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Abstract: Heterogeneous wireless sensor networks (HWSNs) are widely adopted in structural health
monitoring systems due to their potential for implementing sophisticated algorithms by integrating a
diverse set of devices and improving a network’s sensing performance. However, deploying such a
HWSN is still in a challenge due to the heterogeneous nature of the data and the energy constraints
of the network. To respond to these challenges, an optimal deployment framework in terms of
both modal information quality and energy consumption is proposed in this study. This framework
generates a multi-objective function aimed at maximizing the quality of the modal information
identified from heterogeneous data while minimizing the consumption of energy within the network
at the same time. Particle swarm optimization algorithm is then implemented to seek solutions to the
function effectively. After laying out the proposed sensor-optimization framework, a methodology is
present to determine the clustering of the sensors to further conserve energy. Finally, a numerical
verification is performed on a four-span pre-stressed reinforced concrete box-girder bridge. Results
show that a set of strategically positioned heterogeneous sensors can maintain a balanced trade-off
between the modal information accuracy and energy consumption. It is also observed that an
appropriate cluster-tree network topology can further achieve energy saving in HWSNs.

Keywords: heterogeneous wireless sensor networks; modal information quality; energy
consumption; clustering

1. Introduction

Structural health monitoring (SHM) has been widely used to monitor and diagnose the health
status of civil structures/infrastructures in real-time [1]. Typically, various sensors are deployed
on critical locations of the structure to periodically collect different types of data relevant to the
health status. For example, to monitor a bridge, engineers deploy sensors such as accelerometers,
strain gauges, and displacement transducers. The collected data will be post-processed according
to time/frequency domain algorithms to assess structural conditions, after which the SHM system
will estimate the residual life of the structure and, possibly, send out alerts when it exceeds some
pre-defined threshold.

Traditional SHM systems rely on wired sensors. The installation and maintenance cost of these
sensors represents a large portion of the total cost of the system. With the advances in technology,
the development of wireless sensor technology in recent years offers new opportunities for SHM
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applications [2–5]. Wireless communication eliminates the cost of wiring and increases the scalability
of the SHM systems. Wireless sensor nodes are generally powered by batteries and mounted with
multiple sensing devices placed inside and around the structure to periodically collect various types
of data. Consequently, wireless sensor networks (WSNs) particularly designed for SHM purpose are
evolving into heterogeneous systems [6]. Among various advantages, for example, heterogeneous
wireless sensor networks (HWSNs) can potentially provide higher levels of computational power,
network densities and lifetimes [7].

As a large amount of existing structures are suffering from deterioration, excessive loadings and
unpredicted incidents, the development of dense, yet low-cost wireless sensor arrays to monitor the
operation of structural systems has become an attractive research subject in recent years. Some notable
experimental applications implemented on large-scale structures can be seen, for instance, in the
Golden Gate Bridge [8] and the Jindo Bridge [9,10] as well as in several other long-span [11,12] and
medium-length span bridges [13,14]. However, WSNs are not yet commonly adopted in permanent
monitoring systems largely due to the challenges of providing necessary power for the monitoring
system through the limited power supply of sensor nodes with relatively small size. Thus, WSNs
are still considered as less popular alternatives to conventional wired SHM systems. Therefore,
maintaining an optimal size of sensor network that can provide the desired modal information is
deemed as one of the most critical challenges in the current deployment practice of WSNs in SHM.

In this paper, a study attempting to implement optimal sensor deployment (OSD) techniques to
determine the number and locations of heterogeneous wireless sensors on a structure of interest has
been performed. This implementation of such system intends to produce reliable information about
the structure’s health status while maintaining reasonable energy consumption.

As an important issue in SHM, the OSD techniques have been demonstrated to be effective in
helping to achieve accurate estimation of modal parameters by placing the sensors properly. Within
the context of OSD, quite a few methods, such as the Effective Influence (EI) method [15], Modified
Variance (MV) method [16], and Kinetic Energy (KE) method [17], have been proposed and verified
by practical SHM implementations. In addition to these existing OSD techniques designed for modal
parameter estimation in wired SHM systems, a handful of works have attempted to address the
OSD issues for wireless sensor networks. For instance, Bhuiyan et al. [18,19] proposed a three-phase
sensor placement method for SHM that addressed the quality of sensor placements, communication
efficiency, and fault tolerance. Onoufriou et al. [20] presented a two-step strategy to optimize the
number of sensors and their locations to satisfy both specific structural engineering requirements
and energy constraint imposed by a WSN. Zhou et al. [21] formulated an energy-aware wireless
sensor placement framework and developed a hybrid discrete firefly algorithm to solve complex
optimization problem. Fu et al. [22] performed a study to optimize wireless sensor placement for SHM
in terms of both the quality of the modal information and network energy consumption. These OSD
algorithms were feasible because most WSNs in these studies were homogeneous (sensors have the
same type, storage, processing, battery power, sensing, and communication capabilities). However,
when applying OSD to a HWSN that supports multi-type sensor applications, the OSD should further
consider the following issues:

