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Abstract: Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration
signal analysis is one of the most significant issues in improving the reliability and reducing the outage
cost for power systems. The limitation of training samples and types of machine faults in HVCBs
causes the existing mechanical fault diagnostic methods to recognize new types of machine faults
easily without training samples as either a normal condition or a wrong fault type. A new mechanical
fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer
classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals
during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to
decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is
divided into submatrices to compute the local singular values (LSV). The maximum singular values of
each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two
one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed
to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or
fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the
specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and
fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor
lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the
feasibility of the proposed method. Results show that the classification accuracy of the new method
is superior to other traditional methods.

Keywords: mechanical fault diagnosis; high voltage circuit breakers; acceleration sensor; variational
mode decomposition; local singular value; one-class support vector machines

1. Introduction

As an integral part of the power system, high-voltage circuit breakers (HVCBs) are responsible
for the control and protection of the system. HVCB faults will directly harm system reliability,
causing significant outage costs. Therefore, the study of fault diagnostic methods for HVCBs is urgent.
An inquiry about HVCB faults by the International Council on Large Electric Systems (CIGRE) showed
that 39% of minor faults and 44% of major faults are of mechanical origin [1]. Hence, the research on
mechanical fault diagnosis of HVCBs has practical significance. Vibration signals generated during
the opening/closing operations of HVCBs contain certain important information associated with the
mechanical state of breakers. Runde et al. [2] demonstrated through an extensive HVCB diagnostic test
that vibration analysis is a suitable and reliable noninvasive diagnostic method for HVCBs. Analysis
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of HVCB vibration signals collected by acceleration sensor has been widely used in the state detection
and fault diagnosis of HVCBs [3–9].

HVCB vibration signals have a strong transient and wide frequency distribution. The signal
acquisition equipment must have a high sampling rate. An acceleration sensor has high accuracy,
wide frequency and amplitude responses, small size, and is easy to install; thus, it is widely used in
vibration data acquisition [3–11].

Signal processing is conducted after vibration signals are obtained by the acceleration sensor,
extracting the signal features for fault diagnosis. The HVCB vibration signals during operation
are nonstationary and nonlinear. Traditional signal-processing methods, such as Fourier transform
(FT) [12], are unsuitable for vibration signal analysis and processing. Conversely, time-frequency
analysis methods, including wavelet packet decomposition (WPD) [3], empirical mode decomposition
(EMD) [6,7], and local mean decomposition (LMD) [9], can analyze HVCB vibration signals well.
Wavelet analysis can represent the local characteristics of signals both in time and frequency domains;
thus, it is widely used in mechanical fault diagnosis [13]. However, wavelet transform is essentially
an adjustable windowed FT with the limitation of energy leakage [14]. Wavelet basis function
and decomposition scale are difficult to select in practical applications. The EMD proposed by
Huang et al. is a completely adaptive signal analysis method, which is suitable for nonstationary
signals analysis [15]. However, the EMD algorithm has a problem of mode aliasing. EMD is sensitive
to noise and sampling, and its algorithmic nature lacks mathematical theory [16]. The LMD algorithm
is similar to EMD; consequently, it also has the above-mentioned disadvantages of the EMD algorithm.

Variational mode decomposition (VMD) is a new adaptive signal-processing method proposed by
Dragomiretskiy et al. (2014) [16]. This method introduces an entirely non-recursive VMD model and
translates the decomposition problem into a variational one. Each mode and corresponding center
frequency are continuously updated by solving the optimal solutions of the variational problem. VMD
method has a solid theoretical foundation and good noise robustness. It has been successfully applied
to the propagating mode extraction of microwave waveguide [17], the classification of power quality
events [18], speech signals, and mechanical fault detection [19,20]. The features of vibration signals
can be easily extracted from the IMFs of VMD.

After the feature extraction of fault vibration signals, a classifier should be used for fault type
identification. Neural networks (NNs) [3] and SVM [6,7] achieve good classification accuracy in HVCB
fault recognition. NNs have better capacities of self-learning and non-linear pattern recognition [21].
However, the determination of various parameters of NNs is difficult, and finding the optimal
configuration of NNs is time consuming [22]. SVM algorithm is based on statistical learning theory
and structural risk minimizing principle. It is suitable for classification problems with small sample
size [23]. Sufficient fault sample data with all fault types are difficult to obtain because HVCB
operations are seldom. SVM cannot correctly identify a new fault type because of lack of training
samples. Consequently, the sample of an unknown fault type is recognized as a normal sample. In this
case, the SVM-based classifier hardly meets the reliability requirements. The occurrence of a new fault
is also unpredictable in an HVCB operation. Recent research results show that only a few types of
HVCB mechanical fault with training samples can be recognized [3,6,7]. Thus, a new fault type in the
mechanical system cannot be identified successfully.

