Next Article in Journal
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
Previous Article in Journal
Optical Microbottle Resonators for Sensing
Article Menu

Export Article

Open AccessArticle
Sensors 2016, 16(11), 1827; doi:10.3390/s16111827

3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion

1
School of Computing, University of Leeds, Leeds LS2 9JT, UK
2
School of Electronic, Electrical and Computing Engineering, University of Birmingham, Birmingham B15 2TT, UK
3
School of Civil Engineering, University of Birmingham B15 2TT, UK
4
School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
5
School of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
6
Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, UK
*
Author to whom correspondence should be addressed.
Academic Editor: Jonathan Li
Received: 26 August 2016 / Revised: 15 October 2016 / Accepted: 24 October 2016 / Published: 2 November 2016
(This article belongs to the Section Remote Sensors)
View Full-Text   |   Download PDF [2309 KB, uploaded 2 November 2016]   |  

Abstract

We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. View Full-Text
Keywords: buried utility location; marching-cross-section algorithm; multi-sensor data fusion buried utility location; marching-cross-section algorithm; multi-sensor data fusion
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Dou, Q.; Wei, L.; Magee, D.R.; Atkins, P.R.; Chapman, D.N.; Curioni, G.; Goddard, K.F.; Hayati, F.; Jenks, H.; Metje, N.; Muggleton, J.; Pennock, S.R.; Rustighi, E.; Swingler, S.G.; Rogers, C.D.F.; Cohn, A.G. 3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion. Sensors 2016, 16, 1827.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top