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Abstract: Functionalization of metal nanoparticles (NPs) on oxide materials is a commonly employed
technique for enhancing the sensitivity and selectivity of materials for gas sensing applications. In this
study, we functionalized electrospinning-synthesized SnO2 nanofibers (NFs) with various amounts of
Pt NPs to enhance the toluene-sensing properties. In particular, Pt NPs were prepared by deposition
of Pt films by sputtering and subsequent heat treatment. Electronic and chemical sensitizations by
the Pt NPs were responsible for the improved toluene sensitivity. The best sensing properties were
achieved at an optimized amount of Pt NPs, showing a volcano shape in relation to the amount of Pt
NPs. The method used in this study is useful for the development of toluene-sensitive and -selective
chemiresistive NF-based gas sensors.
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1. Introduction

Highly sensitive metal oxide-based gas sensors have become increasingly important for
monitoring environmental pollution and toxic chemical gases in industry as well as in daily life.
The sensitivity of metal oxide-based gas sensors is highly dependent on the specific surface area of the
sensing material. Therefore, many attempts have been made to increase the specific surface area of
sensing materials in the past few decades [1–5] using one-dimensional structures such as nanowires,
nanotubes, nanobelts, and nanofibers (NFs). Among these, NFs have attracted enormous attention due
to their high specific surface area. In addition, one-dimensional morphologies are suitable for confined
and directional transport of charge carriers.

In particular, NFs have a unique microstructure, exhibiting nanograins on the surfaces that
can further increase the surface area and greatly affect the sensing properties as compared to other
one-dimensional structures. Furthermore, the sensitivity of NFs can be easily improved by controlling
the size of these surface nanograins [6,7], the use of composite NFs [8,9], and the functionalization
of catalytic metal nanoparticles (NPs) [10,11]. Functionalization or decoration with metal NPs is a
generally accepted and effective route to enhance the gas sensing properties of metal oxides [12,13] by
electronic and chemical sensitizations.

Among the various methods for fabricating NFs, electrospinning is an efficient, relatively easy,
and novel technique to produce NFs from viscous solutions. Due to the high efficiency, good control
over the processing parameters, and suitable characteristics of the resulting NFs, electrospinning is
one of the main fabrication techniques for NFs [14]. To date, NFs from many functional materials have
been successfully synthesized and investigated for gas sensing applications.

There is ample literature regarding the functionalization of SnO2, a well-known n-type
semiconductor material that has been widely studied for gas sensing applications, and the
improvement in its sensitivity and selectivity upon loading or decorating various noble metals such
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as Pd [15], Au [11], Ag [16], Pt [17], and various oxide and non-oxide materials [18–20]. Additionally,
a variety of methods for functionalization of such noble metals have been employed as shown in
Table S1 [21–28]. The role of metal nanoparticles (NPs) in gas sensing properties is well established as
chemical and electronic sensitizations. In addition, the amount of the metal NPs used to functionalize
the surface greatly influences the sensing properties of the metal oxides; therefore, optimization of this
factor is highly desirable.

One of the most emerging applications of chemiresistive-type gas sensors is non-invasive disease
diagnostics through the detection of specific volatile organic compounds or gaseous biomarkers [29–31].
Toluene (C7H8) gas is a recognized biomarker for diagnosing lung cancer [32,33]. According to the
earlier investigation [34], functionalization of Pt NPs resulted in enhanced sensitive and selective
toluene-sensing behavior of the core-shell nanowires. A more recent work [35] revealed the special
role of Pt in relation to the toluene sensing based on Density Functional Theory (DFT) calculations.
In the previous work [10], Pt-loaded SnO2 NFs were synthesized and tested, in which Pt NPs were
synthesized in a separate process and mixed with the electrospinning solution. In order to expedite
the use of Pt-functionalized NF-based sensors, various methods of functionalizing Pt NPs and their
toluene-sensing properties needs to be investigated. On the other hand, Pt is one of precious metals,
the use of which is costly. Therefore, finding an alternative element that is earth abundant is significant
with regards to real application and mass-production.

