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Abstract: We proposed and studied an impact detection system based on a fiber Bragg grating (FBG)
sensor array and multiple signal classification (MUSIC) algorithm to determine the location and the
number of low velocity impacts on a carbon fiber-reinforced polymer (CFRP) plate. A FBG linear
array, consisting of seven FBG sensors, was used for detecting the ultrasonic signals from impacts.
The edge-filter method was employed for signal demodulation. Shannon wavelet transform was
used to extract narrow band signals from the impacts. The Gerschgorin disc theorem was used
for estimating the number of impacts. We used the MUSIC algorithm to obtain the coordinates of
multi-impacts. The impact detection system was tested on a 500 mm × 500 mm × 1.5 mm CFRP
plate. The results show that the maximum error and average error of the multi-impacts’ localization
are 9.2 mm and 7.4 mm, respectively.

Keywords: fiber Bragg grating; multi-impact localization; MUSIC algorithm; Shannon
wavelet transform

1. Introduction

Due to its many advantages such as high strength, light weight, and resistance to corrosive
environment, carbon fiber-reinforced polymer (CFRP) has become a popular construction material
among modern structures. However, CFRP is prone to damage from external impact loads [1,2]
that can significantly degrade the life of composite structures [3,4]. Identification and localization of
impacts are important for the safety operation and low-cost maintenance of structures based on CFRP.
In practical applications, the structures are often impacted by foreign objects at multiple locations,
leading to significant challenges to the identification and localization of these impacts. Multi-impact
localization can be mainly used for the impact events detection of aircraft structures; impacts can cause
many invisible damage to the carbon fiber, which can seriously reduce the reliability of the structure,
and threaten the safety of aircraft and personnel. During the process of collision, many impacts caused
by external object splashes may occur at the same time, so the study of multi-impact localization can
achieve a more accurate and effective method of damage monitoring and has an important academic
research value.

Because of their small size, light weight, immunity to electromagnetic interference, and potential
capability to be embedded in the composite structure [5–7], fiber optic sensors are attractive for
impact detection and have been extensively studied in the past. Kirkby et al. [8] applied triangulation
technology to locate an impact source on composite panels by using fiber Bragg grating (FBG) sensors.
Fu et al. [9] used the hyperbolic curves algorithm and four fiber optic sensors to achieve impact
localization on a composite plate. When multiple impact events simultaneously occur, signals from
different impact sources need to be distinguished in order to obtain their relative timing information.
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With the development of artificial intelligent technology, intelligent algorithms were employed for
impact source localization. Riberiro et al. [10] respectively used FBG sensors and the neural network
method to obtain the location of the impact source on composite structures. Lu et al. [11] proposed
support vector regression to determine the impact source on a composite structure using FBGs.
In theory, artificial intelligence technology can achieve the localization of multiple impact sources.
However, it usually requires a large number of training samples, which makes the localization a
time-consuming, inefficient, and difficult process.

In recent years, more attention has been paid to finding better methods for the localization of
multi-impact sources and many methods have been developed including the Kalman filter [12],
applied elastodynamics and wavelet analysis [13], and the time reversal focusing method [14].
In our previous works, we have used least squares support vector machine [15] and extreme learning
machine [16] to localize a single impact on a CFRP plate. Here, we expanded our work and developed
a new impact detection system based on a FBG sensor array and a new localization algorithm that can
identify the number and location of multiple impacts with high precision.

2. Localization Algorithm

2.1. Principle of Multiple Signal Classification Algorithm

The sensor array consists of M + 1 sensors that are equally spaced in a line. As shown in
Figure 1, the spacing of adjacent sensors is d and the coordinate of a sensor (denoted as Si) is (id, 0)
(i = 0, 1, . . . , M). Assuming that a number of N impacts occur simultaneously on the plate at locations
of (xp, yp), where p = 1, 2, . . . , N, the signals from the impacts are detected by each of the sensors and
the output of sensor Si can be expressed as:

zi(t) =
N

∑
p=1

spi(t) + ni(t) (1)

where spi and ni are the signals detected by sensor Si and the noise, respectively. The signals from
impacts are elastic waves with a certain frequency component of ω. Using S0 as the reference sensor,
Equation (1) can be rewritten as:

zi(t) =
N

∑
p=1

sp0(t)e−jωτpi + ni(t) (2)

According to the coordinates of the impact and sensors, the time difference (τpi) is given by:

τpi =
rpi − rp0

c
=

√
(xp − (id))2 + y2

p −
√

x2
p + y2

p

c
(3)

where rpi is the distance between an impact source and sensor Si, and c is the elastic wave velocity.
Define ap(xp, yp) as the position vector of the impact sources and it can be written as:

ap(xp, yp) = [1, · · ·, e−jωτpM ] (4)

Using Equation (4), Equation (2) can be expressed in terms of vector operation or:

