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Abstract: Infrared image segmentation is a challenging topic because infrared images are
characterized by high noise, low contrast, and weak edges. Active contour models, especially
gradient vector flow, have several advantages in terms of infrared image segmentation. However,
the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise
smoothing and weak edge protection, which decrease the effect of infrared image segmentation
significantly. In order to solve this problem, we propose a novel generalized gradient vector flow
snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased
Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex
function to improve the ability of protecting weak edges while smoothing noises. Experimental
results and comparisons against other methods indicate that our proposed snakes model owns better
ability in terms of infrared image segmentation than other snakes models.

Keywords: active contour model; gradient vector flow; infrared image segmentation; external
force field

1. Introduction

Infrared radiation is an invisible type of electromagnetic wave, whose wavelength ranges between
the radio wave and the visible light. Any object in nature whose temperature is over absolute zero
(−273 ◦C) is able to radiate the infrared ray. Compared with the visible light, the infrared wave has its
unique characteristics. For example, compared with the visible light, its light quantum energy is much
lower, the heat effect is stronger, it is more likely to be absorbed by a substance, and is less sensitive to
the human eye.

The visible light between 0.4~0.75 µm can be sensed by human eyes. The light outside this range
cannot be sensed without the aid of detectors. After in-depth studies, the interaction between the
medium and the radiation source has been discovered and the infrared radiation laws have been
summarized, which greatly stimulate the development of the infrared technology. The advent and
development of the infrared thermal imaging system indirectly broadens the visual sensing scope
of the eyes. The most commonly used detector is the infrared thermal detector. It can measure the
infrared thermal radiation quantity in a non-contact manner, convert it into clearly visible images and
display them on a screen.

The infrared technology was first applied for military purposes. In recent years, the technology
has been widely used in transportation, medicine and other scientific areas. The on-board infrared
scanning imaging technology can be used to monitor the location and affected regions of a forest fire,
control a fire disaster and minimize losses. In medicine, the infrared technology can be used to detect
inflamed organs and diagnose early symptoms of cancers. In the electronic equipment manufacturing
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industry, the quality and reliability of the electrical circuits and devices can be evaluated using the
infrared technology.

Compared with the visible light images, the infrared images have the following features: (1) most
objects in the infrared images have weak edges; (2) most of the infrared images have a high degree of
heterogeneity; (3) the contrast of the infrared images is low; (4) there are many types and large quantity
of noises in the infrared images; and (5) the resolution of the infrared images is low.

Considering the features above, the traditional methods are ineffective in segmenting the infrared
images. The active contour model has the following considerable advantages in terms of infrared
image segmentation: (a) The object’s edges obtained by the model is smooth, and the model is very
robust to edge clearance in the image; (b) The segmentation results represent the object’s edges
with closed curves, thereby dispensing with the need to connect edges of the segmentation results.
The closed contour is more conducive to object analysis and recognition; (c) The partial differential
equation can be used to compute the relatively mature results via theoretical and numerical analysis.
The model can also directly process the features of the to-be-segmented images (e.g., curvature and
gradient). Hence, the model is very robust and capable of yielding better segmentation results.

Currently, the active contour model has been widely used for segmentation of medical
images [1–5]. This type of model has developed rapidly and its variants spring up in recent years,
such as CN-GGVF [6], ADF [7] and DWP [8]. Due to the unique characteristics of the infrared images
(e.g., low contrast, serious noise and non-uniform distribution), the study on the use of active contour
model for segmentation of infrared images is in the infancy. Some attempts have been made to segment
infrared images using active contour model [9–13]. Furthermore, the active contour model can be used
for object tracking [14,15] and edge reconstruction [16]. Generally, there is a much work to be done on
the segmentation of infrared images using active contour model. Existing study shows that the active
contour provides a very promising approach for the segmentation of infrared images.

The active contour model can be classified into the edge-based models, which includes
parametric models [17–22] and the geometric (or geodesic) models [14,23–27], and the region-based
models [11,28,29]. This paper focuses on the parametric models and proposes a novel model to
segment infrared images more accurately. The proposed model has advantages in terms of weak
edge protection and noise smoothing. Experiments are carried out to segment the real-world infrared
images using the proposed model and other traditional active contour algorithms for the purpose
of evaluating accuracy and other aspects of their performance. We come to a conclusion about this
paper finally.

2. Research Background

2.1. Traditional Snakes Model

In 1987, Kass and co-workers proposed an active contour model, which is also known as the
Snakes model [17]. The traditional version of the active contour model is a continuous closed curve and
represented with parameter curve c (q) = [x (q) , y (q)] , q ∈ [0, 1]. The energy functional is minimized
by moving the curve in the image, as shown in Equation (1).