In this study, SnO2 NFs, synthesized by electrospinning, were functionalized with different
amounts of Pt NPs. The amount of Pt NPs was controlled by changing the thickness of the
sputter-deposited Pt layers on SnO2 NFs. After a thermal treatment, Pt layers were disintegrated into
isolated islands, resulting in functionalization of Pt NPs on SnO2 NFs. Although there are many earlier
investigations regarding Pt-loaded or decorated SnO2 sensing materials [10,22], the SnO2 NFs with Pt
NPs have rarely been investigated. Furthermore, the optimization of the Pt amount has never been
attempted. In this work, an optimized amount of Pt NPs showed the best sensing properties.

2. Materials and Methods

The procedure used to synthesize Pt-functionalized SnO2 NFs is as follows. An aqueous solution
of polyvinyl acetate (PVAc, Mw = 850,000, Sigma-Aldrich Corp, Cream Ridge, NJ, USA) was prepared
in a mixed solvent (volume ratio 1:1) of ethanol (anhydrous, 99.5%, Sigma-Aldrich Corp, Cream Ridge,
NJ, USA) and dimethylformamide (DMF, 99.8%, Sigma-Aldrich Corp, Cream Ridge, NJ, USA) and
continuously stirred for 4 h at room temperature. Subsequently, 12.3 wt % tin(II) chloride dihydrate
(SnCl2·2H2O, Sigma-Aldrich Corp, Cream Ridge, NJ, USA) was added to the prepared solution and
continuously stirred for 12 h.

The SnO2 NFs were prepared using an electrospinning process. The prepared viscous precursor
solution was loaded into a syringe equipped with a 21-guage needle. A positive voltage of 15 kV was
applied to the needle tip and the metal collector was grounded. The feed rate of the solution was
0.03 mL/h and the distance between the needle tip and the collector was fixed at 20 cm. The electrospun
NFs were collected on SiO2-grown Si wafers that had been placed on the metal collector. The prepared
SnO2 NFs were then calcined at 650 ◦C for 2 h with a heating rate of 5 ◦C/min.

The SnO2 NFs were functionalized with Pt NPs according to the following procedure. First,
Pt thin films of different thicknesses (3, 5, 10, 15, and 20 nm) were deposited using magnetron
sputtering. The magnetron sputtering conditions were as follows; input power 30 W, target diameter
50 mm, deposition temperature 25 ◦C, Ar gas pressure 2.65 Pa, target-to-substrate distance 100 mm.
The thickness of Pt films was controlled by changing the deposition time. The relationship between
the deposition time and Pt thickness was established by measuring the thickness of Pt films deposited
on Si (100) substrates under the same sputtering conditions used in this work. Subsequently, the
as-deposited samples were heat-treated at 500 ◦C in air for 0.5 h. During this time, the Pt layers
transformed into Pt NPs through self-arrangement. The size of the Pt NPs increased with increasing
thickness of the sputtered Pt layer.
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Microstructural and morphological analyses of the Pt-functionalized SnO2 NFs were carried
out using field-emission scanning electron microscopy (FE-SEM). The compositional analysis was
performed using energy dispersive spectroscopy (EDS). Crystal structures and detailed microstructures
were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively.
For the gas sensing measurements, a layer of Ti (thickness of 50 nm) followed by a Pt layer (thickness
of 200 nm) were sputter deposited to make electrodes over the calcined Pt-functionalized SnO2 NFs
using interdigital electrode masks. The interdigital electrode pattern consisted of eight fingers with
dimensions of 7 mm length and 0.5 mm width, while 150 µm spacing was used to deposit the Ti/Pt
double-layer electrode. The details of the fabrication process for the NF sensor devices are described
in earlier reports [8,36]. The properties of the sensors were evaluated at an optimized temperature
of 300 ◦C with C7H8, using a gas dilution system. The gas flow was controlled by mixing the target
gas with dry air using accurate mass flow controllers. The sensing system was electrically connected
to a measurement system (Keithley 2400) and interfaced to a computer. The sensors were placed in
a horizontal-type tube furnace and the temperature was controlled by changing the mixing ratio of
the dry air-balanced target gas and the dry air through accurate mass flow controllers. A detailed
experimental procedure including a schematic for the sensing measurement system is provided in our
earlier report [9].

