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Abstract: Vibration signals measured in the run-up/coast-down (R/C) processes usually carry rich
information about the health status of machinery. However, a major challenge in R/C signals analysis
lies in how to exploit more diagnostic information, and how this information could be properly
integrated to achieve a more reliable maintenance decision. Aiming at this problem, a framework of
R/C signals analysis is presented for the health assessment of gearbox. In the proposed methodology,
we first investigate the data preprocessing and feature selection issues for R/C signals. Based on
that, a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase
jitter associated with gear defect. In order for an effective feature mining and integration under
R/C, a generalized phase demodulation technique is further established to reveal the evolution of
modulation feature with operating speed and rotation angle. The experimental results indicate that
the proposed methodology could not only detect the presence of gear damage, but also offer a novel
insight into the dynamic behavior of gearbox.

Keywords: generalized phase demodulation; run-up/coast-down analysis; feature mining and
integration; gearbox health assessment; phasogram

1. Introduction

Vibration analysis has been widely accepted and extensively used for the health assessment and
fault diagnosis of rotating machinery. Many efforts have been made to develop accurate diagnostic
methods based on vibration analysis over the past few decades [1–4]. Most of those methods, however,
are built on a basic assumption that the machinery being measured is running under stationary speeds.
With the advances of modern industry, more and more machines, ranging from large-scale equipment
like wind turbines and mine excavators, to some key components such as high speed spindles and
vehicle bearings, are operating under variable speed conditions (VSC). The variation of speed will
bring complicated amplitude- and frequency-modulation effects to the measured signal. In many cases,
those speed-related modulation effects are much more powerful than those caused by mechanical
defects, thus imposing great difficulty for fault detection and health assessment.

Confronted with those challenges, the condition monitoring of machinery under VSC is gaining
increasing attention in both industry and academia [5–9]. A number of research papers, technical
reports, and conference proceedings have published on this topic in the last five years. A specific
international conference called CMMNO (Condition Monitoring of Machinery in Non-Stationary
Operations) has been organized since 2011 to analyze the research challenges we face, and also
propose some methodologies to deal with this issue. Generally, recent advances in this direction
can be classified into two groups. Since the signal measured in this condition is non-stationary in
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nature, the first group resorts to some non-stationary signal analysis tools such as short-time Fourier
transform (STFT), empirical mode decomposition (EMD) [10,11], wavelet, chirplet, synchro-squeezing
transform [12,13] and, more recently, proposed dynamic time warping. For instance, Meltzer et al. [14]
proposed a polar wavelet amplitude map to realize the fault diagnosis of gears operating under
non-stationary rotation speeds. Zhao et al. [15] employed Chirplet transform to extract and enhance
the time-varying meshing frequency and its sidebands associated with gear defect. A generalized
synchro-squeezing transform was further proposed by Li et al. [16,17] for the gear fault detection
and diagnosis. In this approach, a time-scale restoration operation is initially presented to obtain a
concentrated time-frequency representation (TFR), the gear defect can then be identified by observing
the gear meshing frequency and its sidebands in the TFR. To avoid the spectral leakage and aliasing
problem associated with Fourier transform, a dynamic time warping (DTW) method is introduced by
Zhen et al. [18,19] to detect the fault in a two-stage reciprocating compressor under different operating
conditions. More recently, Liu et al. [20,21] further extended this method to the gearbox diagnosis
by the jointly use of fast DTW and correlated kurtosis. Though the above methods have shown their
effectiveness for signal analysis and fault detection under VSC, the high computational complexity
and long running time are the major limitations in real applications.

Due to the symmetric mechanical structure, the vibration signal of a rotating machine is essentially
periodic in angle, rather than in time. Consequently, the non-stationary phenomena caused by speed
variation can be largely removed if the signal is represented in angular domain. Benefitting from that,
the second group first utilizes order tracking technique to transform the raw signal from time domain
to angular domain, and then treats it as a conventional constant speed problem [8,22]. However,
it should be stressed that the signals measured under VSC is inherently more informative than these in
constant speed. Therefore, it is believed that the prospects for VSC analysis should not be limited to
removing the barriers caused by speed variation, but rather gain some new insight into the machine
behavior under VSC or, exploit some crucial fault phenomena that easily be ignored under constant
speed. Thus far, however, few investigations have been conducted toward this direction.

