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Abstract: Epipolar rectification is of great importance for 3D modeling by using UAV (Unmanned Aerial
Vehicle) images; however, the existing methods seldom consider the perspective distortion relative
to surface planes. Therefore, an algorithm for the rectification of oblique images is proposed and
implemented in detail. The basic principle is to minimize the rectified images’ perspective distortion
relative to the reference planes. First, this minimization problem is formulated as a cost function
that is constructed by the tangent value of angle deformation; second, it provides a great deal of
flexibility on using different reference planes, such as roofs and the façades of buildings, to generate
rectified images. Furthermore, a reasonable scale is acquired according to the dihedral angle between
the rectified image plane and the original image plane. The low-quality regions of oblique images
are cropped out according to the distortion size. Experimental results revealed that the proposed
rectification method can result in improved matching precision (Semi-global dense matching).
The matching precision is increased by about 30% for roofs and increased by just 1% for façades,
while the façades are not parallel to the baseline. In another designed experiment, the selected
façades are parallel to the baseline, the matching precision has a great improvement for façades,
by an average of 22%. This fully proves our proposed algorithm that elimination of perspective
distortion on rectified images can significantly improve the accuracy of dense matching.

Keywords: epipolar rectification; oblique images; UAV images; minimum perspective distortion;
3D reconstruction

1. Introduction

Aerial oblique imagery has become an important source for acquiring information about urban
areas because of their visualization, high efficiency and wide application in domains such as 3D
modeling, large-scale mapping and emergency relief planning. An important characteristic of oblique
images is the big tilt angles [1], and they usually contain large perspective distortions relative to the
surfaces. This large distortion reduces the image correlations and makes dense image matching more
difficult, so traditional techniques usually perform poorly on oblique images. However, the precise 3D
reconstruction tasks require an accurate dense disparity map, e.g., using a SGM (Semi-global Matching)
based stereo method [2], therefore, epipolar rectification is a necessary initial step for 3D modeling [3].
To guarantee completeness, robustness and precision, image rectification for the purpose of 3D
reconstruction should take the perspective distortion into account.
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This paper is inspired by the fact that epipolar rectification can minimize perspective distortion;
thus, features can be matched very accurately by correlation and an accurate dense disparity map
can be generated [4]. Each urban scene usually contains multiple surface planes, and these planes
can be grouped according to their feature directions (horizontal or vertical). The epipolar rectification
should minimize the distortion of planes in the same group to create an exact match for those planes.
The epipolar rectification principle of minimum perspective distortion relative to the original image
is desirable in the vast majority of cases; however, rectified images with a minimum perspective
distortion relative to surface planes are also useful in certain circumstances. For example, in oblique
photogrammetry, rectified horizontal images are usually used to reconstruct the roofs of buildings,
meanwhile rectified vertical images are expected to generate more accurate depth maps of vertical
planes such as the façades of buildings.

Many epipolar rectification algorithms have been proposed, and they can generally be categorized
into linear transformation and non-linear transformation algorithms. The former algorithms transform
an image from one plane to another plane, making the corresponding epipolar lines coincide with
the scan lines [5]. The linear approaches’ advantages are that it is mathematically simple, fast and
preserves image features. In contrast, non-linear approaches typically use Bresenham’s algorithm [6]
to extract pixels along epipolar lines, thus avoiding most of the problems that linear rectification
approaches have, e.g., generating unbounded, large or badly warped images. Two similar methods [7,8]
involve parameterizing the image with polar coordinates (around the epipoles). These methods have
two important features: they can address epipoles located in the images, and they can reduce the
matching ambiguity to half the epipolar lines. Instead of resampling the epipolar lines on the original
image planes, an attractive method proposed by [9] employs a rectification process based on a cylinder
rather than a plane. However, this method is relatively complex and requires large numbers of
calculations in three-dimensional space. Another non-linear transformation method expressed in
a paper by [10] proposes an accurate computation method based on rectification of spherical-camera
images via resampling the same longitude line. However, this method is suitable only for spherical
panoramic images.

