anisotropy. The class-conditional probability plots for the
seven classes and the fitted models are shown in Figure 11. Then, the gk-NN classification method
using Equation (1) was performed, based on the same six features of the expanded training data as in
the previous classification methods.

Sensors 2016, 16, 1957 14 of 22 

 

4.3. Improving the Classifier 

Here, the k-NN method based on the expanded training data produced the most accurate result. 
In order to further increase the classification accuracy, a spatial weighting scheme was performed to 
improve the k-NN classifier and derive a contextual classification result. As described in Section 2.3, 
a geostatistical modelling was first performed to estimate class-conditional probability for each class 
in the gk-NN classification method and provided spatial information for the k-NN classifier. In the 
geostatistical model, the conditional probability is a function of distance. The Euclidean distance 
between segments was calculated to build the geostatistical model. In order to do so, the point located 
at the center of each segment was extracted using the FeatureToPoint tool (inside option) in ArcGIS. 
The central locations were recorded, and so, the distance between any two segments could  
be inferred. 

Class-conditional probability plots were estimated from 801 sample points and then fitted with 
the covariance models without considering anisotropy. The class-conditional probability plots for the 
seven classes and the fitted models are shown in Figure 11. Then, the gk-NN classification method 
using Equation (1) was performed, based on the same six features of the expanded training data as 
in the previous classification methods. 

 
Figure 11. Estimated class-conditional probability plots and fitted models for each class. The lag on 
the x-axis is in units of pixels. 

Figure 11. Estimated class-conditional probability plots and fitted models for each class. The lag on the
x-axis is in units of pixels.

The classified map generated using the gk-NN method is shown in Figure 12. As indicated,
Figures 9b and 12 are similar in class distribution. The bamboo class in red color appears slightly
more in the k-NN result than in the gk-NN result, whereas the mixed woodland class appears more
in the gk-NN result. Tables 4 and 5 show the complete confusion matrices and Kappa coefficients of
the k-NN and gk-NN classification results. As can be seen, the overall accuracy and Kappa coefficient
of the gk-NN method is 81.16% and 0.768, respectively, which are greater than for the k-NN method
(76.28% and 0.706). The producer’s accuracies of the bamboo class are the same using both methods,
and the user’s accuracy is slightly greater using the gk-NN method, indicating that the introduced
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spatial weighting has little effect on the bamboo class. The class that benefits the most from the spatial
weighting is broadleaved forest, whose producer’s and user’s accuracies achieved the increases of
23.29% and 12.77%, respectively. The user’s accuracy of the coniferous class, the producer’s accuracy
of the brush class and both the producer’s and user’s accuracies of the mixed woodland class increased.
It can be seen in Figure 11 that as these four vegetation classes have shorter distance ranges than
the other classes, the classification result was improved by spatial context within a short distance
range. In conclusion, the spatial weighting used in the gk-NN classifier increased the accuracy of the
k-NN method.
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Figure 12. Classified map using the gk-NN method.

Table 4. Error matrix using the k-NN method (Class name: 1, bamboo; 2, coniferous; 3, broadleaved;
4, mixed woodland; 5, brush; 6, barren land), Kappa = 0.706.

k-NN 1 2 3 4 5 6 User’s Accuracy

1 81 0 0 0 7 0 92.05%
2 0 96 29 1 0 0 76.19%
3 1 2 39 11 6 0 66.10%
4 0 5 4 59 8 1 76.62%
5 13 2 1 7 35 0 60.34%
6 3 0 0 1 0 18 81.82%

Producer’s Accuracy 82.65% 91.43% 53.42% 74.68% 62.50% 94.74% 76.28%

Table 5. Error matrix using the gk-NN method (Class name: 1, bamboo; 2, coniferous; 3, broadleaved;
4, mixed woodland; 5, brush; 6, barren land), Kappa = 0.768.

gk-NN 1 2 3 4 5 6 User’s Accuracy

1 81 0 0 0 6 0 93.10%
2 0 95 10 1 0 0 89.62%
3 0 3 56 7 5 0 78.87%
4 0 5 3 62 8 0 79.49%
5 14 2 4 8 37 1 56.06%
6 3 0 0 1 0 18 81.82%