In view of this research gap, a systematic methodology for VSC signal analysis is proposed in
this work, and particular emphasis is placed on the run-up/coast-down (R/C) signal of a gearbox
which is a typical VSC scenario that is frequently encountered in many industrial applications. In the
proposed methodology, we first investigate the data preprocessing and feature selection issues for
gearbox. Built on that, a sparsity-guided feature enhancement scheme is proposed to extract the weak
phase jitter associated with gear fault. In order for an effective feature mining and integration under
R/C, a generalized phase demodulation technique is finally established to reveal the evolution of fault
feature with operating speed and rotation angle. The experimental results indicate that the proposed
methodology could not only detect the presence of gear damage, but also offer a novel insight into
the dynamic behavior of gearbox. The rest of this paper is organized as follows. The vibration model
of gearbox in the R/C process is introduced in Section 2. The principle and implementation of the
proposed method are elaborated in Section 3. The performance of the proposed method is validated
by the coast down data measured from a two-stage gearbox in Section 4. Finally, some conclusions are
drawn in Section 5.

2. Vibration Model for Gearbox in the R/C Process

A proper description and understanding of vibration behavior of gearbox is key to the feature
selection and feature mining. For this reason, this section will begin with a basic vibration model of a
healthy gearbox under constant speed, and then it is extended to a more complicated scenario, i.e.,
a defective gearbox in the R/C processes.
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Generally, the vibration signals measured from a healthy gear gearbox mainly consist of gear
meshing frequency (GMF) and its harmonics, which can be given as [23]

x(t) =
K

∑
k=1

Xkcosϕk(t) =
K

∑
k=1

Xkcos(2πkT f t + Φk) (1)

where K denotes the number of gear meshing harmonics; T is the number of gear teeth; f represents the
rotating frequency of gear shaft; ϕk(t) stands for the instantaneous phase of the kth meshing harmonic;
and Xk and Φk are its amplitude and initial phase, respectively.

When a local defect occurs, the contact stiffness, bending stiffness as well as the shear stiffness of
gear will change as the faulty tooth engages into mesh [24,25]. This in turn produces amplitude and
phase modulation to the vibration signal. As those modulation effects are periodic with shaft rotating
frequency f, they can be represented by the following Fourier series form

ak(t) =
N
∑

n=0
Akncos(2πn f t + αkn)

bk(t) =
N
∑

n=0
Bkncos(2πn f t + βkn)

(2)

where N is the number of sidebands around gear meshing harmonics; and Akn and αkn are, respectively,
the amplitude and phase of the nth sideband of ak(t) around the kth meshing harmonic, while Bkn and
βkn are those of bk(t) around the kth meshing harmonic.

Taking the above modulation effects into account, the vibration signal of a faulty gear can therefore
be represented by

x(t) =
K

∑
k=1

Xk[1 + ak(t)]cos[2πkT f t + Φk + bk(t)]. (3)

Note that the amplitude modulation ak(t) and phase modulation bk(t) carry rich information
regarding the health status of gearbox. When the gearbox operates under a constant speed and load,
those modulations are manifested as equally spaced sidebands around the GMF and its harmonics in
the spectrum. In this case, ak(t) and bk(t) can easily be obtained by means of synchronous averaging and
classical demodulation technique. When the gearbox undergoes a R/C process, however, the extraction
of amplitude and phase modulation is no longer an easy task. Firstly, the constantly varying speed will
give rise to spectral smearing phenomenon, in which the GMF and its sidebands are blended together
in the spectrum. Therefore, some signal preprocessing procedures are required before the application
of more advanced diagnostic approaches. Secondly, there is always a long transmission from a defect to
a transducer in applications [26,27]. Taking Figure 1 as an example, the gear vibration will successively
transmit through the gear disk, the shaft, the bearing, the gearbox casing, and finally arrives at the
vibration transducer. As a result, the measured signal is inevitably affected by the transmission path
effect. If the path is simplified as a linear cascade system, the relationship between fault shock s(t) and
its vibration response x(t) can be given by Equation (4) in frequency domain [28]