i. Placement performance metrics issue

In a multi-type sensor network, the orthogonality of the modal vectors cannot be exploited as in
single-type sensor networks. Therefore, approaches that do not rely on the orthogonality of the modal
vectors are needed.

ii. Network topology issue

Network heterogeneity allows for sophisticated operations over a larger region. As most of the
energy costs come from the transmission and receiving of data packets, network topology optimization
is a challenging issue for energy efficient coordination when WSNs become heterogeneous.
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To the best of the authors’ knowledge, none of the existing works attempt to fulfill all the above
objectives simultaneously. By employing the ratio of Modal Clarity Index (MCI) [23] and Mode Shape
Expansion (MSE) [24], Jalsan et al. [25] took the information quality of the measured data collected
from a HWSN into account to represent placement quality of strain and acceleration sensors. However,
their work did not consider the allocation of data packets along the end-to-end path from a sensor to
the base station, and therefore the optimization within HWSNs could be further improved.

In this paper, a framework is proposed to overcome the insufficiency of existing OSD techniques
for HWSNs with the consideration of both placement quality and clustering issues. Typical
heterogeneous devices (accelerometers and strain gauges) are considered herein since they are
commonly available and have proven to be effective in detecting changes of structural properties,
particularly in civil structures with low vibration amplitudes. The proposed approaches are in twofold.
Firstly, a framework is proposed to optimize the layout of multi-type wireless sensors at critical
locations of the structure in terms of the modal information quality and network energy consumption.
Secondly, a clustering algorithm is further proposed to determine the best number of clusters in
the HWSN. After the framework is laid out, a numerical verification is performed on a four-span
pre-stressed reinforced concrete box-girder bridge.

The remaining sections of the paper are organized as follows: Section 2 presents the formulation
of the optimization problem in HWSNs. Section 3 describes the multi-objective function and its
optimization. Section 4 discusses the clustering issues in HWSN in terms of communication cost.
Section 5 evaluates the performance of the proposed approach via a numerical simulation of a
Heterogeneous wireless SHM system deployed on a bridge. Conclusions are drawn in Section 6.

2. Optimization Problem Formulation in HWSNs

The optimization for HWSN configuration is aimed to select particular physical locations for
the sensors on the monitored structure such that the resulting HWSN exhibits optimal performance.
To be specific, the optimization goal is set to find node locations in order to reliably identify modal
information (basis for diagnosing the health of a structure) while consuming minimum energy during
data collection. The formulation of optimization goal is described in the following sections.

2.1. Heterogeneous Sensor Placement Quality

In this study, we focus on modal identification performance based on vibration information,
specifically acquired through two common types of sensors in SHM—Wireless accelerometers and
strain gauges. The assessment of sensor placement quality based on modal identification accuracy has
been previously studied in homogeneous WSNs. For example, the Modal Assurance Criterion (MAC)
which considers the orthogonality of the modal vectors was used to evaluate the sensor placement [26].
However, in the case of heterogeneous data consisting of acceleration and strain, the orthogonality of
the modal vectors is no longer available. Therefore, performance metrics such as the Modal Clarity
Index (MCI) and Modal Relative Error (MRE) that do not rely on the orthogonality of the modal vectors
need to be employed. A few heterogeneous sensor placement indices based on these metrics have been
proposed in the literature, including the weighted sum of MCI and MRE [27], and the ratio of MCI
and MRE [25]. In this work, the ratio of MCI and MRE is employed as the placement quality index to
quantify the quality of the sensor placement.
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2.1.1. Modal Clarity Index

The objective of MCI is to determine the sensor locations that maximize the clarity between
adjacent modes of response. The MCI is based on the least squares method. The best-fit amplitude
matrix l is constructed using Equation (1):

λp,q =

Na+Ns
∑

i=1
αi,pβi,q

Na+Ns
∑

i=1
α2

i,p

, (1)

where p and q are the modes being compared, a and b are the analytical and experimental modal
matrices comprising of strain measurements and acceleration measurements, respectively.