OCSVM [24] is a classifier that can be trained by using only one type of samples. It is widely used
in the field of fault diagnosis and detection [25–28]. The classification boundary of OCSVM is closer
to the object samples than that of SVM. Hence, OCSVM has a lower false acceptance rate, i.e., lower
possibility of no-object samples misrecognized as object samples. Accordingly, OCSVM has a superior
fault detection capability for HVCBs.

This paper proposes a new method based on VMD and MLC for diagnosing HVCB mechanical
faults. An acceleration sensor is used to acquire HVCB vibration data. The vibration data are
then decomposed by VMD to obtain the corresponding IMFs. On this basis, local singular value
decomposition (LSVD) is utilized to extract the vibration features. The MLC used for fault recognition
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is constructed by two OCSVMs and an SVM. The first OCSVM (OCSVM1) trained by normal samples
determines whether a test sample is in the fault state. The second OCSVM (OCSVM2) trained by all
available fault samples identifies whether the type of the fault samples is new. SVM is adopted to
identify the known fault type. Comparative experiments are designed with the measured fault data of
real HVCBs to validate the new method.

2. Vibration Data Acquisition and Fault Diagnosis Process

2.1. Acceleration Sensor

Acceleration is a physical quantity that characterizes an object’s movement. Vibration essence
is the reciprocating movement of an object. Thus, vibration data can be obtained by measuring the
acceleration with an acceleration sensor. Integrated electronics piezo electric (IEPE) acceleration sensor
is widely used and can obtain HVCB vibration signals well. It also has the following advantages:
small size, light weight, low noise, and anti-interference capability. This paper adopts a CA-YD-182A
piezoelectric acceleration sensor to measure HVCB vibration data. The main technical indicators of the
CA-YD-182A include ±250 g (g = 9.8 m/s2) measuring range, 20 mV/g sensitivity, 40 kHz natural
frequency, 10 kHz frequency response, a maximum output voltage of 6 V, and a weight of 9 g.

2.2. Data Acquisition System

In this paper, the CA-YD-182A acceleration sensor and an NI 9234 data acquisition card are
applied to build the vibration signal acquisition system for HVCBs. The measuring object is the
LW9-72.5 series, which is an outdoor high-voltage SF6 circuit breaker. The acquisition system of HVCB
vibration signals and its block diagram are shown in Figure 1. The acceleration sensor is used to
measure the vibrational state of HVCBs and produce the corresponding voltage signals. The voltage
signals are digitized by using the NI 9234. When the circuit breaker receives an opening command,
the system starts sampling. The sampling rate is 25.6 kS/s, and the sampling period is 150 ms.
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Figure 1. (a) The vibration signal acquisition system of HVCBs; (b) The block diagram of the
acquisition system.

In an actual measurement, the installation location and the method of the acceleration sensor
affect the performance of the acquisition system. The principle for selecting measurement position
is that the sensor does not affect the normal operation of the measured object, and the position is
close to the object or the most concerned point of the object. In this paper, the sensor is installed on
the mechanism box near the operating mechanism. Acceleration sensor installation methods mainly
include handheld magnetic adsorption, glue bonding, and screw fixation. An adhesive mounting is
selected according to the actual demand of the diagnosis of HVCB mechanical fault.
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2.3. Fault Diagnosis Process

The new method proposed in this paper consists of three parts: feature extraction, state detection,
and fault recognition. In feature extraction, the features of vibration signals are extracted by using
VMD and LSVD methods. In state detection, the normal or fault state of the HVCB is determined
by OCSVM1. In fault recognition, the fault type is recognized using OCSVM2 and SVM. The fault
diagnosis process is shown in Figure 2, in which OCSVM1 is trained by the normal samples, and
OCSVM2 is trained by all available fault samples (fault samples with known types). For a test sample,
the new method recognizes a fault as a normal condition, known with a specific fault type, or unknown
without specific fault type.
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3. VMD

3.1. VMD Theory

VMD process is the solving of a variational problem. Therefore, this algorithm can be divided into
the construction and solution of the variational problem. VMD involves three key concepts: classic
Wiener filtering, Hilbert transform, and frequency mixing.

• Construction of the variational problem

The VMD turns an input signal h into K modes. Each mode mk is mostly compact around a center
frequency ωk. The variational problem can be described as seeking the K modes to make the sum
of all bandwidths of the modes minimum. The constraint condition is that the sum of each mode
is equals to the input signal h. The detailed construction scheme is as follows: (1) The associated
analytic signal of each mode mk is computed by the Hilbert transform to obtain the unilateral
frequency spectrum; (2) The frequency spectrum of each mode is tuned to the respective estimated
center frequency by mixing with the exponential e−jωk

t
; (3) The bandwidth is estimated through

the squared L2-norm of the gradient of the demodulated signal. The constrained variational
problem is written as:

min
{mk},{ωk}

{
K
∑

k=1
‖ ∂t

[(
δ (t) + j

πt

)
∗mk (t)

]
e−jωkt ‖

2

2

}
s.t.