X( f ) = H( f ) · S( f ) = Hc( f ) · Hb( f ) · Hs( f ) · Hg( f ) · S( f ) (4)

where X(f ) and S(f ) denote the Fourier transforms of x(t) and s(t), respectively. H( f ) is the frequency
response (FR) of the whole transfer path, which is the product of the individual influence from gear
Hg( f ), shaft Hs( f ), bearing Hb( f ) and casing Hc( f ).
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Figure 1. Transfer path of vibration signal.

Since the FR of transfer path is a function of f, the fault response as well as its modulation feature
would vary with the rotation frequency of gearbox. To account for this effect, an independent variable
f is added to Equation (3), and the vibration model for gearbox in the R/C process can be given as

x( f , t) =
K

∑
k=1

Xk( f ) · [1 + ãk( f , t)]cos[2πkT f t + Φk + b̃k( f , t)] (5)

where ãk( f , t) and b̃k( f , t) are the modified amplitude and phase modulations, respectively.
From Equation (5), one can infer that, as speed changes, the modulation effect induced by fault

would be magnified or suppressed as illustrated in Figure 2. Therefore, when the test speed of gearbox
is not properly selected (for instance, in Region A or Region C), the fault feature would be very
weak and easily be masked by background noise. In that case, the gear fault is undetectable. In fact,
this speed-dependent modulation characteristic (SDMC) is a crucial feature of gearbox, because it
contains not only the health information of gearbox but also the optimal testing speed under which
the fault feature is fully highlighted. In theory, the SDMC could be obtained by finite element analysis
(FEA). However, FEA may encounter several difficulties in practice. Firstly, FEA is based on some
simplified model, and it is only effective when certain underlying assumptions hold. For instance,
it is rather difficult to simulate and analyze the non-linear dynamics of oil film between the meshing
gears. Secondly, FEA can hardly consider the influences of manufacturing and installation errors on
the vibration response of gearbox. In fact, even for the same type of gearboxes, the vibration may
differ vastly due to different installation and manufacturing conditions. Thirdly, FEA cannot simulate
the real operating condition of gearbox accurately. It is worth mentioning that the variable speed and
dynamic load are also key factors that influence the vibration behavior of gearbox. For these reasons,
the experimental extraction of SDMC using the R/C signals is of great interest.
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Figure 2. Speed-dependent modulation characteristic of gearbox.
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3. Feature Mining and Health Assessment of Gearbox using R/C Signals

Based on the above signal modeling and modulation analysis, a novel framework, which consists
of signal preprocessing, feature enhancement, SDMC mining and integration, is proposed for the health
assessment of gearbox. The principle and implementation of the method are elaborated as follows.

3.1. Signal Preprocessing using Computed Order Tracking

As discussed in the previous section, the fault information of gear is mainly embedded in the
modulation sidebands. However, those sidebands are aliased together as a result of large speed
variation in the R/C process.

Order tracking is an effective tool to process vibration signals measured under variable speed
conditions [29–33]. In this technique, the vibration signal with constant time intervals is digitally
resampled at constant increments of shaft angle. Since the vibration signal is approximately periodic
in the angular domain, the spectral smearing problem can be eliminated thereafter. In practice, order
tracking could be implemented in three different ways, namely, hardware based order tracking
(HOT), computed order tracking (COT) [30,34] and phase demodulation based order tracking
(PDOT) [15,22,35,36]. Each of these methods has its pros and cons, as discussed in Ref. [28]. In this
work, COT is employed due to its high-reliability and easy-to-implement. Since COT is well established,
we only give a graphically introduction here, as shown in Figure 3. For more details of COT, refer
to [30,34].
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Figure 3. Implementation of COT: (a) determine the pulses arrive times; (b) obtain the ϕ(t) by
fitting; (c) calculate the resampling time instants for the constant angular increments θ; and (d) signal
resampling by interpolation.