Producer’s Accuracy 82.65% 90.48% 76.71% 78.48% 66.07% 94.74% 81.16%
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5. Discussion

5.1. Canopy Density Estimation

In this study area, bamboos are covered by tree crowns at many locations, and their spectra do
not show distinctive differences from surrounding vegetation and above tree crowns. Therefore, it is
worth exploring what degree of canopy density (i.e., the percentage of vegetation to ground) can allow
understory bamboos to be identified from the WV-2 imagery. Figure 13 shows two photos that were
vertically taken using a fisheye camera at two testing points. Figure 13a was marked as the bamboo
class surrounded by brush and was correctly classified, whereas Figure 13b was recorded as the
bamboo class covered by mixed woodland, but was misclassified as brush using the gk-NN method.
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Figure 13. Tree crown photos taken using a fisheye camera at the testing locations. (a) The bamboo class
surrounded by brush and was correctly classified; (b) the bamboo class covered by mixed woodland
and was misclassified as brush.

It is obvious that the bamboos in Figure 13a are less covered by canopies than those in Figure 13b.
The canopy densities were estimated for these two photos. Thus, the tree canopies were extracted
and are shown in binary maps in Figure 14. The background pixels outside the fisheye camera were
excluded by masking when estimating canopy densities. The canopy densities are 0.82 and 0.67 for
Figure 14a,b, respectively. Therefore, in a WV-2 image, it is possible to extract bamboos in the areas
with a median canopy density (from 0.2–0.7) or in a sparse forest (the canopy density is less than 0.2),
but it is difficult to identify bamboos in the areas with a high canopy density (over 0.70).
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5.2. Classification Accuracy Comparison

For the classification methods used in the experiment, the overall accuracies are all below 55%
based on the original training data. This is because the classification model can be very vulnerable
given such a small sample size, causing some class types to be severely misclassified, such as coniferous
trees in the k-NN and brush in the CART methods. The expanded training data provided a proper
proportion of classes as the prior knowledge and, therefore, increased the reliability of the classification
model. The Bayesian classifier is sensitive to the distribution of features, whereas the SVM method
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shows its robustness in classification. The feature space optimization method is estimated based on the
class separation distance, which is more suited to the k-NN method. This may be the reason that k-NN
can achieve the greatest accuracy. However, even based on the expanded training data, the overall
accuracies are not very high. There are three factors that may affect the accuracies: the understory
bamboos, the diverse vegetation and some errors that have inevitably been introduced into the
expanded training data, thus causing difficulties in classification. In order to compare the derived
accuracy with other studies, Table 6 presents an overview of studies on bamboo classification carried
out within the last 10 years using different remotely-sensed images.

The overall accuracies, reported in Table 6, range between 48% and 93%. However, the great
accuracies are generally achieved in an area where bamboos are dominated and not covered by
trees. For the classification of understory bamboos, the overall accuracies range between 74% and
88% and usually by using assistant data (e.g., elevation). The producer’s and user’s accuracies of
bamboo obtained in this study (82.65% and 93.10%) are greater than most of the accuracies reported
in comparable studies. Most of the methods for bamboo classification are widely used, such as
the maximum likelihood classifier (MLC), SVM and some machine-learning methods, for example,
neural networks and maximum entropy (MaxEnt). We also reviewed some advanced methods for
classifying diverse vegetation (without bamboo class), including random forest [1], linear discriminant
analysis [54,55], logistic regression [56], etc. However, it is more common to use hyperspectral
images for forest classification [15,57–61]. The research using VHR images for bamboo classification
has appeared very recently [16,23], and there is no related research using VHR images to extract
understory bamboos as performed in this study. Elevation data and the derivatives can be combined
to improve the classification results, which can be explored in the future. It should be noted that
the objective of the paper was to check the possibility to extract understory bamboos using a WV-2
image in Wolong reserve rather than the validation of methods. Therefore, the methods in this paper
including feature selection and classification are not universal; it may lead to different results when
testing on another area.

Table 6. Results from bamboo classification using different remotely-sensed images and classification
methods from the last 10 years (in chronological order).