K
∑

k=1
mk = h

, (1)

where {mk} = {m1, m2, · · · , mK} is the set of all modes, {ωk} = {ω1, ω2, · · · , ωK} are the
corresponding center frequencies, δ (t) is the Dirac function, and * denotes the convolution.
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• Solution of the variational problem

A constrained variational problem can become unconstrained by introducing a Lagrange
multiplier α and a quadratic penalty factor η. The Lagrange multiplier enforces constraints
strictly; and the quadratic penalty factor guarantees the reconstruction fidelity of the signal with
Gaussian noise. The augmented Lagrange expression is as follows [29]:

L ({mk} , {ωk} , α) = η
K
∑

k=1

∣∣∣∣∣∣∂t

[(
δ (t) + j

πt

)
∗mk (t)

]
e−jωkt

∣∣∣∣∣∣2
2
+

∣∣∣∣∣∣∣∣h (t)− K
∑

k=1
mk (t)

∣∣∣∣∣∣∣∣2
2
+

〈
α (t) , h (t)−

K
∑

k=1
mk (t)

〉
, (2)

The alternating direction method of multipliers (ADMM) solves the saddle point of the augmented
Lagrange. mn+1

k , ωn+1
k , and αn+1 are alternately updated using the ADMM approach. The updates

of mn+1
k , ωn+1

k , and αn+1 are as follows (see Appendix A for the detailed solution process):

m̂n+1
k (ω) =

ĥ (ω)− ∑
i 6=k

m̂i (ω) +
α̂(ω)

2

1 + 2η (ω−ωk)
2 , (3)

ωn+1
k =

∫ ∞
0 ω |m̂k (ω)|2 dω∫ ∞

0 |m̂k (ω)|2 dω
, (4)

αn+1 = αn + τ

(
h−

K

∑
k=1

mn+1
k

)
, (5)

where ·̂ denotes the FT of ·, and τ is the update parameter of the Lagrange multiplier. The mode
mn+1

k can be obtained as the real part of the inverse FT of m̂n+1
k . VMD estimates the mode mk

and center frequency ωk constantly through an iteration. For a given convergence tolerance e > 0,
the termination condition of this iteration is:

∑
k
‖ mn+1

k −mn
k ‖

2
2/‖mn

k ‖
2
2 < e, (6)

3.2. Simulated Vibration Signal Analysis Based on VMD

The vibration signal of HVCBs consists of a series of vibration events. It can be described by a set
of exponentially decaying sinusoidal signals, which is as follows [5]:

V (t) =
n

∑
i=1

Aie−µi(t−ti)sin [2π fi (t− ti)] ε (t− ti), (7)

where n is the number of vibration events, ε(t) is the unit step function, Ai is the amplitude of the ith
vibration event, µi is attenuation coefficient, fi is oscillation frequency, and ti is the starting time of
vibration. The vibration events V1 to V5 generated by MATLAB compose the simulated vibration
signal for HVCBs. The parameter of each vibration event is shown in Table 1. The waveforms of the
simulated vibration signal and each vibration event with a signal-to-noise ratio (SNR) of 20 dB are
shown in Figure 3, in which the sampling rate is 25.6 kS/s.

Table 1. The parameter of each vibration event.

Vibration Events Ai ti (ms) fi (Hz) µi

V1 0.15 15 1200 80
V2 0.2 50 3000 50
V3 0.3 25 4500 95
V4 1.0 30 5500 75
V5 0.5 40 7000 60
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Figure 4. (a) Original vibration events; (b) IMFs decomposed by VMD method; (c) IMFs decomposed 
by EMD method; (d) PFs decomposed by LMD method; (e) IMFs decomposed by EEMD method; (f) 
IMFs decomposed by CEEMD method. 
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Figure 3. The waveform of the simulated HVCB vibration signal.

EMD has been proven to be a suitable method for the vibration signal processing of HVCBs. We
mainly compare the performances of VMD and EMD to decompose this simulated vibration signal
(with an SNR of 20 dB). In addition, VMD performance is also compared with a few new and improved
EMD-related methods, i.e., LMD [9], ensemble EMD (EEMD) [30], and complete EEMD (CEEMD) [31].
The original vibration events and IMFs decomposed by these five methods are shown in Figure 4.
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(f) IMFs decomposed by CEEMD method.
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When the number of vibration events and corresponding parameters of the simulated signal
are known, the performance of each signal-processing method can be determined by comparing
the correlation degrees of their modes and the original vibration events. Figure 4b shows that the
signal is decomposed into five IMFs by VMD, and each IMF is mostly the same as the corresponding
vibration event in Figure 4a. That is, the VMD approach can decompose vibration signals thoroughly.
Conversely, we obtain approximately 10 IMFs through EMD, LMD, EEMD, and CEEMD approaches.
In Figure 4c, the modes decomposed by EMD have a serious mode aliasing problem, especially for
the second mode. Although LMD is better than EMD in some aspects, such as the endpoint effect
suppression and algorithm speed, it shows almost the same performance as EMD with modal aliasing
in this study. Both EEMD and CEEMD can eliminate modal aliasing to a certain extent, but the latter
has a better effect. EMD and its derivation algorithms cannot effectively separate the vibration events
from the composite vibration signal because of the limitation of its algorithmic nature. Consequently,
the characteristics (such as starting time and spectrum) of each mode obtained by EMD and other
similar methods are almost irrelevant with the original signal characteristics; thus, these modes fail
to reflect the physical significance of each vibration event, i.e., existence of false modes. Therefore,
the VMD method is more suitable for the feature extraction of HVCB vibration signals.