3.2. Feature Selection and Enhancement: A Sparsity-Guided Phase Jitter Sharpening Scheme

After COT, the smeared meshing component and its sidebands could be recovered in the spectrum
of resampled signal, which is also known as order spectrum. According to the vibration model given
in Section 2, both the amplitude modulation and phase modulation can be utilized to assess the health
status of gearbox. In practice, however, the phase modulation was found to be more effective for
detecting incipient faults of gears, and in general yields better results than amplitude modulation [37].
For this reason, it is selected as the target feature in this work.

To perform phase demodulation, a number of sidebands first need to be extracted from the order
spectrum using band-pass filtering, as illustrated in Figure 4. In order for a better performance of phase
demodulation, the filter bandwidth should be carefully chosen. Figure 5 exhibits a typical example
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of phase demodulation results using different bandwidths. It can be seen from Figure 5a that, if the
bandwidth were too narrow, the phase jitter caused by fault would be smoothed, in which the gear
fault can easily be overlooked. In contrast, if it were too wide, much more noise will be included in the
filtered signal, thus producing many spurious peaks as illustrated in Figure 5c. In current applications,
the filter bandwidth is commonly determined by trial and error. Obviously, such a determination
manner is not suitable for the analysis of R/C signal because, similar to its modulation behavior,
the optimal bandwidth is also speed dependent. For this reason, a data-driven bandwidth selection
scheme is quite necessary.
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Sensors 2016, 16, 1837 6 of 19 

phase demodulation, the filter bandwidth should be carefully chosen. Figure 5 exhibits a typical 

example of phase demodulation results using different bandwidths. It can be seen from Figure 5a 

that, if the bandwidth were too narrow, the phase jitter caused by fault would be smoothed, in which 

the gear fault can easily be overlooked. In contrast, if it were too wide, much more noise will be 

included in the filtered signal, thus producing many spurious peaks as illustrated in Figure 5c. In 

current applications, the filter bandwidth is commonly determined by trial and error. Obviously, 

such a determination manner is not suitable for the analysis of R/C signal because, similar to its 

modulation behavior, the optimal bandwidth is also speed dependent. For this reason, a data-driven 

bandwidth selection scheme is quite necessary.  

 

Figure 4. Sidebands extraction using band-pass filtering. 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Phase demodulation results and their corresponding sparsity parameter (SP) for: (a) Bw = 4 

order; (b) Bw = 8 order; and (c) Bw = 16 order.  

 
Bw

GMF

2*GMF

Normalized frequency [order]

A
m

p
li

tu
d

e 
[g

]

0 90 180 270 360
-180

-90

0

90

180

Angular position [°]

P
h

a
se

 j
it

te
r 

[°
]

 

 

SP =0.20727

0 90 180 270 360
-180

-90

0

90

180

Angular position [°]

P
h

a
se

 j
it

te
r 

[°
]

 

 

SP =0.44527

0 90 180 270 360
-180

-90

0

90

180

Angular position [°]

P
h

a
se

 j
it

te
r 

[°
]

 

 

SP =0.3281

Figure 5. Phase demodulation results and their corresponding sparsity parameter (SP) for:
(a) Bw = 4 order; (b) Bw = 8 order; and (c) Bw = 16 order.



Sensors 2016, 16, 1837 7 of 18

By revisiting Figure 5, one may find that a proper filter bandwidth selection could effectively
capture the local discontinuity in meshing, and thereby yielding a shape phase jitter in the demodulated
signal as shown in Figure 5b. In fact, this local energy concentration of signal can be well depicted by a
statistical indicator termed sparsity.