Z(t) = A(x, y)S(t) + N(t) (5)

where
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Z(t) = [z0(t), · · ·, zM(t)]T

A(x, y) = [a1(x1, y1), · · ·, aN(xN , yN)]

S(t) = [s1(t), · · ·, sN(t)]

N(t) = [n0(t), · · ·, nM(t)]T

Assuming that the signal and the noise are independent from each other and the noise can
be considered as white Gaussian noise, the covariance matrix of the output signal vector can be
expressed as:

R = E[ZZH] = AE[SSH]AH + E[NNH] = ARsAH + σ2I (6)

where Rs is the covariance matrix of the signal and σ2I is the covariance matrix of the noise.
Assuming the signal and noise are uncorrelated and the signal-to-noise ratio is high,

the eigenvalue decomposition of R can be obtained by:

R = Us∑
s

UH
s + UN∑

N
UH

N (7)

where Us is the signal subspace spanned by the eigenvector matrix corresponding to the greater
eigenvalue, and UN is the noise subspace spanned by the eigenvector matrix corresponding to the
smaller eigenvalue.

Further assuming that signals from the N impact sources are independent from each other,
the signal subspace Us and the subspace spanned by the position vector are in the same space
(span{v1, v2, . . . , vN} = span{a1, a2,. . . , aN}). At the same time, the signal subspace Us and the noise
subspace UN are orthogonal (AHvk = 0, k = N + 1, . . . , M + 1).

Because the ideal covariance matrix is unknown in practical applications, covariance matrix R is
replaced by the maximum likelihood estimator R̂ of R and R̂ can be expressed as:

R̂ =
1
L

ZZH (8)

where L is the number of snapshots. To describe the orthogonal properties described above, the spatial
spectrum is used by:

PMUSIC(x, y) =
1

aH(x, y)UNUNa(x, y)
(9)

According to Equation (9), the values of the spatial spectrum are calculated in the test area and
the peak point of the spatial spectrum gives the location of the impact source.
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2.2. Estimation of the Number of Impacts

According to Equation (7), the number of eigenvalues of the noise matrix need to be known. It is
equal to the number of eigenvalues of the impact signal matrix, which is the same as the number
of impacts.

The Gerschgorin disc theorem [17] is introduced for obtaining the number of impacts. In the
M×M matrix R̂, the sum of the magnitudes of ith row vector, which does not include the elements of
ith column vector, can be expressed as:

ri =
M

∑
j=1
j 6=i

∣∣gij
∣∣ i = 1, 2, · · ·, M (10)

The center and radius of the Gerschgorin disc are gii and ri, respectively. All eigenvalues of R̂ are
contained in the union of the Gerschgorin discs. If a collection of l discs is isolated from the other discs,
there exist exactly l eigenvalues of R̂ in this collection. Before the Gerschgorin discs algorithm is used,
R̂ is rewritten as:

R̂ =




R11 · · · R1(M−1)

...
. . .

...
R(M−1)1 · · · R(M−1)(M−1)




R1M
...

RM(M−1)


(

RM1 · · · RM(M−1)

)
RMM

 =

(
RM−1 r

rH rMM

)
(11)

The matrix RM−1 is decomposed as

RM−1 = UM−1ΛUH
M−1 (12)

where Λ is the descending order diagonal matrix of the eigenvalues of RM−1, and UM−1 is the unitary
matrix which is constructed by the corresponding eigenvector ei (i = 1, 2, . . . , M − 1). According to
UM−1, a unitary transformation matrix UT is obtained by:

UT =

(
UN−1 0

0 1

)
(13)

The matrix R̂ can be transformed by:

RT = UT
HR̂UT =

(
UH

M−1RM−1UM−1 UH
M−1r

rHUM−1 rMM

)

=


λ1 0 · · · 0 ρ1

0 λ2 · · · 0 ρ2
...

...
. . .

...
...

0 0 · · · λM−1 ρM−1

ρ∗1 ρ∗2 · · · ρ∗M−1 rMM


(14)

where ρi = eH
i r. The radius ri of the Gerschgorin discs, whose center is λi, is expressed as:

ri = |ρi| =
∣∣∣eH

i r
∣∣∣ (15)

All radiuses are ranked in descending order. According to the Gerschgorin disc theorem,
the estimator of the impact number is defined as:
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GDE(k) = rk −
D(L)
N−1

M−1
∑

i=1
ri k = 1, 2, · · · , M− 2 (16)

where L is the number of snapshots, and D(L) is the adjustment factor. After all Gerschgorin discs
estimator (GDE) coefficients are calculated, the number of positive GDE(k) gives the number of impacts.

2.3. Shannon Wavelet Transform

The multiple signal classification (MUSIC) algorithm described above requires the signal from the
impact to be a narrow band. However, in practice, the signal from impacts usually is a short burst of
elastic waves that has a wide band spectrum. The narrow band signal needs to be extracted for the
application of MUSIC. Shannon wavelet transform is employed for extracting the narrow band signal
from the output of the sensor [18].