Because linear transformation is simple and intuitive, this article focuses on the homography based
method. Due to the redundant degrees of freedom, the solution to rectification is not unique and can
actually lead to undesirable distortions. The distortion constraint leads to reduced degrees of freedom
for homographies in solving the rectification problem. The first work on using a distortion constraint
was performed by [11], followed by [12]. They suggest using the transformation that minimizes the
range of disparity between the two images, i.e., the distance between the rectified corresponding
points. In their state-of-the-art methods [13,14], the authors attempt to make the effects of rectification
“as affine as possible” over the area of the images. In papers by [15], a different distortion criterion
consists of preserving the sampling of the original images. The method proposed in the paper [16] uses
the squared Sampson error for the constrained rectification. The algorithm [17] is decomposed into
three steps: the first and second step involve making the image plane parallel to the baseline, while the
third crucial step minimizes the distortion relative to the original images. None of the above methods
mention the fact that there is no agreement on what the distortion criterion should be, and they all
require corresponding points. In a paper by [18], the authors aim to eliminate relative distortion
between the rectified images by choosing the reference plane in the scene. However, only the reference
plane and the planes that are parallel to the reference plane have no relative distortion and their
method still requires the corresponding points. In the case of calibrated cameras, the rotation matrix for
rectified images is determined directly. The method [19] determines the rectified image plane according
to the baseline and the optical axis of the old left matrix; however, in that case, the distortion for one of
the rectified images is small, but the distortion of the other may be larger in the oblique photography
case. The algorithm expressed in the paper [20] improves the preceding algorithm by making the
distortion of the two rectified images small relative to the original images. However, these methods
still do not consider distortion relative to surfaces in object space.
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Unlike the methods described above, which reduce distortion by explicitly minimizing an empirical
measure, the proposed approach is to minimize a cost function that is constructed by the tangent value
of angle deformation. In this manner, the rectified images will have smallest perspective distortion
for some surface planes and features can be matched quite accurately by correlation. In addition,
the homography based method may yield very large images or cannot rectify at all. These issues can
be solved by the scope constraint which can also crop the low-quality regions of oblique images.

In this paper, we investigated the rectification method of minimum perspective distortion by
taking into account surface planes, such as original image planes, roofs and the façades of buildings.
The method is flexible in order to generate rectified images with respect to different reference planes.
The remainder of this paper is organized as follows. The innovative rectification algorithms and their
distortion constraints are presented in detail in Section 2. The performance of the proposed methods
and the quantitative evaluation of the matching results are subsequently evaluated in Section 3. Finally,
concluding remarks are provided.

2. Methodology

2.1. Algorithm Principle

There is little difference between computer vision (CV) and photogrammetry (DP) in terms of
definitions of projective geometry. The projective matrix P generated by both the computer vision and
photogrammetry definitions is the same. However, the expressions of the camera matrix K and the
rotation matrix R are different. This is because they define the camera coordinate frame differently [21],
which is shown in Figure 1.
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Figure 1. The camera coordinate frames for (a) photogrammetry definition; (b) computer vision definition.

The origin of coordinates C and coordinate axes Xcam, Ycam, Zcam constitute the camera coordinate
frame. The image coordinate system is consisted of the origin of coordinates O and coordinate
axes Ximg, Yimg. From Figure 1, we can see that the camera coordinate frames are both right hand
Euclidean coordinate systems. However, the image plane is Z = f in computer vision and Z = − f in
photogrammetry, where f > 0. The relationship between RCV and RDP is shown below:

RCV =

 1 0 0
0 −1 0
0 0 −1

 RDP (1)

As per the different camera coordinate frames, the camera calibration matrix K can be respectively
denoted as:
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KCV =

 fx 0 x0

0 fy y0

0 0 1

 KDP =

 − fx 0 x0

0 fy y0

0 0 1

 KCV = −KDP

 1 0 0
0 −1 0
0 0 −1

 (2)

where fx, fy represents the focal length of the camera in terms of pixel dimensions in the x and y
direction, respectively. The expression (x0, y0) is the principal point in terms of pixel dimensions.
In this article, the symbols K and R refer to the definition used by the photogrammetry field.
Thus, the direction of the image plane and the Z axis of the camera coordinate frame defined
in photogrammetry are in accord. This selection is more convenient for the subsequent rectifying
transformation when considering the perspective distortion relative to reference planes.