In order to investigate the cross sensitivity, other reducing gases such as benzene (C6H6) and
carbon dioxide (CO2) were also tested. The sensor response was estimated by the relationship Ra/Rg,
where Ra represents the resistance of the sensor in the absence of the target gas and Rg is the resistance
in the presence of the target gas.

3. Results and Discussion

Figure 1 shows the microstructures of the Pt-functionalized SnO2 NFs observed using FE-SEM.
Figure 1a shows the typical microstructure of pure SnO2 NFs for comparison. Figure 1b–f show
SnO2 NFs onto which various amounts of Pt were deposited (3, 5, 10, 15, and 20 nm, respectively)
and subsequently heat-treated. The average diameter of the fibers was ~165 nm. It is obvious from
these images that the Pt layers broke into small clusters or islands during the heat treatment process.
The thinner layers formed many smaller Pt clusters while the thicker layers broke into fewer, but
larger clusters. In the case of the 15 and 20 nm layers (Figure 1e,f, respectively), the islands were
connected and remained almost as a continuous thin layer covering most parts of the NFs’ surface.
This is because the thin layers easily break and are converted into smaller islands, while it is more
difficult to break the thicker layers under the same heat treatment conditions. It can also be noted
that the varying amounts of deposited Pt did not affect the size or shape of the NFs and nanograins.
Overall, the NFs were uniformly and randomly distributed over the Si substrates, as shown in the
insets, the corresponding low-magnification FE-SEM images.

In order to confirm the presence of Pt NPs, elemental analyses were carried out using EDS as
shown in Figure 2a and Figure S1. From Figure 1, in conjunction with Figure 2a and Figure S1, we can
conclude that we were successful in synthesizing the SnO2 NFs with different amounts of Pt NPs. The
amount of Pt NPs formed after the heat treatment increased linearly with increasing thickness of the Pt
layers deposited by sputtering, as summarized in Figure 2b. The linearity suggests the easy control of
the amount of Pt NPs by changing the thickness of Pt layers. Quantitative analysis by EDS usually
has some degree of uncertainty. In Figure S2, elemental analysis, including errors in quantitative
calculation by EDS of SnO2 NFs functionalized with Pt NPs, is provided. In spite of the small errors,
the linear relationship between the amount of Pt NPs and thickness of Pt layers is remained the same.
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Figure 1. FE-SEM images of (a) pure SnO2 NFs, and SnO2 NFs functionalized with Pt NPs containing 
(b) 0.2 at.%; (c) 0.3 at.%; (d) 1.2 at.%; (e) 2.0 at.%; and (f) 5.4 at.% Pt; Pt films of 3, 5, 10, 15, and 20 nm, 
respectively were deposited and subsequently heat-treated. The insets are the corresponding 
low-magnification FE-SEM images of SnO2 NFs functionalized with NPs. 

 

Figure 2. (a) Elemental analysis of 2.0 at.% Pt-functionalized SnO2 NFs using EDS; (b) Relationship 
between Pt amount and Pt layer thickness. 

Crystal structures of the SnO2 NFs functionalized with Pt NPs were investigated by using XRD, 
and the results are shown in Figure 3. As is evidently shown, the samples coated with Pt layers over 
15 nm in thickness reveal Pt (111) peaks. 

 
Figure 3. (a) XRD patterns for Pt-SnO2 NFs with various Pt layer thicknesses: (b) 20 nm-thick, and  
(c) 3 nm-thick Pt layers.  