The Shannon wavelet function is defined as:

ψm(t) =
√

fb sinc( fbt)e2πi fct (17)

The Fourier transform of Equation (8) is:

Ψm(ω) =


√

2π
ωb

ωc − ωb
2 < ω ≤ ωc +

ωb
2

0 Others
(18)

where ωb = 2π fb, ωc = 2π fc, ωc > ωb/2, Ψm(ω) is the rectangular window function. It can extract
the narrow band signal whose center frequency is ωc. The bandwidth is limited in the range of
(ωc −ωb/2, ωc + ωb/2).

The wavelet transform of u(x, t) can be expressed as:

WT(x, a, b) =
1√
a

w +∞

−∞
u(x, t)ψ∗(

t− b
a

)dt (19)

where the superscript ‘*’ denotes a complex conjugate, a is the scale factor, and b is the time factor.
The impact signal can be expressed:

u(x, t) = e−j(k1x−ω1t) + e−j(k2x−ω2t) (20)

where k1 and k2 are the wave numbers. Introducing:

Ψ∗(aω) = Ψ∗(aω1) = Ψ∗(aω2)

k2−k1
2 = ∆k, ω2−ω1

2 = ∆ω

k1+k2
2 = k0, ω1+ω2

2 = ω0

(21)

The module values of the impact signal are acquired by the Shannon wavelet transform:

|WT(x, a, b)| =
√

2a|Ψ(aω0)|
√

1 + cos(∆ωb− ∆kx) (22)

When b = ∆k/∆ω = x/C, the module value is maximum, where C is the group of the
velocity. Narrow band signal and module values can be obtained by Shannon wavelet transform.
The time difference can be obtained by finding the peak times of the module values for wave
velocities measurement.
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3. Experiments

3.1. Wave Velocities Measurement

Because of the anisotropy of the composite material, the wave velocities of the elastic waves
depend on the direction of wave propagation. According to Equation (5), the MUSIC algorithm
requires the knowledge of the wave velocity. Hence, the wave velocities of all directions need to
be measured.

A carbon fiber-reinforced polymer (CFRP) plate, the dimensions of which are 500 mm × 500 mm
× 1.5 mm, was used for experiments. The ply sequence of the plate is [03/906/03]s. The four edges
of the plate were clamped tightly by a metal frame. Four FBGs were glued on the plate, as shown in
Figure 2. The coordinates of the FBGs are (150, 0), (0, 150), (−150, 0) and (0, −150), in the unit of mm.
The impact events are generated by a steel ball with a diameter of 20 mm.
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The signal demodulation system is composed of a white light source, fiber-optic couplers,
photoelectric detectors and data acquisition equipment with a sampling frequency of 2.5 MHz,
as shown in Figure 3. The wavelengths of four FBGs which constitute two sensor arrays are within the
limits of 1542 ± 0.1 nm. The length of the FBG is 3 mm, and the reflectivity is 70%. The wavelength
parameters of the FBGs all lie on the linear edge of the amplified spontaneous emission (ASE) source.
The power demodulation method, which are composed of photoelectric detector (PD), amplifier (AMP),
and data acquisition card (DAQ card), based on the edge filter principle [19], satisfies the need of
acquiring high frequency signals.
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Impact was applied on the plate at location A, as shown in Figure 2. The included angle between
line AS1 and the x-axis was 30◦. The coordinate of point A was (0, 86.6 mm). The impact signals
obtained by sensors S2 and S4 are shown in Figure 4 and the spectrum of the signal from S2 is shown in
Figure 5. It is seen that the impact signal was a white band signal mainly located in the frequency band
from 0 kHz to 50 kHz. The narrow band signals, whose central frequency is 40 kHz, were extracted
by Shannon wavelet transform. The module values of the narrow band signals of S2 and S4 were
calculated by Shannon wavelet transform, as shown in Figure 6. The first main peaks of the two
modules were used to calculate the time difference between S2 and S4. According to the time difference
and the difference between AS2 and AS4, the vertical wave velocity (90◦) can be obtained. The time
difference between S1 and S4 was calculated. According to the time difference, the vertical wave
velocity and the difference between lines AS1 and AS4, the wave velocity was calculated at a 30◦

direction. Based on the above method, the wave velocities of all directions were obtained and the
results are shown Figure 7.
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Figure 7. Wave velocities of different directions.

3.2. Localization of Multiple Impacts

A sensor array consisting of seven FBGs with an equal spacing of 10 mm in a line was used for
localization of impacts on a CFRP plate, as shown in Figure 8. The test area was a 400 mm × 400 mm
square located at the center of the CFRP plate. The sensor S4 which is at (0, 0), was used as reference
sensor. The signal demodulation system was similar to that shown in Figure 3. The testing area is
divided into 160,000 (400 × 400) searching points.
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Figure 8. Localization experiment.