2.1.1. Homographic Transformation

Epipolar rectification can be viewed as the process of transforming the epipolar geometry of a pair
of images into a canonical form. It can be accomplished by applying a homographic matrix to each
image that maps the original image to a predetermined plane. Let H and H′ be the homographic matrix
to be applied to images I and I′, respectively. Also, let p ∈ I and p′ ∈ I′ be a pair of corresponding
points. The camera matrix Krec and the rotation matrix Rrec can be generated by the algorithm proposed
in this paper, while the symbols R and K refer to the original image. Considering the rectified image
points prec ∈ Irec, p′rec ∈ I′rec, the transformation can be defined as:

prec = Hp
p′rec = H′p′

(3)

H = KrecRrecRTK−1

H′ = K′recR′recR′TK′−1 (4)

However, there are countless types of transformation matrices H that meet the above conditions
of the solution. Moreover, poor choices for H and H′ can result in rectified images that are dramatically
changed in scale or severely distorted. Therefore, rectified image planes should be selected according
to the criteria of minimum perspective distortion, and it will be discussed in the next section.

2.1.2. Minimizing Perspective Distortion

The angle deformation always exists in the perspective transformation from a reference
configuration to a current configuration. The scale of rectified images can be determined by the
focal length, and it does not affect the angle deformation. In the process of rectification, a method is
developed to minimize the tangent value of angle deformation. The subscript L and R denote the left
and right images respectively in the following of the paper. Here, it can be defined as:

ε = (ωL)
2 + (ωR)

2 (5)

where ω is the tangent value of angle deformation. The result can be determined by minimizing the
squared error ε. The angle deformation presents a notable positive correlation with the rotation angle,
i.e., the dihedral angle between the rectified image plane and its reference plane (original image plane
or surface plane). It is easy to discuss the characteristics of angle deformation by decomposing it into
two directions: the rotation direction and its perpendicular direction. A line in reference plane which
is perpendicular to the rotation direction has no angle deformation, while the angle deformation of
a line that is parallel to the rotation direction could not be ignored. The relationship of the rotation
angle θ with the tangent value of angle deformation is given below:

ω = −sin(θ) · b (6)
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in which b determines the position of a line in the reference plane. Thus, Equation (5) can be rewritten as:

ε = (sin(θL))
2 + (sin (θR))

2 (7)

According to the principle of epipolar rectification, the two rectified image planes (Irec and I′rec)
must be corrected to be coplanar, and must both be parallel to the baseline (B). Thus, the direction
Z of the rectified image plane is constrained to be perpendicular to the baseline, which lies in
a plane A perpendicular to the baseline. In the case that left and right reference planes are different,
the rectification of minimum perspective distortion is illustrated in Figure 2. NL and NR are the
directions of reference planes. Their projections on a plane A are N′L and N′R. The α in Figure 2 denotes
the angle between N′R and Z. Thus θL and θR can be expressed respectively by a function that takes
one parameter α, and these expressions can be easily derived by the analytic geometry. Furthermore,
the direction Z of rectified image plane is determined by one parameter α. The solution is to minimize
the squared error ε by gradient descent method. In the case that left and right reference planes are
the same, the direction Z of rectified image plane is the projection of the direction vector N onto the
plane A.
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2.2. Rectification Algorithm

2.2.1. R Matrix of Rectified Image

After expressing the observational coordinate axes of the camera coordinate frame numerically as
three unit vectors (e0, e1, e2) in the world coordinate system, together they comprise the rows of the
rotation matrix R (world to camera). The rectified images with respect to different reference planes
are controlled by the R matrix. The R matrix calculation is simple and flexible as explained in the
following sections.