In the community of signal processing, sparsity is used to describe the energy distribution of a
signal [38]. Specifically, the sparsity of a signal is 1 if all its energy is concentrated in only one element
(perfect sparse). On the contrary, if the energy is evenly distributed among all elements, its sparsity is
zero (non-sparse at all). Till now, a number of sparsity measures have been proposed in the literature,
including l2/l1 norm, pq-mean, Hoyer measure, and Gini index. In the field of mechanical signal
processing, l2/l1 norm has been successfully used for optimal demodulation band selection [39],
wavelet parameter optimization [40], ultrasonic signal deconvolution [41], etc. To compare the
performance of different sparse measures, an in-depth investigation was conducted by Hurley [38].
It is found that the l2/l1 norm could perform better and would have more nice properties after
normalization [38]. For this reason, the normalized l2/l1 norm, also termed as Hoyer measure [42],
is adopted in this work. The Hoyer measure is mathematically defined as

SP(x) =
√

n− l1(x)/l2(x)√
n− 1

=

√
n− (∑ |xi|)

/√
∑ x2

i√
n− 1

(6)

where l1(x) and l2(x) are, respectively, the l1 and l2 norm of signal x, and n is its length.
Using this measure, the sparseness of the phase demodulated signals in Figure 5 are evaluated,

and their sparsity values are 0.21, 0.45, and 0.33, respectively. Note that if the bandwidth is proper
selected, the phase jitter can be effectively enhanced and accounts for more energy of the demodulated
signal, which in turn increases the sparsity value. On the contrary, the sparsity decreases as the energy
is more evenly distributed. Based on this idea, we attempt to automate the bandwidth selection by
maximizing the sparsity value of demodulated signal, which can be formulated as

Bw = argmax
Bw

{
SP(b̃Bw

k ( f , t))
}

(7)

where b̃Bw
k ( f , t) denotes the phase demodulated signal around kth meshing harmonic with bandwidth

of Bw.

3.3. Feature Mining and Integration: A Generalized Phase Demodulation Technique

As we know, the R/C signals usually carry abundant information about the health status of
gearbox. However, a key issue is how could this information be effectively exploited and utilized
to achieve a reliable health assessment result. In this subsection, a generalized phase demodulation
(GPD) technique is proposed for feature mining and integration.

Inspired by STFT, the GPD first divides the resampled R/C data into short segments using a
sliding window as illustrated in Figure 6. Each segment comprises exactly M revolution of vibration
signals of the interested gear. To ensure all the segments have the same initial phase (or angular
position), the sliding step of the window is also specified as an integer gear periods denoted by N.
Typically, N is selected less than M in applications, which means the consecutive segments could
overlap with each other.
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Since the vibration signal has already been order tracked, synchronous averaging can be directly
performed on each segment to remove the non-synchronous components and measurement noise.
After that, the optimal bandwidth for each segment is determined by the sparsity-guided scheme as
given above. Using this parameter, the narrowband signal around the kth meshing harmonic can then
be obtained as

y( fi, θ) = Xk( fi)[1 + ãBwi
k ( fi, θ)]cos[j(kTθ + Φk + b̃Bwi

k ( fi, θ))] (8)

By Hilbert transform, the analytical form of the narrow-band modulation signal is given by

z( fi, θ) = Xk( fi)[1 + ãBwi
k ( fi, θ)]exp[j(kTθ + Φk + b̃Bwi

k ( fi, θ))] (9)

where Bwi denotes the optimal bandwidth for the ith segment. As the vibration signal is angular
resampled, the time variable t is replaced by the angular variable θ for the convenience of explanation.
According to Equation (9), the phase modulation of the ith segment can be obtained by subtracting
the linear phase progression of kth meshing harmonic from the instantaneous phase of the band-pass
filtered signal

b̃Bwi
k ( fi, θ) = argz( fi, θ)− (kTθ + Φk) (10)