Figure 1. FE-SEM images of (a) pure SnO2 NFs, and SnO2 NFs functionalized with Pt NPs containing
(b) 0.2 at.%; (c) 0.3 at.%; (d) 1.2 at.%; (e) 2.0 at.%; and (f) 5.4 at.% Pt; Pt films of 3, 5, 10, 15, and
20 nm, respectively were deposited and subsequently heat-treated. The insets are the corresponding
low-magnification FE-SEM images of SnO2 NFs functionalized with NPs.
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Crystal structures of the SnO2 NFs functionalized with Pt NPs were investigated by using XRD,
and the results are shown in Figure 3. As is evidently shown, the samples coated with Pt layers over
15 nm in thickness reveal Pt (111) peaks.
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The microstructure of the SnO2 NFs functionalized with Pt NPs was further investigated by
using TEM. As shown in Figure 4, individual NFs are quite uniform in diameter. The elemental line
mappings, displayed in Figure 4(b-2,c-2), demonstrate the presence of a Pt element. In Figure 4(c-3),
the arrow indicates the Pt NP.
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The optimal temperature was investigated by testing the sensing properties of pure SnO2 NFs at
various temperatures (150 to 400 ◦C) using 10 ppm of C7H8. Figure 5a shows the resistance curves
obtained at various temperatures. The response was summarized in Figure 5b, indicating the optimal
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The sensing mechanism of SnO2 NFs can be explained within the framework of n-type
semiconductors, in which the majority of the charge carriers are electrons. In ambient air, oxygen
interacts with the surface, diffuses through the grain boundaries of the nanograins in individual NFs,
and becomes ionized by extracting electrons from the conduction band of SnO2. The loss of electrons
due to the ionization of the oxygen gas develops an electron-depleted region underneath the interface
and upward band bending at the grain boundaries, increasing the potential barriers to the flow of
electrons across the grain boundaries. The potential barriers and the depletion region are significantly
suppressed when C7H8 is introduced as it interacts with adsorbed oxygen species, making volatile
compounds, eventually releasing captured electrons to the conduction band of SnO2. This is the main
source of resistance modulation in SnO2 NFs.

The sensing performances and the effect of the Pt amount were then evaluated at 300 ◦C using
various concentrations of C7H8 gas. Figure 6a shows the typical resistance curves and responses of
the SnO2 NFs with varying amounts of Pt NPs to low concentrations (1, 5, and 10 ppm) of C7H8 gas.
The highest response was observed from the NFs with 2.0 at.% Pt, as shown in Figure 6b, where the
responses are plotted as a function of gas concentration.
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Figure 6c summarizes the responses of Pt-functionalized SnO2 NFs to 10 ppm C7H8 gas as a
function of Pt amount. The response of pure SnO2 has been included for comparison. It is evident
that the attachment of Pt NPs significantly enhanced the sensitivity of SnO2 NFs. Moreover, Figure 6c
shows a bell-shaped curve as a function of the Pt NP amount where there is an initial improvement in
the response with smaller amounts of Pt and then a deterioration with larger amounts. The possible
explanation of this bell-shaped behavior as a function of the amount of Pt will be explained at a later
part of this section.

In contrast to the pure SnO2 NFs, two mechanisms can be considered to be responsible for
the improved gas sensing properties of Pt-functionalized SnO2 NFs; (1) electronic sensitization and
(2) chemical sensitization of Pt NPs [15,37–39]. In electronic sensitization, Pt NPs interact with SnO2

NFs electronically by acting as electron acceptors due to a difference in the work function, which
increases the depth of the electron-depletion region and the heights of the neighboring potential
barriers across the grains. In this way, the metal functionalized oxides become more sensitive to
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the environmental changes [15]. Whereas in the catalytic or spillover effect, Pt NPs can increase the
interaction by providing more active sites for the dissociation of gas molecules due to their highly
conductive nature [40]. There is an increase in the number and speed of electrons transferred to the
SnO2 grains as a result of the spillover effect. The improved sensitivity of Pt-functionalized SnO2 NFs
originates from a combination of the electronic and chemical sensitization mechanisms and involves
multiple factors, including the spillover effect, the chemisorption and dissociation of the gas molecules,
the kinetics of the electron transfer, and the net effect of location and chemical states of the metal NPs.
However, the electronic sensitization is likely to play a more important role than chemical sensitization
in the overall enhancement of the sensitivity due to the change in its oxidation states [12,15,41].