Basic Rectification

A minimum distortion rectification relative to the original image planes is discussed first and it
can be applied to a variety of cases. To carry out this method, it is important to construct a triple of
mutually orthogonal unit vectors (e1, e2, e3). The first vector e1 can be given by the baseline. Because the
baseline is parallel to the rectified image plane and the epipolar line is horizontal, vector e1 coincides
with the direction of the baseline. C1, C2 are the camera station coordinates and e1 can be deduced as:

e1 =
B

||B||
, B = C2 − C1 (8)
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The two constraints on the second vector, e2, are that it must be orthogonal to e1 and that the
perspective distortion relative to the original images must both be minimal. To achieve these, it should
compute and normalize the cross product of e1 with etemp, which is the direction Z of rectified image
plane (see Section 2.1.2). It can be expressed as:

e2 =
etemp × e1

||etemp × e1||
(9)

The third unit vector is unambiguously determined as:

e3 = e1 × e2 (10)

Together, they comprise the rows of the rotation matrix R, which is defined as:

Rrec =

 e1

e2

e3

 (11)

Thus, the rectified camera coordinate frames are defined by getting the R matrix of the rectified
images. Noting that the left and right R matrices are same.

Horizontal or Vertical Rectification

When the image models are absolutely oriented, horizontally or vertically rectified images can be
generated. At the same time, it can minimize the perspective distortion relative to horizontal or vertical
planes, making the result conducive for image-matching purposes for regular buildings. Because the
baseline is not absolutely horizontal, the way to minimize the perspective distortion relative to
horizontal planes is to generate the rectified images that are closest to the horizontal plane. However,
absolutely rectified vertical images can be generated according to Section 2.1.2. The computational
process is similar to the above procedures. There is only a slight difference in the definition of etemp.
For horizontal images, it is defined as follows:

etemp =
[

0 0 1
]

(12)

When vertical images are needed, the etemp should meet the following constraints:

1. etemp =
[

x y 0
]
;

2. etemp must be orthogonal to the baseline;
3. etemp should be consistent with the two direction vectors of the original images’ optical axes,

i.e., etemp·R3 > 0, etemp·R′3 > 0.

General Rectification

When the images models are relatively oriented or when a non-horizontal or non-vertical plane
exists in the world coordinates, the direction of the rectified image planes should be closest to the
direction of the plane to minimize the distortion with respect to that plane. The computational
process is similar to the above two procedures, requiring only a small difference in the definition
of etemp. Given a plane expressed as

[
a b c d

]
, its normal form is expressed as

[
a b c

]
,

which is consistent with the two direction vectors of the original images’ optical axes. Then, etemp is
determined as:

etemp =
[

a b c
]

(13)
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From the above discussion, it is easy to obtain various rectified images with different distortion
characteristics by defining different R matrices, which works because the definition of the R matrix
is flexible.

2.2.2. Camera Matrix of Rectified Image

The scale of both rectified images can be adjusted by setting a suitable focal length. As we know,
the focal lengths of rectified images have the same value. The most commonly used method, shown in
Figure 3a, is to set the focal length the same as the original images; however, in that case, the rectified
images will be larger than the original images. Note that although the resolution is higher than in the
original images, it is meaningless. Our method, shown in Figure 3b, is to keep the principle point of
the original image unchanged during the perspective transformation.
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In Figure 3a, the rectified images will be larger than the original images. In particular, as the
rotation angle between the optical axes of the original and rectified images grows larger, the rectified
image size becomes significantly bigger. In contrast, in Figure 3b, the rectified image size would not be
significantly different from the original image. The proposed method may result in rectified images in
which some part of the image is compressed and the other part is stretched compared to the original
images. However, the average resolution remains almost unchanged from the original images. In this
paper, the focal length is defined as:

f1 = f ·R3·e3

f2 = f ′·R′3·e3

frec = min( f1, f2)

(14)

After getting the R matrix and the focal length of the rectified images, it is easy to obtain the K
matrices of the rectified images. According to Section 2.1.1, the H matrices can be calculated to rectify
the original images to rectified images.

2.3. Distortion Constraints

2.3.1. Distortion Coordinate Frame

To better express the character of distortion relative to the original images, a distortion coordinate
frame is defined. The optical axis of the rectified image is the Zdis axis of the distortion coordinate
frame, i.e., the third row of the rectified rotation matrix Rrec. The Xdis and Ydis axes of this coordinate
frame can be obtained by the cross products. The Ydis axis must be orthogonal to the two optical axes
of the original image and rectified image, and can be expressed as:

Ydis = R3 × Rrec3 (15)
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The third unit vector is unambiguously determined as:

Xdis = Ydis × Zdis (16)

The three unit vectors of Xdis, Ydis, Zdis form a rotation matrix Rdis.