To clearly reveal the speed-dependent modulation characteristics of gearbox, a three-dimensional
representation of GPD, called phasogram, is proposed. The phasogram is created by piling b̃Bwi

k ( fi, θ)

line by line as shown in Figure 7, with I denoting the number of signal segment, and J being the number
of samples per revolution. The mathematical form of phasogram is actually a matrix of size I × J.
The x-axis of the phasogram stands for the rotating angle of the tested gear, and the y-axis represents
its running speed. Therefore, the element at the i-th row and j-th column of the phasogram indicates
the phase modulation in position θj and at a speed of 60 fi rpm. By utilizing this representation,
both the position of fault and its speed-dependent phase modulation characteristic can be recovered.
To summarize, the flowchart of the proposed method is outlined in Figure 8.
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Figure 8. Flowchart of the proposed method.

4. Experimental Validation

To evaluate the performance of the proposed method, an experimental validation was conducted
on a gearbox designed by the SpectraQuest, Inc. (Richmond, VA, USA). This test bed contained a
two-stage spur gearbox, which was driven by an induction motor and loaded by a magnetic brake,
as presented in Figure 9a. The configuration of the gearbox is illustrated in Figure 9b. The rotating
speed of motor was controlled by an AC inverter, which allows the gearbox to run under a predefined
speed profile. A tachometer was installed on the motor shaft to feedback the speed information to
the inverter. Since the gearbox was not running under a constant speed, the characteristic frequencies
of gearbox were also time-varying. For convenience, those frequencies are normalized by the motor
frequency, and given in terms of order, which are listed in Table 1.

The vibration of gearbox was measured by a piezoelectric accelerometer (PCB-356A12, PCB, Inc.,
New York, NY, USA), which was installed near the input shaft of gearbox. An NI data acquisition
system was employed to synchronously acquire the vibration and tachometer signals, and the sampling
frequency was 10,000 Hz. To simulate gear fault condition, a tooth defect was artificially introduced by
chipping off a small piece with radius of 3.5 mm as illustrated in Figure 10a. This fault was located at
95◦ relative to the tacho-mark. For comparison, the vibration of a normal gear, as shown in Figure 10b,
was also measured under the same test condition.
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Table 1. Characteristic frequencies of gearbox.

Input Shaft Middle Shaft Output Shaft GMF of #1 and #2 GMF of #3 and #4

1 0.4 0.3 32 19.2
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Figure 10. Gears used in the experiment: (a) chipped gear; and (b) normal gear.

In the experiment, the gearbox went through a nonlinear coast down process as shown in Figure 11.
The vibration signal of the faulty gear was measured as given in Figure 12a. It is surprising to observe
that no distinct impulses can be identified in its vibration signal, and the kurtosis value is only 3.10.
The reason may be attributed to the fact that, though it seems severe, the chipped tooth only partially
impairs the gear tooth face as shown in Figure 10a, In fact, at least 2/3 of the tooth face is in good
condition, which could sustain load in the meshing process. Therefore, this type of fault merely
decreases the local contact stiffness, but would not generate large impulses since the meshing process
is overall continuous. The power spectrum of the signal is presented in Figure 12b. As expected,
the spectrum smears seriously due to large speed variation, thus the modulation sidebands cannot
be discerned.
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Figure 12. (a) Waveform; and (b) power spectrum of raw signal.