E (c (q)) =
1
2

1w

0

α
∣∣c′ (q)∣∣2 + β |c′′ (q)|2 dq +

1w

0

Eext (c (q)) dq (1)

where α and β are the weighting coefficients that adjust the flexibility and rigidity of the curve in the
active contour. The first integral term in the equation is the internal energy that ensures smoothness
and continuity of the curve. The second integral term is the exterior energy, which contains the
information of the image where the contour curve is located. It is a man-made constraint specifically
introduced to guarantee the curve evolves towards the object contour more accurately and quickly.
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In the traditional Snakes model, the external energy is usually defined as the local features of the
image where the controlling point or the connecting line is located. The gradient is usually used as the
feature, as shown in Equation (2).

Eext (x, y) = − |∇I (x, y)|2 (2)

The limitations of the traditional Snakes model are as follows:

1 It is very sensitive to the location of the initial contour. During the practical segmentation process,
the initial location of the contour must be manually put near the image edge of interest, resulting
in poor interactivity.

2 It is prone to converge towards the false edge near the object, and is not robust to the noise.
3 Its convergence performance is poor for the object contour with sunken regions.

2.2. The GVF Snakes Model

The catching range of the traditional Snakes model is limited, and the external energy only exists
in the regions near the object contour. Xu and Prince proposed a new external force model for the
active contour, i.e., the gradient vector flow (GVF) Snakes model [18]. GVF refers to the vector field
obtained by propagating the gradient vector of the edge graph for the given image. It is represented
with a function and can be determined using the following dynamic evolution equation.

Vt (x, y, t) = µ∇2V (x, y, t)− |∇ f |2 [V (x, y, t)−∇ f ] (3)

where µ is the parameter that can control the degree of smoothness of the external force field in GVF,
and the value set to it increases with the noise intensity in the image. f is the edge graph of the input
image. ∇2 is the Laplace operator. The largest advantage of GVF Snakes over the traditional Snakes
model is its ability to broaden the catching range of the initial contour and to catch the high-curvature
region in the object contour.

2.3. An Improved GVF Snakes Model

Although the GVF Snakes model has many advantages, it also has many limitations. Many
variants have been presented to address the limitations.

2.3.1. GGVF Snakes Model

In 1998, Xu and co-workers introduced two weighting coefficients that can change in the image
domain to the iteration equation of the GVF external force field. In this way, they obtained a new
external force called the generic gradient vector flow (GGVF) external force field [19]. The evolution
equation of this external force field is:

Vt−ggvf (x, y, t) = g(|∇ f |)∇2V (x, y, t)− h (|∇ f |) [V (x, y, t)−∇ f ] (4)

g (|∇ f |) = e−|∇ f |/K (5)

h (|∇ f |) = 1− e−|∇ f |/K (6)

where the parameter K determines the weight of the smooth term and the data term. As in the GVF
Snakes model, the choice of K relates to the image noise. The larger the noise, the larger the value of K
should be.

This model provides an approach to the problem that GVF Snakes can hardly converge towards
the long narrow sunken regions and is not very robust to the noise.

Afterwards, Qin proposed an improved model of the GGVF external force field in 2013, i.e., the
component-based normalized GGVF model (CNGGVF) external force field [6]. CNGGVF addresses
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the problem of GGVF Snakes that it can hardly converge towards LTI (Long and Thin Indentation),
which is an even number of pixels in width.

2.3.2. NGVF Snakes and NBGVF Snakes

The Laplace operator can be decomposed along the tangent and normal directions.
Hence, the evolution equation of the GVF external force field can be rewritten as:

Vt (x, y, t) = µ (αVTT (x, y, t) + βVNN (x, y, t))− |∇ f |2 [V (x, y, t)−∇ f ] (7)

where VTT and VNN denote the second-order derivative along the tangent and normal directions
of Vt. The parameters α and β determine the degree of image diffusion along the tangent and
normal directions.

Normally, the interpolation method yields the best results. Based on this, Ning et al. proposed a
normal gradient vector flow (NGVF) external force field [20]. From Equation (7), we can know that:

α = 0 (8)

β = 1 (9)

After their investigations, You et al. discovered that diffusion along the tangent direction of the
image edge can protect the image edge, and the diffusion along the normal direction can smooth the
noise. The NGVF external force field abandons the tangent diffusion, making it difficult for the NGVF
Snakes model to protect the weak edge of images. In this context, Wang et al. proposed a normally
biased gradient vector flow (NBGVF) external force field [21]. NBGVF completely retains the tangent
diffusion and is capable of adapting normal diffusion to image structure.

To sum up, in the NBGVF Snakes model, the parameters and definitions in Equation (7) can be
defined as:

α = 1 (10)

β = g (|∇ f |) = e−|∇ f |2/K2
(11)

This improved version of the model has higher diffusion efficiency and is able to effectively
protect the weak edges. The weaker the edge to be protected, the smaller the value of K.