3.3. Determining the Number of K Modes of VMD

The number of K modes should be predefined in VMD method. Each mode component of VMD
contains local features of the original signal at a center frequency and different time scales. A great
number of K modes suggests that VMD has abundant frequency components. The reconstructed
signals by K modes will be highly similar to the original signal. The measured vibration signals of
HVCBs contain a large number of vibration components; thus, the analysis should focus on the main
vibration event rather than all vibration components. Therefore, we determine the number of K modes
by comparing the similarity measure between the reconstructed and original signals.

Distance measure is a common measure of pattern similarity. Normalized distance (ND) is
selected to evaluate the similarity between the original and reconstructed signals using different mode
numbers. The ND of two discrete signals p = (p1,p2, . . . pn) and q = (q1,q2, . . . qn) is defined as:

d (p, q) =
‖ p− q ‖
‖ p ‖+ ‖ q ‖ =

[
n
∑

i=1
(pi − qi)

2
]1/2

(
n
∑

i=1
pi

2
)1/2

+

(
n
∑

i=1
qi

2
)1/2 , (8)

VMD is used to decompose the simulated vibration signal with different K and compute the
corresponding reconstructed signals. The NDs between the reconstructed and original signals with
different K are shown in Figure 5.
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Figure 5 shows that the ND almost does not change when K becomes greater than 5 and remains
at a near-zero value. In this case, the similarity between the original and reconstructed signals is
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maximized, i.e., the reconstructed signal contains all the main information characteristics of the original
signal. Hence, the optimal number of modes of VMD is set at 5, which is consistent with the number
of vibration events contained in the original vibration signal. Accordingly, ND method is effective for
mode number selection.

4. Principles of SVM and OCSVM

4.1. SVM

SVM, proposed by Vapnik in 1995, has many advantages in solving small-sample,
high-dimensional, and nonlinear pattern recognition problems [32]. The basic principles of SVM
are mapping the data samples from a low-dimensional space to a high-dimensional one and making
the indivisible low-dimensional data become linearly separable. A linear partition is then used to
determine the classification boundary. The classification principle of SVM is shown in Figure 6.
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Figure 6. The classification principle of SVM.

We suppose that the training sample set (xi, yi)(i = 1, 2, · · · , l; xi ∈ Rd, yi ∈ {−1, 1}) is composed
of two different sample classes. The samples are linearly separable when a hyperplane w · x + b = 0
can correctly divide them into two classes, i.e., when they satisfy:{

w · xi + b ≥ 1, yi = 1
w · xi + b ≤ −1, yi = −1

, i = 1, 2, · · · , l, (9)

The samples that satisfy |w · xi + b| = 1 are called support vectors. The distance between two
classes of support vectors is 2/‖ w ‖, i.e., the classification margin is 2/‖ w ‖. The goals of SVM are to
seek the optimal hyperplane under the constraints in Equation (9), and make 2/‖ w ‖ as maximum
and ‖ w ‖2/2 as minimum: {

min
w,b

1
2‖ w ‖2

s.t. yi (w · xi + b) ≥ 1, i = 1, 2, · · · , l
, (10)

For most situations, the samples in the training set are linearly inseparable. SVM introduces
a slack variable ξi to reduce the constraint to yi(w · xi + b) ≥ 1− ξi. Meanwhile, penalty factor C
is introduced to control the degree of punishment to error-classifying samples. Thus, the objective
function becomes:  min

w,b
1
2‖ w ‖2 + C

l
∑

i=1
ξi

s.t. yi (w · xi + b) ≥ 1− ξi, i = 1, 2, · · · , l
, (11)

This problem can be solved through saddle point of the Lagrange function, which is constructed as:

L (w, b, αi) =
1
2
‖ w ‖2 −

l

∑
i=1

αi [yi (w · xi + b)− 1], (12)
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where αi > 0 is Lagrange coefficient. Equation (12) is converted into the following dual problem
according to dual theory:

max Q (α) =
l

∑
i=1

αi − 1
2

l
∑

i=1

l
∑

j=1
αiαjyiyj

(
xi · xj

)
s.t.

l
∑

i=1
αiyi = 0, 0 ≤ αi ≤ C

, (13)