2.3.2. Characteristics of Distortion

This section focus on the distortion of rectified image relative to the original image. It is easy
to discuss the characteristics of distortion in the distortion coordinate frame. The distortion within
an image line that is parallel to the Ydis axis has the same size, while the distortion within an image line
that is parallel to the Xdis axis gradually becomes larger along the positive direction of the Xdis axis.
The size of distortion (denoted as t) is the ratio between the size of a point in the original image and
the size of its corresponding point in the referencing image. It is derived from the projection geometry
and shown in Equation (17), a schematic diagram is introduced in Figure 4:

t = cosα(cosα− sinαcotθ)2 (17)

where α is the angle between the Z axes of the original and the rectified camera coordinate frames.
Assume that the field of view (FOV) of the original image is π, although the FOV is usually less than
that value in actuality. For the rectified image, the valid FOV range is (α, π) and θ ∈ (α, π). The θ in
Figure 4 denotes the angle from the directional vector Xdis to the ray of light. The size of the distortion
is closely related to the angle α. Its characteristics are illustrated in Figure 5.
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Figure 5 shows nine curves that correspond to different α values. The horizontal axis represents
the ray direction θ, and the vertical axis represents the image distortion relative to original image.
Through the distribution curve of distortion, a curve that is far away from the line y = 1 corresponds
to an image with large distortion. It can be observed that the greater the angle α is, the greater
the corresponding distortion is. Moreover, the distortion near the image edges is greater than the
distortion near the image center. For the images used in this paper, the tilt angle of oblique images is
approximately 45◦, and the field of view is approximately 35◦–50◦, so rectified images typically do not
have such large distortions.

2.3.3. Constraint Method

The size of the maximum distortion can constrain the scope of the image and can be applied to
the following two aspects: constraining the unbounded images and getting the highest quality image
region. When generating the rectified horizontal images, distortion constraints can remove the image
region with the smaller base-to-height ratio and the image areas that are likely to be blurred due to
atmospheric influence. In oblique aerial photography, the upper part of the image is the region with
the smaller base-to-height ratio and is also highly likely to be affected by air quality, making it blurry.

If the rotation angle α is large and the FOV of original image is also large, it is likely to generate
an unbounded image. This phenomenon is most likely to appear in close range photogrammetry and
oblique photogrammetry. Given the threshold (the size of maximum distortion) T, thus Equation (17)
can be rewritten as:

tanθ =
sinα

cosα−
√

T
cosα

(18)

Equation (18) can provide the result of calculating the desirable image region. Then, translating
the coordinates of the constrained image scope from the distortion coordinate frame to the rectified
camera coordinate frame (Rdis → Rrec) . Finally, solving for the intersection area of the constrained
image scope (solved by Equation (18) under a threshold T) and the original image’s projective scope
(calculated by Equation (3) using image 4 corner points) in the rectified image plane for the final scope
of the rectified image.

3. Experimental Evaluations

3.1. Performance of Rectification

The presented approach is tested with oblique images captured by the SWDC-5 aerial multi-angle
photography system. This system is composed of five large format digital cameras with one vertical
angle and four tilt angles. The image size of the five cameras is 8176 × 6132, and the pixel size is 6 µ.
The angles of the four tilt cameras are 45◦ relative to the vertical camera. The focal length of the tilt
cameras is 80 mm, while the focal length of the vertical camera is 50 mm. The relative height of flight
is 1000 m possessing a GSD (Ground Sampling Distance) of 12 cm. The side and forward overlapping
rates are 50% and 80% respectively. The coordinates are recorded in the WGS-84 coordinate system.
Oblique photography captures more information, including the façade textures of the buildings,
which can be used to create a more realistic appearance in 3D urban scene modelling.

When reconstructing 3D architectures from oblique images, calibration is mandatory in practice
and can be achieved in many situations and by several algorithms [22,23]. Given a pair of stereo
oriented images, the corresponding P (projection matrix), or the intrinsic parameters of each camera
and the extrinsic parameters of the images, it is straightforward to define a rectifying transformation.
Meanwhile, it is needed to minimize the perspective distortion according to the above methods. In this
article, the lens distortions are not considered and have already been removed in the experimental data.