Impacts were simultaneously applied on the plates using two steel balls at two different locations
of (67 mm, 110 mm) and (177 mm, 319 mm). At the height of 200 mm above the CFRP plate, we used
an electronic control valve device clip to hold the two balls, and through the control command,
to get the valve to open as far as possible to make the two balls release at the same time in free fall.
The signals detected by the FBG array are shown in Figure 9. The narrow band signals, whose center
frequency is 40 kHz, were extracted, as shown Figure 10. According to the narrow band signals,
the covariance matrix was calculated. Based on the Gerschgorin disc theorem, the GDE coefficients are
GDE(1) = 63.6545, GDE(2) = 12.8813, GDE(3) = −5.0576, GDE(4) = −10.2319 and GDE(5) = −35.9862,
respectively. Two out of the five GDE coefficients are positive; therefore the number of impacts was
correctly found to be two. The eigenvectors of the covariance matrix were calculated. The eigenvectors
of noise were extracted. The steering vector a(x, y) of each searching point was calculated.
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Figure 9. Impact signals of FBG array.
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Figure 10. Narrow band signals.

Using the MUSIC algorithm, the spatial spectrum over the test area was calculated to obtain the
locations of the impacts and the spatial spectrum is shown in Figure 11. The coordinates of the two
peaks of the spatial spectrum are (69 mm, 108 mm) and (181 mm, 324 mm), respectively. To evaluate
the accuracy of the results, an error function is defined as:

ε =
√
(xactual − xpredicted)

2 + (yactual − ypredicted)
2 (23)

where (xactual, yactual) is the actual coordinate of the impact source and (xpredicted, ypredicted) is the predicted
coordinate of the impact source. According to Equation (23), the localization errors of dual-impacts are
2.8 mm and 6.4 mm, respectively.
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Figure 11. The localization spatial spectrum of (67,110) and (177,319).

To further verify the performance of the impact detection system and the MUSIC algorithm,
impact experiments were performed at another set of two randomly selected points. The coordinates
of the impact points were (−149 mm, 289 mm) and (89 mm, 172 mm). The GDE coefficients were
GDE(1) = 53.7112, GDE(2) = 9.7609, GDE(3) = −8.2491, GDE(4) = −11.6197 and GDE(5) = −21.9831,
respectively. Again, from the number of positive GDE coefficients, the number of impacts was correctly
found to be two. The localization spatial spectrum is shown in Figure 12. The localization errors
are 8.6 mm and 3.6 mm. Another five sets of dual-impact localization experiments were carried
out and the results are summarized in Tables 1 and 2. The GDE coefficients are shown in Table 1.
According to the number of GDE coefficients larger than zero, the numbers of five dual-impacts are all
two. The localization results are shown in Table 2. We can find that the maximum error and average
error are 9.2 mm and 7.4 mm, respectively. The results confirm that the proposed algorithm can be
applied for multi-impact localization of composite structures.
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Table 1. GDE coefficients.

Impact Event
GDE Coefficients

GDE(1) GDE(2) GDE(3) GDE(4) GDE(5)

1 38.1901 10.8721 −5.6729 −11.0569 −20.6672
2 29.1176 8.2952 −4.8572 −10.2598 −20.2149
3 43.5331 13.6286 −8.7215 −15.6943 −23.2517
4 51.4519 16.8921 −10.3996 −18.9185 −26.2364
5 39.2379 11.9012 −8.1339 −14.8913 −22.7269
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Table 2. Experimental results.

Number Actual Coordinate (mm) Predicted Coordinate (mm) Error (mm)

1 (−171,58) (−127,138) (−176,65) (−133,144) 8.6 8.4
2 (−119,216) (57,268) (−112,210) (53,260) 9.2 8.9
3 (−52,157) (132,96) (−59,156) (137,98) 7.7 5.3
4 (86,117) (92,279) (89,121) (96,283) 5 5.6
5 (159,107) (78,193) (163,111) (83,198) 8 7

4. Conclusions

In this paper, a multi-impact localization system based on a FBG sensor array and the MUSIC
algorithm was investigated. The signals from multiple impacts were detected by the FBG array
and Shannon wavelet transform was used to extract the narrow band signals of the impact signals.
The Gerschgorin disc theorem was used for estimating the number of impacts. The MUSIC algorithm
was employed to obtain the coordinates of multiple impacts. The system and algorithm were verified
on a 500 mm × 500 mm × 1.5 mm CFRP plate. The results showed that the maximum error and
average error of multi-impact localization are 9.2 mm and 7.4 mm, respectively. The designed system
and algorithm can achieve the CFRP structural multi-damage identification reliably.
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