3. Algorithm Improvement

3.1. Improved Version of the GVF Model

As discussed in the section above, the GGVF Snakes model enlarges the convergence range of the
active contour, improves the LTI convergence performance and is more robust to the noise. Based on
NGVF, which has higher diffusion efficiency, NBGVF provides a solution to the weak edge protection
problem. Hence, this paper relies on the GVF external force model, and combines GGVF and NBGVF
to propose a novel external force model.

The improved version of the external force is defined as a vector field, and it can be obtained by
using the following energy functional:

E (V) =
x

g (x, y) (gs (x, y)VNN + hs (x, y)VTT) dxdy + h (x, y) (V −∇ f ) dxdy (12)

g (|∇ f |) = e−|∇ f |/K (13)

h (|∇ f |) = 1− e−|∇ f |/K (14)
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hs ( f ) =


1 (|e| ≥ τ)

− f 3

8τ3 +
5 f
8τ + 1

2
0 (|e| = 0)

(0 < |e| < τ) (15)

gs ( f ) = 1− hs ( f ) (16)

where VNN and VTT denote the second-order derivative along the normal and tangent directions.
g (|∇ f |) and h (|∇ f |) denote the coefficients of the smooth and data terms in Equation (12). As defined
in GGVF, the value of K increases with the noise intensity in the image, but this may lead to the weak
edge being over-smoothed. Unlike the coefficients of the normal and tangent diffusion operators in
NBGVF, both of the coefficients directly depend on the intensity rather than the gradient of the edge
graph, thereby greatly reducing the computational complexity.

Moreover, as shown in Figure 1, the variation of the parameters in Equations (15) and (16) with the
intensity of the edge graph takes the form of convex function. Compared with the parameters α and β

in NBGVF (Equations (10) and (11)), the coefficients of the proposed model change gradually when
the value of f is high, and thus offer more protection to the weak edge in the infrared images. Hence,
the proposed model is capable of segmenting the infrared images more accurately. Meanwhile, the
coefficients of the proposed model fluctuate violently when the value of f is low. As a result, contour
divergence is more efficient at a long distance from the edge.

Sensors 2016, 16, 1756 5 of 16 

 

where  and  denote the second-order derivative along the normal and tangent directions. (|∇ |) and ℎ(|∇ |)	denote the coefficients of the smooth and data terms in Equation (12). As 
defined in GGVF, the value of K increases with the noise intensity in the image, but this may lead to 
the weak edge being over-smoothed. Unlike the coefficients of the normal and tangent diffusion 
operators in NBGVF, both of the coefficients directly depend on the intensity rather than the 
gradient of the edge graph, thereby greatly reducing the computational complexity. 

Moreover, as shown in Figure 1, the variation of the parameters in Equations (15) and (16) with 
the intensity of the edge graph takes the form of convex function. Compared with the parameters  
and  in NBGVF (Equations (10) and (11)), the coefficients of the proposed model change gradually 
when the value of f is high, and thus offer more protection to the weak edge in the infrared images. 
Hence, the proposed model is capable of segmenting the infrared images more accurately. 
Meanwhile, the coefficients of the proposed model fluctuate violently when the value of f is low. As 
a result, contour divergence is more efficient at a long distance from the edge. 

 
Figure 1. Variation of coefficients when  = 1. 

After the parameter in the equation is set to 0.1, the variation of the two coefficients is shown in 
Figure 2. This figure shows that the two coefficients fluctuate violently, dwindle to zero and then 
jump to 1 when the intensity increases. This means that the diffusion of the image near the edge 
graph along the normal direction is inhibited quickly, and that only the tangent diffusion component 
is left finally. This type of variation is conducive to the protection of weak edges. As discussed 
above, the value of K should increases with the image noise to smooth the noise, but the weak edge 
is likely to be lost due to noise smoothing. Hence, the value of the parameter should be optimized to 
achieve a trade-off between noise smoothing and weak edge protection. 

 
Figure 2. Variation of coefficients when  = 0.1. 

Figure 1. Variation of coefficients when τ = 1.

After the parameter in the equation is set to 0.1, the variation of the two coefficients is shown in
Figure 2. This figure shows that the two coefficients fluctuate violently, dwindle to zero and then jump
to 1 when the intensity increases. This means that the diffusion of the image near the edge graph along
the normal direction is inhibited quickly, and that only the tangent diffusion component is left finally.
This type of variation is conducive to the protection of weak edges. As discussed above, the value of
K should increases with the image noise to smooth the noise, but the weak edge is likely to be lost
due to noise smoothing. Hence, the value of the parameter should be optimized to achieve a trade-off
between noise smoothing and weak edge protection.
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3.2. Numerical Implementation

Now, the external force field can be obtained by minimizing Equation (12). The Euler-Lagrange
equation of the energy functional can be written as:

g· (gs·VNN + hs·VTT) + h· (V −∇ f ) = 0 (17)

In order to obtain the vector field in Equation (17), we introduce the parameter t and construct the
following partial differential equation.