The MCI can be obtained as the difference between the excited mode p and the best fit mode q
using Equation (2):

MCIp,q = [βp − (λp,q · αq)]
T [βp − (λp,q · αq)], (2)

The MCI matrix is a square matrix with dimensions equal to the modes of interest.
For simplification, mean value of the sum of matrix elements are calculated as the IMCI:

IMCI(na, ns) =
1

m2

m

∑
p=1

m

∑
q=1

IMCIp,q , (3)

where m is the number of measured modes, Na is the number of acceleration nodes deployed, and Ns

is the number of strain nodes deployed.

2.1.2. Modal Relative Error

In general, it is impossible to identify all the vibration modes of a structure from measured data.
Therefore, modal shape expansion (MSE) can be used to estimate the response of the structure at
the Degrees of Freedoms (DOFs) where no sensor is equipped, from a limited number of measured
DOFs [27].

The MSE method can be expressed as

yα = α
[
(βTβ)

−1 · β
]
· yβ, (4)

in which ya is the estimated response, a is the system modal matrix, b is the modal matrix for the
measured DOFs, and yb is the measured response of the structure.

The MRE can then be calculated using the estimated response and measured response via
Equation (5):

IMRE =
|yα − yβ|
|yβ|

, (5)

2.1.3. Placement Quality Index

The larger the corresponding MRE, the clearer the calculated modal information would be
(and vice versa) [25]. To consider both effects of MRE and MCI, the ratio of the two metrics is defined
as the placement quality index to measure the modal identification accuracy [9]:

FM =
IMRE
IMCI

, (6)

The ratio of IMRE and IMCI represents a IMRE gain per unit IMCI value. Minimizing Equation (6)
yields the best combination of both measurement types. This formulation overcomes the orthogonality
issue arising in heterogeneous sensors deployment and thus is used in this study.
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2.2. Network Model

Generally, energy consumption of a typical wireless sensor node in operation mainly occurs in
the phases of data acquisition, data processing, data reception, and data transmission [28]. In this
study, all of these phases are considered in the energy consumption formulation for acceleration node
and strain node separately. Table 1 shows the formulations of energy consumption of each part for
different sensor nodes. Table 2 lists the nomenclature of parameters and their typical values used in
general WSN platforms for SHM applications [29] and the following equations in this study.

Table 1. The energy consumption functions of each unit about different sensor nodes.

Energy Consumption Wireless Accelerometer Node Wireless Strain Gauge Node

Data acquisition Cca = aaK Ccs = asK
Data processing Cpa = bada

mK Cps = bsds
mK

Data communication Cta = (ga + dada
m)K Cts = (gs + dsds

m)K
Data receiving Cra = eaK Crs = esK

Table 2. Nomenclature and typical values.

Parameter Definition Value

αa energy consumption related to data collecting about accelerometer 60 × 10−9 J/bit
βa energy consumption related to data processing about accelerometer 45 × 10−9 J/bit

γa
energy consumption related to the transmission distance
about accelerometer 45 × 10−9 J/bit

δa
energy consumption related to the transmission distance
about accelerometer 10 × 10−12 J/bit.m2

εa energy consumption related to data receiving about accelerometer 135 × 10−9 J/bit

da
average distance between all nodes in a network layer to the base
station or cluster head node in upper network layer /

αs energy consumption related to data collecting about strain sensor 45 × 10−9 J/bit
βs energy consumption related to data processing about strain sensor 1.35 × 10−9 J/bit
γs energy consumption related to data transmitting about strain sensor 45 × 10−9 J/bit

δs
energy consumption related to the transmission distance about
strain sensor 10 × 10−12 J/bit.m2

εs energy consumption related to data receiving about strain sensor 135 × 10−9 J/bit

ds
average distance between all nodes in a network layer to the base
station or cluster head node in upper network layer /

K amount of data per second transmitting 200

In order to evaluate the energy consumption of HWSNs composed of acceleration and strain
nodes, a multi-layer spherical network model with a base station located in the center as shown
in Figure 1 is used. Ideal communication without errors and delays is assumed. This network
model, presented in the authors’ previous work [29], is now extended with heterogeneous sensor
nodes deployed. If the nodes are evenly distributed in the network (in other word, obey a uniform
distribution), the node density in the spherical space for acceleration pa and strain ps can be defined
as follows:

pa =
Na

Va
, ps =

Ns

Vs
, (7)

where Va and Vs are the volume of space covered by the acceleration nodes and strain nodes
respectively. Na and Ns have the same definition to the corresponding parameters used in Equation (1).
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Figure 1. Spherical WSN model.