The optimal solution of the quadratic programming problem α = [α1, α2, · · · , αl ]
T can be obtained,

followed by optimal w and b. The optimal decision function is:

f (x) = sgn

[
l

∑
i=1

αiyi (xi · x) + b

]
, (14)

where sgn(z) is sign function, which equals +1 for z ≥ 0 and −1 otherwise.
For a nonlinear classification problem, SVM uses kernel function φ(x) to map the sample data from

a low-dimensional space to a high-dimensional, making these samples linearly separable. The kernel
function is defined as follows:

K
(
xi, xj

)
= φ (xi) · φ

(
xj
)
, (15)

After introducing the kernel function, Equation (13) becomes:
max Q (α) =

l
∑

i=1
αi − 1

2

l
∑

i=1

l
∑

j=1
αiαjyiyjK

(
xi, xj

)
s.t.

l
∑

i=1
αiyi = 0 , 0 ≤ αi ≤ C

, (16)

The decision function becomes:

f (x) = sgn

[
l

∑
i=1

αiyiK
(
xi, xj

)
+ b

]
, (17)

4.2. OCSVM

OCSVM also maps the training data into a high-dimensional feature space by using the
kernel function. OCSVM aims to separate sample data from the origin with a maximum margin,
which is different from SVM. The object and no-object samples are located on either side of the
hyperplane. The classification principle of OCSVM is shown in Figure 7. For convenience, we still use
{xi} (i = 1, 2, · · · , l; xi ∈ Rd) to represent the training sample set.
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Similar to SVM, the classification hyperplane of OCSVM is expressed as w · φ (x)− b = 0. OCSVM
solves the following quadratic programming problem:{

min 1
2‖ w ‖2 + 1

vl ∑i ξi − b
s.t. w · φ (xi) ≥ b− ξi, ξi ≥ 0

, (18)

where v ∈ (0, 1] is the margin of error that controls the number of outliers. The decision function is
as follows:

f (x) = sgn (w · φ (x)− b), (19)

The value of decision function f (x) is +1 or −1 along with Equation (19). f (x) is considered as the
object sample when it takes the value of +1 in a test sample. Therefore, once w and b are solved, we
can determine the sample class.

Lagrange multipliers are introduced to solve the above quadratic programming problem.
The Lagrange function is as follows:

L (w, ξ, b, α, β) =
1
2
‖ w ‖2 +

1
vl ∑i

ξi − b−∑
i

αi (w · φ (xi)− b + ξi)−∑
i

βiξi, (20)

where αi, βi ≥ 0 are Lagrange multipliers. We set the partial derivatives of variables w, ξ, b in
Equation (20) equal to zero, yielding:{

w = ∑i αiφ (xi)

αi =
1
vl − βi ≤ 1

vl , ∑i αi = 1
, (21)

Combined with the kernel function in Equation (15), the dual form of this optimization problem
is described as:  min

α

1
2

l
∑

i,j=1
αiαjK

(
xi, xj

)
s.t.∑i αi = 1, 0 ≤ αi ≤ 1

vl

, (22)

The support vector is located on the hyperplane; thus b can be found by support vector xi and the
corresponding αi:

b = w · φ(xi) =
l

∑
j=1

αjK
(
xj, xi

)
, (23)

The decision function together with Equation (15) can be transformed into a kernel
expansion form:

f (x) = sgn

(
l

∑
i=1

αiK
(
xi, xj

)
− b

)
, (24)

Figures 6 and 7 illustrate that the support vectors of OCSVM are on the classification hyperplane,
whereas those of SVM are on both sides of the hyperplane with a certain distance. Accordingly, OCSVM
can identify the non-target samples more accurately and has higher capability of fault identification
than SVM in the fault diagnosis area of HVCBs.
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5. Feature Extraction of Vibration Signal

5.1. Singular Value Decomposition (SVD)

SVD [33] is an important matrix decomposition method that is widely used in feature extraction.
According to SVD theory, for an m× n matrix A (A ∈ Rm×n), there must exist two orthogonal matrices
Um×m and Vn×n, and a diagonal matrix Λ, satisfying: A = U

[
Λ 0
0 0

]
VT

Λ = diag (λ1, λ2, · · · , λr) , r = rank (A)

, (25)

where λi(i = 1, 2, · · · , r) is the singular value of matrix A, and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. The singular
value tends to correspond to the important information implied in the matrix, and the importance is in
positive correlation with the value.

The SVD of a matrix has the following property:
We assume matrices A, B ∈ Rm×n, and the singular values of A and B are λ1 ≥ λ2 ≥ · · · ≥ λR ≥ 0

and σ1 ≥ σ2 ≥ · · · ≥ σR ≥ 0, respectively, where R = min (m, n). Then:

|λi − σi| ≤ ‖ A− B ‖2, i = 1, 2, · · · , R, (26)

This property indicates that when matrix A has slight disturbance, the changes in singular values
are not greater than the spectral radius of the perturbation matrix. Hence, the singular values of a
matrix are insensitive to the changes in matrix elements.