For more information, short-time Fourier transform (STFT) is employed to analysis the
time-frequency distribution (TFD) of the vibration signal. A Hanning window of length 0.2 s is
chosen as the windowing function, and its overlap ratio is specified as 50%. The STFT of the signal
is shown in Figure 13. Note that there is a dominant curve in the time-frequency plane, which
corresponds to the GMF of the first stage in the gearbox. However, due to the limited time-frequency
resolution of STFT, it is usually difficult to precisely recover the sideband information, especially when
the acceleration of gearbox is very high. To extract the fault feature, different wavelet transforms
(WTs) have also been performed on this signal. Nevertheless, two practical limitations of WT are
how to select a suitable mother wavelet and how to dynamically optimize its parameters, in order to
better match the speed-dependent modulation structure of the R/C signal. In addition, if the signal is
not properly preprocessed, the weak fault feature could easily be overwhelmed by the high energy
components like GMF and its harmonics, which in turn affects the performance of WT.
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As discussed in Section 3, it is necessary to eliminate the spectral smearing effect before the
application of more advanced signal processing techniques. For this purpose, COT is performed
on the raw signal by utilizing the tachometer information. The order spectrum of resampled signal
is presented in Figure 14a. For more details, this spectrum is zoomed in the range of 26–38 orders
as shown in Figure 14b. Note that the smearing problem is solved effectively after COT and, thus,
the meshing frequency and its sidebands can be identified clearly. However, it is also found that these
sidebands are very weak in amplitude, and it would be risky to use them as an indication of fault.
To demonstrate this, the vibration signal of a normal gear is also analyzed and shown in Figure 14c.
It is found that the sidebands also exist in the order spectrum of normal gear due to geometric errors
and assembly imperfections. For this reason, it is usually difficult to identify the gear fault by using
COT alone.
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Figure 14. (a) Order spectrum of faulty gear; (b) zoomed-in order spectrum of faulty gear; and
(c) zoomed-in order spectrum of normal gear.

To exploit the more useful features embedded in the R/C process, the proposed method is applied
to the same signal. Firstly, the order tracked signal is divided into short segments as discussed in
Section 3. Each segment contains exactly 20 revolutions of vibration signal of Gear #1, and the sliding
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step is specified as 10 revolutions of that gear. To enhance the modulation feature induced by fault,
the sparsity-guided phase jitter sharpening scheme is used to determine a proper demodulation
bandwidth for each segment. The corresponding result is presented in Figure 15. It can be seen that
the optimal bandwidths fluctuate widely over segments (with a standard deviation of 4.13 orders).
For instance, the optimal bandwidth for 10th segment is nine orders, while those for 22nd and 47th
are three and 16 orders, respectively. This large fluctuation implies that one can hardly find a fixed
bandwidth that is well suited to all segments, which explains why a date-driven bandwidth selection
scheme is essential in R/C signal analysis.
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Figure 15. Determined bandwidth for each segment.

Following the above feature mining and enhancement procedure, the phase demodulation result
for each segment is integrated by the proposed GPD, and the corresponding phasogram is presented
in Figure 16. In this figure, a sharp color change from blue to red can be observed clearly, which reveals
the fault-induced phase jitter buried in the vibration signal. Based on this phenomenon, one can
conclude that a localized defect occurs in the gear. Moreover, the projection of the shade onto the
horizontal axis could indicate the accurate position of defect, i.e., located at an angle of 95◦ relative to
the tacho-mark, while its projection onto the vertical axis reveals the optimal test speed of gearbox, i.e.,
1150–1600 rpm.

Sensors 2016, 16, 1837 13 of 19 

discussed in Section 3. Each segment contains exactly 20 revolutions of vibration signal of Gear #1, 

and the sliding step is specified as 10 revolutions of that gear. To enhance the modulation feature 

induced by fault, the sparsity-guided phase jitter sharpening scheme is used to determine a proper 

demodulation bandwidth for each segment. The corresponding result is presented in Figure 15. It 

can be seen that the optimal bandwidths fluctuate widely over segments (with a standard deviation 

of 4.13 orders). For instance, the optimal bandwidth for 10th segment is nine orders, while those for 

22nd and 47th are three and 16 orders, respectively. This large fluctuation implies that one can hardly 

find a fixed bandwidth that is well suited to all segments, which explains why a date-driven 

bandwidth selection scheme is essential in R/C signal analysis. 

 

Figure 15. Determined bandwidth for each segment. 