When considering the pre-defined sensing and routing function of sensor nodes, a multi-layer
HWSN contains two main portions of energy consumption. The first portion is the energy consumed
by a layer of sensor nodes due to data acquisition, processing, and information transition to the upper
level. The other portion is the energy consumed by the same layer of sensor nodes for receiving data
from the lower layer and passing them to the upper layer.

In the first portion, the energy consumed is estimated as:

FE(n, n) =
Nna
∑

i=1
Fnode(Vi)a +

Nns
∑

i=1
Fnode(Vi)s

=
Nna
∑

i=1
{αaK + βa(da)

mK +
[
γs + δs(ds)

m]K}

+
Nns
∑

i=1

{
αsK + βs(di)

mK + [γs + δs(di)
m]K

} , (8)

where Nna is the number of acceleration nodes in the nth layer; and Nns is the number of strain nodes
in the nth layer.

Assuming the sensor nodes are uniformly deployed in the network, the number of sensor nodes
in each layer can be calculated as:

Nna =
(3n2 − 3n + 1)R′a3

R3
a

Na, Nns =
(3n2 − 3n + 1)R′s3

R3
s

Ns, (9)

where Ra and Rs are the distances between layers deployed with acceleration nodes and strain nodes,
respectively; R’a and R’s are the coverage ranges of all acceleration nodes and strain nodes in the
network, respectively.

The expectation of data transmission distance in this process is:

E(di) =
Nn
∑

i=1
di pi =

∫ nR
(n−1)R [x− (n− 1)R] 4πx2

4π
{
(nR)3−[(n−1)R]3

}
/3

dx

=
3
2 n2−n+ 1

4
3n2−3n+1 R

, (10)

Similarly, the energy consumed in the nth layer in the second portion is calculated by:

FE(n, n− 1) =
Nna
∑

i=1
(γa + δada

m + εa)K +
Nns
∑

i=1
(γs + δsds

m + εs)K

= (3n2−3n+1)R′a3

R3
a

Na

[
γa + δa(

3
2 n2−n+ 1

4
3n2−3n+1 Ra ′ )

m
+ εa

]
K

+ (3n2−3n+1)R′s 3

R3
s

Ns

[
γs + δs(

3
2 n2−n+ 1

4
3n2−3n+1 Rs ′ )

m
+ εs

]
K

, (11)
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Note that the data collected in the nth layer data needs (n − 1) hops to reach the base station.
By summarizing these two portion of energy consumed, the HWSN energy consumption per unit time
can be expressed by:

FE =
M
∑

n=1
FE(n, n) +

M
∑

n=2
(n− 1)FE(n, n− 1)

=
M
∑

n=1


(3n2−3n+1)R′a3

R3
a

Na

{
αaK + βa(

3
2 n2−n+ 1

4
3n2−3n+1 Ra ′ )

m
K + [γa + δa(

3
2 n2−n+ 1

4
3n2−3n+1 Ra ′ )

m
]K
}

+ (3n2−3n+1)R′s 3

R3
s

Ns

{
αsK + βs(

3
2 n2−n+ 1

4
3n2−3n+1 Rs ′ )

m
K + [γs + δs(

3
2 n2−n+ 1

4
3n2−3n+1 Rs ′ )

m
]K
}


+
M
∑

n=2


(n− 1) (3n2−3n+1)R′a3

R3
a

Na

[
γa + δa(

3
2 n2−n+ 1

4
3n2−3n+1 Ra ′ )

m
+ εa

]
K

+(n− 1) (3n2−3n+1)R′s 3

R3
s

Ns

[
γs + δs(

3
2 n2−n+ 1

4
3n2−3n+1 Rs ′ )

m
+ εs

]
K

,

(12)

In this study, we assume the acceleration and strain nodes conform to the same deployment rules,
that is:

R′a = R′s = R, Ra = Rs = MR, (13)

By taking Equation (13) and its typical values of the corresponding parameters into Equation (12),
the energy consumption formulation for a HWSN is obtained as Equation (14):

FE =
M
∑

n=1

 3n2−3n+1
M3 × (

3
2 n2−n+ 1

4
3n2−3n+1 R)

2
× 1.36× 10−9 × (Na + Ns)

+ 3n2−3n+1
M3 × (1.05× 10−7Na + 9× 10−8Ns)

K

+
M
∑

n=2

{
(n− 1) 3n2−3n+1

M3

[
1.8× 10−7 + 10−11 × (

3
2 n2−n+ 1

4
3n2−3n+1 R)

2]
× (Na + Ns)

}
K

, (14)

3. Objective Function and Solution

Trade-offs exist between modal identification accuracy and energy consumption in WSNs for
SHM [21,30]. Therefore, the objective of the optimization problem herein is to determine the optimal
number and location of heterogeneous sensor nodes in order to balance the amount of energy consumed
and the modal identification quality in the HWSNs. The following sections describe the formulation of
the multi-objective optimization function and its resolving algorithm.