5.2. Feature Extraction Based on LSVD

In the feature extraction of the vibration signal of circuit breakers, a few energy-based features,
such as the time segmentation energy entropy (TSEE), are often used as signal features [9]. However,
the energy feature of the signal is sometimes not enough to reflect the fault characteristics of the signal
accurately. SVD is an effective method to extract the algebraic feature of a matrix, which can better
reflect the changes in the internal characteristics of the signal.

LSVD method is used in this study to extract HVCB vibration features to improve the disturbance
detection capability of SVD. A sample sequence of length N can be decomposed into K IMFs by VMD.
The data length of each IMF is also N. Hence, the size of the IMF matrix is K× N. The research in [34]
showed that the singular values of the entire matrix cannot indicate the local and detailed features of
the matrix. For some faults of HVCBs, such as time delay fault, the singular values of the entire matrix
tend not to reflect the fault characteristic information. Therefore, more detailed local information in
the time domain is required. The local information of HVCB vibration signals at different time periods
is obtained using LSVD method, which is as follows:

(1) VMD is used for decomposing HVCB vibration signals to obtain the IMF matrix.
(2) The IMF matrix is equally divided into 30 submatrices along the time axis. The size of each

submatrix is K× (N/30).
(3) The 30 submatrices are decomposed by a series of SVDs, obtaining 30 singular value sequences.
(4) The singular values of each submatrix attenuate rapidly; thus the largest singular value of each

submatrix λimax is selected to construct the feature vector F = [λ1max, λ2max, · · · , λ30max].

6. Experimental Results

6.1. Feature Analysis of Measured Vibration Signal

HVCB vibration data are collected using the acquisition system in Figure 1. Three types of fault
are simulated in field experiments: (1) jam fault of the iron core (Fault I); (2) looseness of the base
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screw (Fault II); and (3) poor lubrication of the connecting lever (Fault III). Excessive opening/closing
operations will damage the circuit breaker; thus 40 samples of normal condition and 40 samples per
fault type are collected through several experiments. Typical waveforms of four different types of
vibration signals are shown in Figure 8.
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As mentioned previously, the number of VMD modes should be predefined. According to the
abovementioned method for determining the number of modes, we use VMD to decompose the four
types of vibration signals with different K. The NDs between their corresponding reconstructed and
measured signals are then computed, which are shown in Figure 9.
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Figure 9 shows that the NDs of the four signal types decrease with the increase of K. When K is
greater than 10, the changes in ND values show signs of leveling off. The number of K modes is set to
10 to guarantee that the four signal types can be effectively decomposed.

The normal and fault vibration signals are decomposed by VMD, and the corresponding IMFs
are shown in Figure 10. Ten modes of each signal type are arranged from top to bottom based on
the increase in center frequencies, and the red dashed line indicates the starting time ts of a normal
vibration signal.

Figure 10 indicates some characteristics of fault signals in the time or frequency domain.
Compared with the normal state, the vibration of Fault I has a significant time delay. The amplitudes
of the last seven modes of Fault II are significantly smaller than the normal state, i.e., the vibration
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focuses on a lower-frequency area. The vibration time duration in different modes of Fault III is longer
than other types of signals because of the poor lubrication of the connecting lever.Sensors 2016, 16, 1887 13 of 19 
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The LSVD method is adopted to extract the features of vibration signals. The LSV feature vectors
of the normal and three types of fault conditions are shown in Figure 11. For clarity, each type only
displays three feature vectors.
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Figure 11. The LSV feature vectors of normal and fault signals. (a) Normal condition; (b) Fault I;
(c) Fault II; (d) Fault III.

Figure 11 presents that the feature vectors of different types of vibration signals have significant
differences. The peak of the feature vector of normal condition appears around the fourth feature,
whereas that of Fault I appears around the seventh feature, that of Fault II appears around the sixth
feature, and that of Fault III appears around the fifth feature. The variations in the 10th to 20th features
of the four signals are also different. The classifier can make a good classification according to the
differences among these feature vectors. These feature vectors roughly reflect the energy distributions
of the corresponding vibration signals in the time domain from Figures 8 and 11.

We use the whole SVD (WSVD) method to extract the features of vibration signals, validating the
LSV feature vectors. The entire matrix is directly decomposed into K (K = 10 here) singular values by
SVD [35]. The whole singular value (WSV) feature vectors of the four types of vibration signals are
shown in Figure 12.
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The WSVD method may not distinguish normal from Fault I signals, as presented in Figure 12.
Fault I is essentially a time delay fault that contains the same vibration rules as normal signals.
Thus, almost all the major elements of the IMF matrix of Fault I are the same as those of the normal
signal. Consequently, the WSV feature of Fault I tends to be nearly equal to the normal condition.
WSVD method cannot directly reflect the vibration laws of the original signal over time, unlike LSVD.
Thus, LSVD approach is more suitable for the feature extraction of HVCB vibration signals.