Figure 6a,b shows the original image pair captured from Wuhan City (China) in which the red lines
are epipolar lines. In the sub-region pair in Figure 6c,d, the roofs are shown with perspective distortion,
which is especially apparent in Figure 6e,f with the building façades. Examples of rectified image
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pairs illustrate basic rectification (Figure 7a,b), horizontal rectification (Figure 8), vertical rectification
(Figure 9) and scope-constrained rectification (Figure 7c,d). Figure 7a,b shows the rectified image pair
with minimum distortion properties relative to the original images, i.e., the changes to the optical axis
are minimal. It is apparent that the epipolar lines (red lines) are horizontal in the rectified images and
that the corresponding lines are in nearly the same vertical position. Figure 8a,b shows a horizontally
rectified image pair while Figure 8c,d shows their sub-regions in which the roofs (red areas) are
similar and without distortion, i.e., the disparities are close to a constant. There is no distortion for the
horizontal objects projected into the horizontally rectified images, but absolutely rectified horizontal
images do not exist for the non-horizontal baseline. Although there is a slight distortion for the
horizontal objects in this type of rectification, the distortion is minimal and can be ignored for oblique
aerial photography. Using a small adjustment, images without the distortion of horizontal objects
can be achieved by setting different focal lengths and making the rectified image plane absolutely
horizontal. However, the method cannot generate rectified images in this way. Figure 9 clarifies the
concepts of vertically rectified images. In that figure, the vertical lines of façades are still vertical in
the vertically rectified images as shown in Figure 9c,d compared to Figure 6e,f. Typically, there is no
distortion for façades in the vertical direction, while in the horizontal direction, scale distortion is
inevitable unless the façades are all parallel to the vertically rectified image plane. From these results,
the façades can be considered for flight course planning. Figure 7c,d shows the rectification result under
the scope constraint. Due to the large tilt angle, the image regions that have a smaller base-to-height
ratio are removed as can be observed in Figure 7c,d compared to Figure 8a,b. This method can also be
used to constrain the unbounded rectified image area, which happens when the tilt angle is large and
the field of view of is also large, as in oblique photogrammetry.
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3.2. Quantitative Evaluation of the Matching Results

In this section, the matching results of commonly used rectifications [19,20] and the proposed
rectification are comparatively analyzed. These two commonly used rectifications are very similar
to the proposed basic rectification. In addition, there are small differences for their dense matching
results, which can be ignored for the dataset used in this paper. However, the commonly used methods
do not consider the perspective distortion relative to surfaces in object space. Therefore, there are
dramatic differences compared to the proposed horizontal and vertical rectification. The following
quantitative analysis shows the superiority of the proposed rectification method.

Here, we select horizontal roofs and vertical façades (red areas shown in Figure 10) to evaluate
the matching precision influenced by the distortions. Three sets of rectified images pairs were matched
by the tSGM algorithm [24] and the resulting depth maps were evaluated quantitatively. For the
horizontal rectification, the roofs appear to be without perspective distortion, however, the distortions
of façades are not eliminated. In contrast, the distortions of façades are minimized in the vertical
rectification, which is opposite to the roofs. For the commonly used rectification, the roofs and the
façades are both with geometry distortion. All dense image matches were carried out on full resolution
imagery. For comparison purposes, the resulting depth maps have been transformed from rectified
images to original images.