3.1. Multi-Objective Optimization Function

A multi-objective function is formulated to describe the optimization problem as follows:

F(FM, FE) = φMωMFM(Na, Ns, Ra, Rs) +φEωEFE(Na, Ns, Ra, Rs), (15)

where fM is the weight coefficient of modal identification, fE is the weight coefficient of energy
consumption, wM is the adjustment coefficient of modal identification index, and wE is the adjustment
coefficient of energy consumption. Note that each single objective function (FM and FE) has its own
numerical dimension, thus adjustment coefficients are utilized to normalize the final calculation results
of the multi-object function.

As discussed in Section 2.1, the ratio of MSE and MCI is used to formulate the objective function
FM for the sensor placement quality (see Equation (6)). Meanwhile, Equation (14) in Section 2.2 is used
to formulate the objective function FE for energy consumption.



Sensors 2016, 16, 1865 8 of 18

3.2. Particle Swarm Optimization Algorithm

The optimization of the above multi-objective function for large SHM systems is computationally
challenging due to the large number of DOFs. In recent years, multiple advanced optimization
algorithms, such as the genetic algorithm (GA) [31], particle swarm optimization (PSO) [32], and the
monkey algorithm [33], have been adopted to determine sensor optimal placements. Unlike
other computation algorithms, PSO has no evolution operators, such as crossover and mutation,
and therefore it has a faster convergence speed. In this study, the PSO algorithm is employed also due
to its unique information diffusion capability and interaction mechanisms which enable PSO to solve
complex optimization problem with high performance at low computational cost. Refer to Section 5.2
for the details of the utilization of PSO algorithm in this study.

4. Network Topology Optimization

HWSNs applications, such as SHM, require the equipped sensors to form a multi-hop network
to collect the environmental data in real-time. Such a network typically generates a cluster-tree type
topology. As most of the energy cost comes from transmitting and receiving data packets, clustering
optimization become an important issue for these applications in that it benefits efficient energy
coordination, thus reducing the transmission power and maximizing the network life. To this end,
the topology optimization problem is considered in this section to determine an appropriate number
of clusters to minimize the energy consumption after selecting the sensor number and location.

In this study, the energy consumption model for a single sensor node is assumed to conform to
the first order wireless communication mode [34] as shown in Figure 2. Note that the acceleration and
strain nodes have the same radio frequency module, therefore these two types of sensors share the
same communication mode.
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Figure 2. The first-order wireless communication mode.

In the data transmission process, the energy consumption of transmitting K bits of data to a sensor
node can be expressed as:

ETX =

{
K× γ+ K× δmp × d4

K× γ+ K× δ f s × d2 , (16)

The energy consumption of receiving K bits of data from a sensor node can be expressed as

ERX = K× ε, (17)

where K is the number of data packet being sent and received; γ is the energy needed to transmit a unit
bit of data; ε is the energy consumption of receiving a unit bit of data; δmp is the power amplification
factor of multi-path attenuation model (d ≥ d0); δfs is the power amplification factor of the free space

model (d < d0); d0 =
√

d f s/dmp; d is the data transmission distance.
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4.1. Two-Phase Energy Consumption Formulation

Consider a synchronized two-level cluster-tree HWSN featuring a tree-based logical topology
where nodes are organized in different groups, called clusters. Each member node only interacts with its
pre-defined cluster head (CH) node, and cannot be connected to other member nodes. The formulation
of energy consumption in such a cluster-tree HWSN can be divided into two phases, the network
initialization phase and the stable transmission phase.

Assuming that acceleration nodes, Na, and strain nodes, Ns, are randomly distributed in a
L × L × L cube space, in which the number of CH nodes is C. Then each cluster has one CH node
and (Na + Ns)/C − 1 member nodes on average. The energy consumption of CH nodes broadcasting
message to member nodes is given by:

Ech11 = K× γ+ K× δmp × d4, (18)

The determination of what cluster for a non-CH node to join is based on the strength of the signal
received by the broadcast message, which is proportional to the distance d between the member nodes
and the CH node. The energy consumption of each CH node receiving information from member
nodes is given by:

Ech12 = K× ε×
(

Na + Ns

C
− 1
)

, (19)