Following the above feature mining and enhancement procedure, the phase demodulation result 

for each segment is integrated by the proposed GPD, and the corresponding phasogram is presented 

in Figure 16. In this figure, a sharp color change from blue to red can be observed clearly, which 

reveals the fault-induced phase jitter buried in the vibration signal. Based on this phenomenon, one 

can conclude that a localized defect occurs in the gear. Moreover, the projection of the shade onto the 

horizontal axis could indicate the accurate position of defect, i.e., located at an angle of 95° relative to 

the tacho-mark, while its projection onto the vertical axis reveals the optimal test speed of gearbox, 

i.e., 1150–1600 rpm. 

 

Figure 16. Phasogram of the faulty gear. 

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Segment number 

B
an

d
w

id
th

 [
o

rd
er

]

Figure 16. Phasogram of the faulty gear.



Sensors 2016, 16, 1837 14 of 18

In Figure 16, one can also observe that the modulation feature of gearbox is speed-dependent, and
the gear defect is not always detectable under arbitrary operating speed. In classical demodulation
methods, the modulation information is extracted at a constant speed. Therefore, their reliability and
effectiveness largely rely on the test speed selection. For example, if the defective gear is tested at a
running speed of 1350 rpm, the phase jitter could be clearly recognized as presented in Figure 17a.
Nevertheless, if it is measured at 1100 or 1650 rpm, no distinctive phase jitter can be identified as
shown in Figure 17b,c. In these cases, the gear fault is likely to be miss-detected. As opposed to
classical methods, the proposed GPD could yield a more reliable health assessment result of gearbox.
Through the information mining and integration, both the location of fault and its speed-dependent
modulation characteristics can be revealed comprehensively in the phasogram.
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Figure 17. Phase demodulation results obtained at: (a) 1350 rpm; (b) 1100 rpm; and (c) 1650 rpm.

Another advantage of the proposed method lies in its capability in false alarm resistance. Figure 18
represents another phase demodulation result using classical method. Without prior knowledge, it is
probably associated with certain gear fault. Nevertheless, this signal indeed came from a normal gear.

In fact, even for the gear in healthy state, its modulated phase signal might contain some phase
jitters caused by measurement noise or ambient interferences. In conventional approaches, it is not
easy to determine where these phase jitters come from due to the lack of information. This drawback
can be effectively overcome by the phasogram. Since the modulation features under different speeds
are integrated, the false alarms can easily be eliminated by inspecting the phase modulation pattern in
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the phasogram. For a real fault, since its location is fixed and it is usually detectable within a certain
speed interval, the corresponding phase modulation typically occupies a stripe-like region along speed
axis as shown in Figure 16. In contrast, the phase modulation caused by interference is manifested as
sporadic points which are randomly distributed in the phasogram as presented in Figure 19. This is
determined by the stochastic behavior of noise. Hence, it can be concluded that the corresponding
gear of Figure 19 is in healthy condition.
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5. Conclusions and Future Work

This work investigates the feature mining and health assessment of gearbox using the R/C signals,
and the following conclusions can be drawn.

The run up/down signals of gearbox contain rich information about the health condition of
gears. However, due to the highly non-stationary characteristic, those signals are difficult to process
and interprete. To solve this issue, COT is first employed to remove the spectral smearing effect,
and a sparsity-guided feature enhancement scheme is then proposed to extract the weak phase jitter
associated with gear defect. In order for an effective feature mining and integration under R/C,
a generalized phase demodulation (GPD) technique is further established in this work. The proposed
GPD can be viewed as an extension of traditional phase demodulation approaches. Since GPD is not
based on the stationary assumption, it reveals the evolution of phase modulation over rotating speed
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clearly. Compared with classical methods, GPD could not only give clear evidence of fault, but also
offer a guideline for the selection of optimal test speed. This property makes GPD an appealing tool
for the health assessment and fault diagnosis of gearbox. The advantages of proposed method are
manifested by the comparison with conventional techniques. The experimental results indicate that
the gear fault, which may be miss-detected at a constant speed, could be effectively identified in the
coast down process.

While attractive results are obtained, only the spall fault was considered in this work due to the
experimental limitation. Therefore, the effectiveness of the proposed method on different gear defects
still deserves further investigation in future work.
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