The matching results of horizontal objects are compared in Figure 10d–f, showing that the densities
of point clouds in the roof areas are not the same, especially in the black area. The horizontally rectified
image (matching result shown in Figure 10d) generates more points than the vertical rectification
(matching result shown in Figure 10e) and commonly used rectification (matching result shown in
Figure 10f) for the roofs. The matching result for the façades in Figure 10a–c shows that the vertical
rectification is the best as expected. Vertical rectification is more convenient for matching façades and
generates a denser set of points than the other rectifications. To differentiate them more convincingly,
the result of a quantitative analysis is first shown in Table 1. The influence of deformation on matching
can be analyzed from two aspects: the percentage of valid pixels and the precision. The former means
the percentage of generated depth pixels within an area. In the latter case, the RMSE (Root Mean
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Square Error) of plane fitting is used to scale the precision of image matching. From Table 1, we can
see that due to the reduced size of the distortions, the density of point clouds increases from 98.89%
to 99.15%, and the RMSE is reduced from 15.2 cm to 10.1 cm for Roof 1 (the red area in Figure 10).
Similar changes occurred for Roof 2. Because of the high matching result from tSGM, the precision is
obviously improved, though there is no significant improvement in the integrity of roofs. Using the
same analytical method for façades, both increased integrity and precision for vertical rectification
are shown in Table 2, but not as obviously as for the roofs. This is probably due to the fact that the
façades are not parallel to the baseline, and the scale deformation in the horizontal direction still exists
in vertical rectification. Nevertheless, the rectification methods proposed in this paper can improve
the matching precision. The matching results of horizontal and vertical rectifications are compared in
Table 3. It shows that the matching results of horizontal objects in horizontal rectification are better than
that of the vertical rectification, while there are almost completely opposite conclusions for façades.
In the case of roofs, experimental data also show that the matching results of horizontal rectification
perform the best for precision, because the distortion of roofs in horizontal rectification is smallest in
these three situations. A similar conclusion can be drawn for façades.Sensors 2016, 16, 1870  13 of 17 
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Table 1. A comparison of matching results for horizontally rectified images and commonly used
rectification images.

Objects
Horizontal Rectification Commonly Used Methods

Integrity (%) Precision (RMSE) Integrity (%) Precision (RMSE)

Horizontal Objects Roof 1 99.15% 10.1 cm 98.89% 15.2 cm
Roof 2 98.86% 18.1 cm 98.55% 21.5 cm

Table 2. A comparison of matching results for vertically rectified images and commonly used
rectification images.

Objects
Commonly Used Methods Vertical Rectification

Integrity (%) Precision (RMSE) Integrity (%) Precision (RMSE)

Vertical Façades
Façade 1 92.12% 53.3 cm 92.47% 52.5 cm
Façade 2 97.45% 24.7 cm 98.52% 24.5cm
Façade 3 79.28% 27.1 cm 82.40% 25.6 cm

Table 3. A comparison of matching results for horizontally rectified images and vertically rectified images.

Objects
Horizontal Rectification Vertical Rectification

Integrity (%) Precision (RMSE) Integrity (%) Precision (RMSE)

Horizontal Objects Roof 1 99.15% 10.1 cm 97.94% 22.4 cm
Roof 2 98.86% 18.1 cm 97.31% 27.2 cm

Vertical Façades
Façade 1 91.44% 56.6 cm 92.47% 52.5 cm
Façade 2 97.18% 30.4 cm 98.52% 24.5cm
Façade 3 78.63% 27.6 cm 82.40% 25.6 cm

3.3. Robustness Evaluation

We choose another set of data captured from Nanchang City (China) to evaluate the robustness of
the proposed algorithm. The image data is captured by a multi-angle oblique photography system
composed of five large format digital cameras: one vertical angle and four tilt angles. The image size
of vertical view is 9334 × 6000 and the image size of tilt views is 7312 × 5474. The pixel size is 6 µ.
The angle of four tilt cameras is 45◦ relative to the vertical camera. The focal length of tilt cameras is
80 mm and that of vertical camera is 50 mm. The relative height of flight is 1000 m. The distance of
adjacent strips is 500 m and that of adjacent images within the same strip is 200 m.

Three trips with a total of 210 images are used in the experiment and cover an area of 7 km2.
Coverage area is a city district, and there are a lot of horizontal and vertical planes. Images are processed
through bundle adjustment, automatic DEM (Digital Elevation Model) extraction and orthoimage
production steps with the GodWork software package (version 2.0), which has been developed by
Wuhan University (Wuhan, China). We choose 12 façades and 12 horizontal planes (including roofs,
playgrounds and roads) within the coverage area, which are shown in Figure 11. The selected planes
are evaluated by using different oriented image pairs.