After receiving the information, the CH node creates a Time Division Multiplexing Access
(TDMA) [24] to be sent back to the member nodes, which also consumes energy. If the distance
between the CH node and the member node is dtoch, the energy consumption in CH is given by:

Ech13 = K× γ+ K× δ f s × d2
toch, (20)

According to Equations (18)–(20), the energy consumption of each CH node is given by:

Ech1 =

[
ε×

(
Na + Ns

C
− 1
)
+ 2γ+ δ f s × d2

toch + δmp × d4
]
× K, (21)

Similarly, the energy consumption of a member node receiving broadcast information from the
CH node is given by:

Emn11 = K× ε, (22)

The energy consumption of a member node sending a message to join the cluster is given by:

Emn12 = K× γ+ K× δ f s × d2
toch, (23)

The energy consumption of a member node receiving TDMA time table from the CH node is
given by:

Emn13 = K× ε, (24)

Therefore, the energy consumption of each member node in an established cluster is given by:

Emn1 = Emn11 + Emn12 + Emn13 =
(

2ε+ γ+ δ f s × d2
toch

)
× K, (25)

The total energy consumption for a cluster in the network initialization phase is given by:

E1 = C×
[

Ech1 +

(
Na + Ns

C
− 1
)
× Emn1

]
≈ C× Ech1 + (Na + Ns)× Emn1, (26)
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After the clusters are established, the network turns into the stable phase of data transmission.
In each cluster, the member nodes send the information to the CH node, and the energy consumption
of the CH node receiving this information is given by:

Ech21 = K× ε×
(

Na + Ns

C
− 1
)

, (27)

Then the CH node receives the information of the member nodes for information fusion.
The energy consumption for such activity is given by:

Ech22 = K× EDA ×
Na + Ns

C
, (28)

where EDA is the energy consumed for fusing a unit bit of information.
Defining the distance between the CH node and base station as dtoBs, the energy consumption

that CH node transmits the fused information to the base station is given by:

Ech23 = K× γ+ K× δ f s × d2
toBs, (29)

As a result, the energy consumption of a CH node in the stable phase is given by:

Ech2 = Ech21 + Ech22 + Ech23

=
[
ε×

(
Na+Ns

C − 1
)
+ γ+ δ f s × d2

toBs + EDA × Na+Ns
C

]
× K

, (30)

Each member node only sends information to the CH node. Its energy consumption is:

Emn2 = K× γ+ K× δ f s × d2
toch, (31)

Summarizing Equations (30) and (31), the energy consumption in the stable transmission phase is
given by:

E2 = C×
[

Ech2 +

(
Na + Ns

C
− 1
)
× Enoch2

]
≈ C× Ech2 + (Na + Ns)× Emn2, (32)

Consequently, the total energy consumption for a HWSN with two-level cluster-tree is shown in
Equation (33):

ETotal = K×


ε× [4 (Na + Ns)− 2C] + [2 (Na + Ns) + C]× δ f s × d2

toch
+γ× [3C + 2 (Na + Ns)] + C× δmp × d4 + C× δ f s × d2

toBs
+EDA × (Na + Ns)

, (33)

4.2. Optimal Clustering

In Equation (33), dtoch is an uncertain value since the number of CH nodes is unknown. Therefore,
we use the mathematical expectation to estimate the value of dtoch.

Assuming that clusters composed of a CH node and multiple member nodes in a sphere volume
are evenly distributed in the L × L × L cube space. In this case, for each cluster, the average volume
is L3/C, the coverage radius is 3

√
3L3/4pC, and the probability density of member nodes is C/L3.

The expectation of dtoch is:

E[d2
toch] =

∫ ∫ ∫
(x2 + y2 + z2)ρ(x, y, z)dxdydz

=
∫ ∫ ∫

r2ρ(r,ϕ, θ)r2sinϕdrdϕdθ

= C
L3

∫ ∫ ∫
r4sinϕdrdϕdθ = 0.25

(
L3

πC

)2/3

≈ 0.116L2

C

, (34)
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With partial derivative on the number of CH nodes on both sides of Equation (34), it gives

∂ETotal
∂C

= 3γ− 2ε−
0.233L2 (Na + Ns) δ f s

C2 + δ f sd2
toBs + δmpd2, (35)

After setting ∂ETotal
∂C = 0, it would now be possible to obtain the mathematical expression of the

optimal number of CH nodes as

C =

√
0.233L2 (Na + Ns) δ f s

3γ− 2ε+ δ f sd2
toBs + δmpd4

, (36)

As can be seen in Equation (36), the optimal number of CH nodes in a HWSN is determined by the
total number of sensor nodes, the distance d that CH nodes broadcast information to their connected
member nodes, and the distance dtoBs between the CH nodes and the base station.