Image Assistant
Data Methods Class

Number
Bamboo Accuracy

(%) (PA/UA) 1
Overall

Accuracy (%)
Understory

Bamboo Reference

Landsat TM - ANN 2 3 65/85 80 Yes [10]

Airborne hyperspectral
image - SAM 3 1 60 60 No [61]

Landsat ETM+
Elevation,

temperature,
rainfall

MLC 5 84/41 88 No [4]

ASTER Elevation ANN 7 77/84 74 Yes [6]

MODIS Elevation MaxEnt 2 Kappa 0.74 88 Yes [1]

Landsat MSS, TM, ETM+ - MLC 12 n.s. 4 74 Yes [62]

Hyperion EO-1 - ANN 8 89/87 81 No [15]

Digital photograph LiDAR Decision tree 16 57/56 48 No [20]

Landsat TM, MODIS - Matched filtering 5 85 93 No [9]

Landsat TM, MODIS - Unmixing 7 80/77 86 No [63]

Landsat 8 OLI Elevation BPNN 5 12 84/n.s. 87 No [64]

SPOT-5 - CART 7 93/90 85 No [23]

WV-2 - SVM 7 94/89 91 No [16]

VSWIR - EMC 6 8 72/98 65 No [65]

1 PA: producer’s accuracy; UA: user’s accuracy; 2 ANN: artificial neural networks; 3 SAM: spectral angle
mapper; 4 n.s.: not specified; 5 BPNN: back-propagation neural networks; 6 EMC: endmember average root
mean square error, minimum average spectral angle and count-based.

5.3. Performance of the Gk-NN Method

It is worth exploring how the gk-NN method utilizes spatial information. Bamboos in the study
area normally grow as small patches, and thus, unlike in previous research [16], texture information
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does not facilitate mapping bamboo patches. Instead, the spatial correlation was established between
sparsely-distributed vegetated areas. The k-NN classifier was chosen to incorporate the spatial
information because the location information of training data can be retained and a geographical
weighting can be easily integrated into the classifier. It has been proven that both the distance
weighted scheme and the geostatistical scheme can lead to sound classification results [52]. The spatial
information lies in the conditional probability function, which derives from each pair of an unknown
location and its nearest neighbors. For instance, the distance range of the covariance model for the
bamboo class is 70 (Figure 11), which means that the spatial correlation between bamboos decreases
within a distance range from 0–70 pixels (0–140 m), and the correlation will reduce to zero outside
this range.

The last issue is the applicability of the gk-NN method in an object-based level. Although the
classification applied in the case study is object based, the sample points for geostatistical modelling
were obtained from the center of the training segments, and so, the covariance model describes the
spatial correlation between different segments. The probability plots in Figure 11 show both the
correlation within each segment (a peak) and the correlation between segments (a trend). The method
characterizes the correlation between segments. Therefore, the peaks were ignored when fitting the
geostatistical models. In this case study, as the number of segments is large and the average size of
segments is small, the distances between centers of segments are similar to pixel-based measurement,
and thus, the gk-NN method is applicable for the object-based classification.

6. Conclusions

This study explored the potential of VHR WV-2 imagery for extracting small patches of understory
bamboos in a mountainous region in Wolong, Sichuan Province, China. A simple, but effective method
was used to expand the training data to an appropriate sample size based on the PCA and reflectance
analysis. The features of training data were then optimized for classification. Four regular object-based
classification methods were applied based on both the original and expanded training data. The results
were analyzed and compared through the field validation. The expanded training data successfully
increased the accuracies for all of the classification methods, in which the k-NN method achieved the
greatest accuracy. Then, an enhanced k-NN classifier weighted with a geostatistical scheme was applied
to produce a final land cover map. This method produced the overall accuracy of 81.16%; the producer’s
and user’s accuracies of the bamboo class are 82.65% and 93.10%, respectively. The canopy densities were
estimated to check the possibility of extracting bamboos under tree crowns. This study demonstrates
that the WV-2 image can be used to identify small patches of understory bamboos in a forest-covered
mountainous area, given limited known sample points. The result is critical to identifying habitats of
giant pandas and supporting the conservation of the endangered animals.
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