The bell-shaped behavior of metal-functionalized oxides as a function of the amount of metal NPs
(Figure 6c) is common and often reported in the literature [16,42–46]. The sensitivity of functionalized
oxides is greatly influenced by the loading concentration and position of the metal NPs. This behavior
can be understood in terms of the surface coverage of the metal NPs (Pt) on the oxide material (SnO2).
The sensitization effect will be marginal at both insufficient and excessive surface coverage of metal
NPs, due to the small number of NPs participating in the process, and steric hindrance, respectively.
Over a certain surface coverage, the metal NPs may partially or completely connect with each other,
covering the surface of the oxide (reducing the interaction and reaction activity of the target gas with
the oxide surface) and causing the electrons to flow in the metallic layer owing to its high conductivity.
This agglomeration of metal NPs is evident from Figure 1f. Therefore, the amount of Pt NPs must be
optimized for better enhancement of the gas sensing at the optimal operating temperature.

The selectivity, which is one of the major objectives of the current development of
chemiresistive-type gas sensors, was investigated by exposing the sensors to such reducing gases as
CO and C6H6. The tested gas concentration was set to 1, 5, and 10 ppm. The resistance curves are
shown in Figure 7a and the responses are summarized in Figure 7b. It can be seen that the sensors
showed the highest response to C7H8. The responses to the other reducing gases were significantly
lower in comparison to that of C7H8.
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Figure 7. (a) Resistance curves of 2.0 at.% Pt-functionalized SnO2 NFs for other reducing gases at
300 ◦C; (b) Summarized responses; (c) Comparison of the responses of 2.0 at.% Pt-functionalized SnO2

NFs with those of pure SnO2 NFs for 10 ppm reducing gases such as C7H8, C6H6, and CO.

In Figure 7c, the responses of 2.0 at.% Pt-functionalized SnO2 NFs are compared with pure
SnO2 NFs for 10 ppm gases at 300 ◦C. This indicates the high catalytic effect of Pt NPs toward C7H8.
Similar selective and enhanced catalysis behaviors of C7H8 by Pt NPs have been reported in our
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earlier studies [10,35], which show that the Pt NPs exhibit efficient catalytic activity for enhancing the
diffusion and interaction with C7H8 gas compared to other reducing gases.

4. Conclusions

Pt-functionalized SnO2 NF gas sensors with different amounts of Pt NPs were synthesized.
The effects of the Pt concentration and operation temperature on the gas-sensing properties were
investigated. It was observed that the Pt functionalization greatly enhanced the sensitivity of the SnO2

NFs. This was attributed to the synergic effect by the electronic and chemical sensitizations originated
from the work function difference between Pt and SnO2 and the catalytic behavior of the Pt NPs,
respectively. A bell-shaped behavior in the sensing curve was observed as a function of the loading
amount of Pt NPs, with a maximum response at 2.0 at.% Pt. The results show that the optimization of
the loading amount of metal NPs is the major factor influencing the sensitivity of metal-functionalized
oxide-based gas sensors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/11/1857/
s1. Table S1: Various approaches for functionalization of tin oxide nanostructures and their responses; Figure S1:
Elemental analysis by EDS of SnO2 NFs functionalized with Pt NPs containing (a) 0.2 at.%, (b) 0.3 at.%, (c) 1.2 at.%,
(d) 2.0 at.%, and (e) 5.4 at.% Pt. Figure S2: Elemental analysis including errors in quantitative calculation by
EDS of SnO2 NFs functionalized with Pt NPs containing (a) 0.2 at.%, (b) 0.3 at.%, (c) 1.2 at.%, (d) 2.0 at.%, and
(e) 5.4 at.% Pt.
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