5. Performance Evaluation

A numerical verification is performed on a four-span continuous reinforced concrete box-girder
bridge. The optimization goal is to obtain a HWSN configuration that simultaneously minimize
the network energy consumption and maximize the information quality objectives. In addition,
this example also intends to show the efficiency of the proposed framework by comparing the
performance of the cluster-tree topology to flat topology, which assumes that data packets are
transmitted from member nodes to base station directly.

5.1. Simulation Setup

The bridge is located in Shenzhen, China, across the Pinghu railway. It is a historical bridge
currently being retrofitted. A SHM system composed of wireless acceleration and strain nodes will be
implemented on the bridge to monitor its long-term vibration behaviors. The bridge has span length
of 42.5 m + 2 × 65 m + 42.5 m as seen from the bridge elevation view in Figure 3.
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Figure 3. Bridge Elevation View (unit: cm).

Bearing conditions of the bridge on a plan view are shown in Figure 4, where circles represent the
double-column piers, DX represents an expansion bearing providing the bridge vertical constraint
only, ZX represents an expansion bearing providing the bridge lateral and vertical constraints, and GX
represents a fixed bearing.
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Figure 5. The first ten bending mode shapes of the bridge. (a) Lateral mode of the bridge; (b) Vertical 

mode of the bridge. 
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Figure 4. Bearing forms constraint of main bridge (unit: cm).

To obtain modal parameters of the bridge, a detailed finite element model was built in ANSYS.
The main box girder is modeled with 9854 solid elements and 3354 nodes. In this study, the first
10 mode shapes of the main girder (exhibited in lateral and vertical modes) are considered as the
targeted modes and obtained through modal analysis. The first ten modes are shown in Figure 5 with
their natural frequencies are listed in Table 3.
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Figure 5. The first ten bending mode shapes of the bridge. (a) Lateral mode of the bridge; (b) Vertical
mode of the bridge.
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Table 3. The first ten natural frequencies of the bridge.

Mode Frequency (Hz) Modal Shape

1 0.669 lateral
2 0.746 lateral
3 3.291 vertical
4 3.541 vertical
5 4.051 vertical
6 4.367 lateral
7 5.118 lateral
8 5.370 vertical
9 7.935 vertical

10 8.450 vertical

5.2. Sensor Layout Optimization Results

The proposed OSD techniques are applied to determine both the optimal number of heterogeneous
sensors and their best sensing locations. In order to solve the multi-objective function established
in Section 5.1, it is assumed that the accuracy of the modal parameter identification and network
energy consumption for this SHM system has equal significance, meaning that the weight coefficients
fM and fE in Equation (15) are both set to be 0.5. Since the two objective values are not in the same
scale of magnitude, scale factors wR = 1 and wE = 106 are used for normalization. The MathWorks
MATLAB is used to apply the PSO algorithm and carry out the calculations. The PSO parameters of
initial population size, maximum number of iterations, and particle velocity, are set to be 300, 150,
and [−3, 3], respectively. The PSO is run for 10 times to generate the network layouts. The objective
function values, accelerometers, strain gauges, and coverage ranges of the layouts obtained in the ten
cases are listed in Table 4.

Table 4. Results of the PSO running 10 times.

Number 1 2 3 4 5 6 7 8 9 10 Mean

Function Value 154 188 173 138 157 185 122 99 162 63 144.1
N1

(Accelerometer) 14 14 15 14 15 13 15 13 13 14 14

N2
(Strain Gauge) 10 10 9 10 9 11 9 11 11 10 10

R(m)
(Coverage Range) 103 97 89 98 99 100 91 101 100 102 96.7

Herein, the mean values are used as the optimal sensor layout deployed on the bridge plan.
The optimal number of accelerometers, strain gauges, and coverage range are 14, 10, and 96.7 m,
respectively. The sensor placement layout found from the analysis is shown in Figure 6, where
black circles indicate wireless accelerometers and red rectangles represent the wireless strain gauges,
respectively. Numbers 1~22 listed under the bottom of the bridge represent selected cross sections
that are equipped with sensors. Numbers listed above the bridge represent longitudinal distance
(cm) between sensors. The results showed non-symmetric sensor configurations in the longitudinal
direction. Detailed sensor locations on each section are shown subsequently in Figure 7.
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Figure 6. Sensor deployment on the bridge girder.
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Table 5. Network parameters. 
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5.3. Clustering Optimization Results

The study herein is aimed to determine the best data transmission path of the HWSN based on
the sensor configuration from initial optimization results, and to compare the performance of network
topology effects on energy consumption. The related network parameters on the bridge monitoring
system are listed in Table 5.