We use the same method as mentioned in Section 3.2 to evaluate the matching precision influenced
by the distortions. Table 4 shows the evaluation results of the horizontal planes. It shows that the
matching precision is increased by about 33% for horizontal planes. The analysis results are in
agreement with the Section 3.2. From Table 5, we can see that the matching precision in vertical
rectification also shows a great improvement for façades, by an average of 22%. The analysis results
are significantly different from Section 3.2. This is within our expectations. Because the flight direction
is from east to west, it is easier to select a number of façades parallel to the baseline. Thus, there is no
distortion for the façades projected into the vertically rectified images. This fully proves our hypothesis
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that perspective distortion has a great influence on matching. Elimination of perspective distortion on
rectified images can significantly improve the accuracy of dense matching.
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Figure 11. The illustration of coverage area and selected test planes. We choose 12 façades and 12
horizontal planes (including roofs, playgrounds and roads) within the coverage area. In the orthoimages,
the plane positions are marked. The selected planes are shown in the surroundings.

Table 4. A comparison of matching results for horizontally rectified images and commonly used
rectification images.

Objects Commonly Used Methods
Precision (RMSE)

Horizontal Rectification
Precision (RMSE)

Improvement
(%)

h1 20.02 cm 15.30 cm 23.56%
h2 15.81 cm 9.57 cm 39.46%
h3 14.98 cm 8.14 cm 45.69%
h4 10.08 cm 6.55 cm 35.00%
h5 39.75 cm 25.59 cm 35.62%
h6 8.92 cm 6.34 cm 28.91%
h7 20.50 cm 13.78 cm 32.80%
h8 13.82 cm 7.64 cm 44.75%
h9 37.63 cm 27.41 cm 27.16%
h10 33.30 cm 20.93 cm 37.15%
h11 17.99 cm 11.26 cm 37.41%
h12 28.20 cm 24.95 cm 11.54%

Table 5. A comparison of matching results for vertically rectified images and commonly used
rectification images.

Objects Commonly Used Methods
Precision (RMSE)

Vertical Rectification
Precision (RMSE)

Improvement
(%)

f1 17.18 cm 15.05 cm 12.42%
f2 22.18 cm 18.25 cm 17.72%
f3 32.88 cm 25.12 cm 23.58%
f4 44.15 cm 36.67 cm 16.94%
f5 17.02 cm 8.95 cm 47.39%
f6 30.72 cm 22.92 cm 25.38%
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Table 5. Cont.

Objects Commonly Used Methods
Precision (RMSE)

Vertical Rectification
Precision (RMSE)

Improvement
(%)

f7 23.71 cm 14.46 cm 39.02%
f8 39.87 cm 35.09 cm 12.00%
f9 27.83 cm 21.18 cm 23.90%

f10 41.20 cm 32.79 cm 20.40%
f11 44.21 cm 32.42 cm 26.68%
f12 50.84 cm 47.12 cm 7.31%

4. Conclusions

Epipolar rectification does not usually take into account the distortions of surface planes and the
quality of original images. Therefore, a new rectification algorithm for aerial oblique images is proposed
that minimizes the distortion of surface planes. The method is based on the minimization of a cost
function that is constructed by the tangent value of angle deformation. In addition, a scope-constrained
rectification is proposed to solve the problems of unbounded rectified images and crop out the
low-quality areas of oblique images. Although the method proposed in this paper seems simple,
it addresses epipolar rectification of oblique images in a flexible manner and solves many practical
problems in oblique image matching.

The proposed strategy of epipolar rectification leads to depth maps with greater numbers of
valid pixels and increased precision by minimizing the perspective distortion. The experiments
have confirmed that the matching precision for horizontal objects can be significantly improved by
using the proposed rectification method (increased by about 30%). This improvement is attributed
to the fact that the horizontal objects appear to be without distortions in the horizontal rectification.
However, the distortions of façades have not been completely eliminated, and scale deformation in the
horizontal direction is inevitable unless the façades are parallel to the baseline. Therefore, the façade
directions should be considered for flight course planning. In a second set of data, the flight direction
is from east to west, and most of the visible façades are parallel to the baseline. In this condition,
the matching precision shows a great improvement for façades, by an average of 22%. This fully proves
that perspective distortion has a great influence on matching. Elimination of perspective distortion on
rectified images can significantly improve the accuracy of dense matching. Furthermore, a better result
could be achieved by integrating two depth maps of horizontal rectification and vertical rectification
in 3D modeling.
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