6.2. Fault Classification Using MLC

The LSV feature vectors are entered into the MLC to achieve the relevant classification results.
The MLC consists of three classifiers: OCSVM1, OCSVM2, and SVM. These classifiers need to be
trained first. For each type of vibration signals, 40 vibration data are included. We select 20 data
randomly as the training samples and the other 20 data as test samples. OCSVM1 is trained using
normal training samples, whereas OCSVM2 and SVM are trained by fault training samples. SVM is
the most widely used classifier in HVCB fault diagnosis and has achieved a good classification effect.
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We compare the classification performances of MLC and SVM. The experiment results are shown in
Table 2. “New Fault” in the Table refers to the new type of fault that has not been recorded before, i.e.,
the unknown fault type.

Table 2. Diagnosis results using MLC and SVM.

Classifier Test Sample
Diagnosis Results

Accuracy
Normal Fault I Fault II Fault III New Fault

MLC

Normal 18 0 0 2 0 90%
Fault I 0 20 0 0 0 100%
Fault II 0 0 20 0 0 100%
Fault III 0 0 0 20 0 100%

SVM

Normal 19 0 0 1 - 95%
Fault I 0 20 0 0 - 100%
Fault II 0 0 20 0 - 100%
Fault III 3 0 0 17 - 85%

According to the results in Table 2, three types of fault states are correctly recognized by the
MLC method, and their classification accuracies are 100%. Conversely, three samples of Fault III
are recognized as normal samples by SVM, and the corresponding classification accuracy is 85%.
This comparison shows that the new approach has a higher capability of fault identification. For normal
state, two samples are wrongly classified by MLC and one by SVM. For HVCBs, normal samples that
are recognized as fault samples will not cause accidents and outage cost. Moreover, the operational
reliability of the device is not reduced by the new method. Therefore, the new method improves the
accuracy of fault diagnosis while ensuring the reliability of HVCBs. When the WSV is selected as the
input feature vector of the classifier in this paper, the corresponding classification results using MLC
and SVM are shown in Table 3.

Table 3. Diagnosis results using MLC and SVM with the WSV feature.

Classifier Test Sample
Diagnosis Results

Accuracy
Normal Fault I Fault II Fault III New Fault

MLC

Normal 14 6 0 0 0 70%
Fault I 5 15 0 0 0 75%
Fault II 0 0 19 0 1 95%
Fault III 0 3 0 17 0 85%

SVM

Normal 13 7 0 0 - 65%
Fault I 8 11 0 1 - 55%
Fault II 0 0 20 0 - 100%
Fault III 3 2 0 15 - 70%

The accuracy of fault diagnosis using WSVD method is lower than that using the LSVD method, as
shown in Tables 2 and 3. It illustrates that the WSVD approach is unsuitable for the feature presentation
of HVCB vibration signals. Besides, the entire classification accuracy of MLC remains higher than that
of SVM in such a situation.

A new fault type without training sample appearing in test samples is also considered. We assume
that Fault III is the new fault, and the training samples of Fault III do not participate in the training of
OCSVM2 and SVM. The classification results are shown in Table 4. The test samples of Fault III are
selected as the test sample set. The classification results of MLC and SVM are compared under this
situation and are shown in Table 4.

Table 4 shows that when a new fault type occurs, SVM cannot accurately identify the fault samples
because of the lack of corresponding training. All fault samples are recognized as the normal state to
reduce the fault diagnosis accuracy of SVM significantly. Conversely, MLC can identify a fault state
with 100% accuracy. Thus, the new method has higher accuracy for the diagnosis of unknown new
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fault types. When a new fault is recognized, we can determine its specific fault type according to the
overall report made by the maintenance personnel. In this way we can continue to accumulate fault
samples and get more fault types.

Table 4. Diagnosis results of the new type of fault using MLC and SVM.

Classifier
Diagnosis Results

Accuracy
Normal Fault I Fault II New Fault

MLC 0 0 0 20 100%
SVM 20 0 0 - 0

7. Conclusions

This paper proposes a diagnosis method for HVCB mechanical faults based on VMD and MLC.
The simulation and practical tests demonstrate the following advantages of the new approach:

(1) Compared with EMD, the mode decomposed by VMD has a clearer physical meaning. The latter
can reduce the influence of false modes for feature extraction and has a better property of feature
presentation for vibration signals.

(2) LSV can characterize the local and detailed features of vibration signals accurately, and the fault
signatures can be extracted more precisely using the LSVD method, especially for delay fault.

(3) MLC uses OCSVM to improve the ability to detect fault conditions. This method can identify
unknown fault types. The diagnosis accuracy and the reliability of MLC are significantly enhanced
compared with those of the SVM method.
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Appendix A

As mentioned in the main text, the variational problem is written as:
min

{mk},{ωk}

{
K
∑

k=1

∣∣∣∣∣∣∂t

[(
δ (t) + j

πt

)
∗mk (t)

]
e−jωkt

∣∣∣∣∣∣2
2

}
s.t.