Table 5. Network parameters.

Parameter Value

HSWN Space V (0, 0, 0)~(215, −3.12, 13.75)
Accelerometer 14
Strain Sensor 10

Base Station Location (107.5, 0, 6.875)
γ 45 × 10−9 J/bit
ε 135 × 10−9 J/bit
δfs 10 × 10−12 J/bit/m2

δmp 0.0013 × 10−12 J/bit/m2

d 100 m

Since the probability density ρ(x, y, z) of the CH nodes is the reverse of the HWSN space V,
the distance expectation dtoBs is calculated using Equation (35):

E[d2
toBs] =

∫ ∫ ∫ [
(x− 107.5)2 + y2 + (z− 6.875)2

]
ρ(x, y, z)dxdydz

= 1
V
∫ ∫ ∫ [

(x− 107.5)2 + y2 + (z− 6.875)2
]

dxdydz

= 7.8× 103m2

, (37)

Subsequently, taking these parameter values into Equation (36), the optimal number of clusters
is obtained as five. That is, the wireless sensors selected to monitor the bridge are divided into five
clusters. Nevertheless, finding specific member nodes that result in best data transmission path
in a large-scale HWSN with multiple clusters is a quite complex problem. In this study, for fast
optimization, the nodes close to the base station are assumed to be selected as CH nodes and the
member nodes in each cluster are allocated as even as possible. Figure 8 shows the cluster-tree based
HWSN topology on the bridge in a 2-D configuration. Each cluster has four or five member nodes.
The dotted line indicates the data transmission path.
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In order to evaluate the effectiveness of clustering optimization, the simulation results using the
proposed method are compared to those obtained by a flat network topology (one layer). According to
Equation (14) derived in Section 2.2, the network energy consumption for both scenarios is calculated
and shown in Table 6.
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Table 6. Comparison of clustering and non-clustering.

Network Topology
Energy

Consumption (J)
Coverage Radius of Network (m)

First Layer Second Layer Entire Network

Flat 0.0280 — — 105.4
Cluster-tree 0.0210 32.7 102.5 135.2

Difference (%) 33.3 — — 28.3

In the data transmission path produced by the cluster-tree HWSN topology, the coverage radius
is increased by 28.3% compared to that of the flat topology. In addition, it is also found that the energy
consumption of the sensors is significantly lower than that of the flat topology (33.3%). This reduction
is expected since, although the coverage radius increases, the transmission distance of data packets
is reduced in a cluster-tree routing path, which indicates that the energy consumption depends not
only on the coverage radius of network, but also other factors such as the data transmission distance
and the amount of transmitted data packets. Since there exists a linear relationship between energy
consumption and the square of data transmission distance, the energy saving in a cluster-tree topology
can be achieved by reducing total data transmission distance through suitable clustering mechanism,
and, therefore, it is independent of the network size.

It should be emphasized that the optimization of network topology in this study only involves
a fast selection of CH nodes according to the algorithm proposed. Further determination of specific
member nodes in each cluster will lead to another complex problem which is out of the scope of this
paper. In the expense of larger amount of computation time, the data packets transmission path shown
in this study could be further optimized. However, the OSD framework proposed is applicable to other
monitoring scenarios that the deployment of multi-type wireless sensors is based on the principle of
modal information quality and minimum of energy consumption.

6. Conclusions

The increasing interest in employing HWSNs for SHM applications requires an efficient
sensor placement methodology. In this study, first, an OSD framework for HWSNs is proposed.
A multi-objective layout optimization problem is presented and resolved using the PSO algorithm
to determine the trade-off between modal information quality and energy consumption with the
consideration of the application requirements. Furthermore, a clustering optimization approach is
proposed to conserve extra energy through selecting appropriate CH nodes in multi-hop HWSNs.
A continuous-span bridge is used as an example to evaluate the performance of the proposed approach
for designing a wireless SHM system comprised of acceleration nodes and strain nodes on the bridge.

The proposed optimization approaches can effectively determine the best number and location of
heterogeneous wireless sensors for the purpose of SHM. Simulation results demonstrate that a set of
strategically positioned heterogeneous sensors can maintain an optimal balance between the modal
information accuracy and energy consumption. With the determined sensor deployment configuration,
the proposed clustering optimization approach can be easily implemented to further conserve energy
by selecting appropriate CH nodes in a multi-hop HWSN.
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