K
∑

k=1
mk = h

, (A1)

The corresponding augmented Lagrange is constructed as:

L ({mk} , {ωk} , α) = η
K
∑

k=1

∣∣∣∣∣∣∂t

[(
δ (t) + j

πt

)
∗mk (t)

]
e−jωkt

∣∣∣∣∣∣2
2
+

∣∣∣∣∣∣∣∣h (t)− K
∑

k=1
mk (t)

∣∣∣∣∣∣∣∣2
2
+

〈
α (t) , h (t)−

K
∑

k=1
mk (t)

〉
, (A2)

The variational problem (A1) can be solved through the saddle point of the augmented
Lagrange (A2). In this paper, ADMM approach is used to solve the saddle point, in which mn+1

k ,
ωn+1

k , and αn+1 are alternately updated.
The mn+1

k is updated in the following way:

mn+1
k ← arg min

mk

L
({

mn+1
}

,
{

mn
i≥k
}

, {ωn
i } , αn

)
, (A3)



Sensors 2016, 16, 1887 17 of 19

The value of mn+1
k can be expressed as:

mn+1
k = arg min

mk

η

∣∣∣∣∣∣∣∣∂t

[(
δ (t) +

j
πt

)
∗mk (t)

]
e−jωkt

∣∣∣∣∣∣∣∣2
2
+

∣∣∣∣∣
∣∣∣∣∣h (t)−∑

i
mi (t) +

α (t)
2

∣∣∣∣∣
∣∣∣∣∣
2

2

, (A4)

For simplicity, ·n+1 and ·n are omitted for the fixed directions mi 6=k and ωk, respectively. They
represent the most recent available updates. Problem (A4) can be solved in the frequency domain
based on the Parseval-Plancherel theorem, which is as follows:

m̂n+1
k = arg min

m̂k ,mk

{
η||jω [(1 + sgn (ω + ωk)) m̂k (ω + ωk)]||22 +

∣∣∣∣∣∣∣∣ĥ (ω)−∑
i

m̂i (ω) +
α̂(ω)

2

∣∣∣∣∣∣∣∣2
2

}
, (A5)

We use the variable ω−ωk instead of ω in the first term:

m̂n+1
k = arg min

m̂k ,mk

{
η||j (ω−ωk) [(1 + sgn (ω)) m̂k (ω)]||22 +

∣∣∣∣∣∣∣∣ĥ (ω)−∑
i

m̂i (ω) +
α̂(ω)

2

∣∣∣∣∣∣∣∣2
2

}
, (A6)

Equation (A6) can be written as the integral over the non-negative frequencies using Hermitian
symmetry, which is as follows:

m̂n+1
k = arg min

m̂k ,mk


∫ ∞

0
4η (ω−ωk)

2 |m̂k (ω)|2 + 2

∣∣∣∣∣ĥ (ω)−∑
i

m̂i (ω) +
α̂ (ω)

2

∣∣∣∣∣
2

dω

, (A7)

The solution of the quadratic optimization problem is:

m̂n+1
k (ω) =

ĥ (ω)− ∑
i 6=k

m̂i (ω) +
α̂(ω)

2

1 + 2η (ω−ωk)
2 , (A8)

Equation (A8) shows that m̂n+1
k is the Wiener filtering of the current residual with the signal prior

of 1/ (ω−ωk)
2. m̂k (ω) can be transformed into mode mk (t) using inverse FT.

Similarly, ωn+1
k is updated as follows:

ωn+1
k ← arg min

ωk

L
({

mn+1
i

}
,
{

ωn+1
}

,
{

ωn
i≥k
}

, αn
)

, (A9)

The center frequencies ωk appear only in the first term of Equation (A2). Thus, the relevant
problem can be written as:

ωn+1
k = arg min

ωk

{∣∣∣∣∣∣∣∣∂t

[(
δ (t) +

j
πt

)
∗mk (t)

]
e−jωkt

∣∣∣∣∣∣∣∣2
2

}
, (A10)

This optimization problem is transformed into the Fourier domain and eventually turns into the
following form:

ωn+1
k = arg min

ωk

{∫ ∞

0
(ω−ωk)

2 |m̂k (ω)|2 dω

}
, (A11)

The solution of this quadratic problem is:

ωn+1
k =

∫ ∞
0 ω |m̂k (ω)|2 dω∫ ∞

0 |m̂k (ω)|2 dω
, (A12)

It shows that the new ωk is the center of gravity of the power spectrum of the recent mode.
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Finally, the update of αn+1 is as follows:

αn+1 = αn + τ

(
h−

K

∑
k=1

mn+1
k

)
(A13)

where τ is the update parameter of the Lagrange multiplier.
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