∂V
∂t

= g· (gs·VNN + hs·VTT) + h· (V −∇ f ) (18)

 VNN = 1
|∇V|2

(
V2

x Vyy + V2
y Vxx − 2VxVyVxy

)
VTT = 1

|∇V|2
(

V2
x Vyy + V2

y Vxx + 2VxVyVxy

) (19)

where VxVy is the first-order partial derivative with respect to x or y, VxxVyy is the second-order partial
derivative with respect to x or y, and Vxy is the result achieved by computing the partial derivative
with respect to x and then to y.

The equations above can be solved by finding the equilibrium solution to the following set of
partial differential equations:{

ut = g· (gs·uNN + hs·uTT) + h· (u− fx)

vt = g· (gs·vNN + hs·vTT) + h·
(
v− fy

) (20)

where u = ∂V
∂x , v = ∂V

∂y , fx = ∂ f
∂x , and fy = ∂ f

∂y . Iterating Equation (20) yields the desired external force
field. Hence, the evolution equation of this external force field can be written as:

Vt (x, y, t) = g (|∇ f |) (gs ( f )VNN (x, y, t) + hs ( f )VTT (x, y, t))− h (|∇ f |) [V (x, y, t)−∇ f ] (21)

The algorithm steps are given in Figure 3.
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4. Experimental Results and Analysis

In this section, the proposed GVF model will be compared with GVF [18], GGVF [19], NGVF [20],
NBGVF [21], CN-GGVF [6], LIF [28] and SOAC [29] across different images. First, we apply these
methods to standard images, including the U-shaped image and the LTI image. All of these images are
the traditional images used to evaluate the basic performance of various Snakes models. Afterwards,
we will evaluate the performance of the proposed model and other algorithms in terms of segmenting
infrared images, such as the original infrared image and the infrared images corrupted with various
types of noises. These segmentation results form the basis for detailed analysis and comparison.
MATLAB R2014B is used as the development environment of the experiment programs in this paper.
The computer configuration is Inter Core i5-4210M 2.6 GHz CPU and 8 GB RAM.

Subjective assessment has its limitations for the evaluation of segmentation performance.
In our experiments, the segmentation results are evaluated using the following metrics: Precision,
Recall and F1 measure [1]. Let Mseg denote the actual segmentation results and Gseg denote the
segmentation baseline.

The metric Prevision can be expressed as:

P =
Mseg ∩ Gseg

Mseg
(22)

Similarly, Recall can be defined as:

R =
Mseg ∩ Gseg

Gseg
(23)

F1 measure provides an evaluation metric that combines Precision with Recall. It is defined as:

F =
2× P× R

P + R
(24)

A high value for any of these three metrics means that the segmentation is accurate and the result
approximates to the ground truth.
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4.1. Catching Range, Convergence for Convex and Concave Planes and Insensitivity to Initial Contours

In this set of experiments, we use the U-shaped and square images to test the performance of the
proposed method. The contour of the proposed method evolves from a long distance away towards
the target edge of the image. The parameter setting of the proposed method is {K, τ} = {0.1, 1} and
the evolution is shown in Figures 4 and 5. It can be seen that the final contour is well matched with the
target edge. The results in Figure 4a show the large catching range of the proposed model. The results
in Figure 4a,b demonstrate the ability of the proposed method to obtain accurate segmentation results
regardless of where the initial contour is placed and whether the contour is distant from the object or
passes through the target edge.
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Figure 5 demonstrates the ability of the proposed method to converge for convex and concave
planes and obtain the U-shaped edge accurately through segmentation.

4.2. Convergence for Long Narrow Edges

In this subsection, the proposed method will be evaluated and compared with other traditional
active contour models in terms of LTI image segmentation. The parameter setting of the proposed
method is {K, τ} = {1, 0.5}. The classic LTI images can test the convergence performance of the
active contour model in the case of long narrow edges. The experimental results are given in Figure 6.
These results clearly show that only the proposed method has the ability to converge towards the
bottom of the LTI images, while the other algorithms stop converging at the entrance to the LTI images.
Hence, the proposed algorithm has remarkable superiority over the traditional models.
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4.3. Parameter Settings Sensitivity

To demonstrate the parameter sensitivity of our proposed model, we change the parameter “τ”
from 0.01 to 1 and obtain the experiment results. Next, the results are quantitative calculated by
the F1 measure criterion. Then we obtain the average F1 measure value of the experiment. Finally,
the following curve in Figure 7 is acquired. According to Figure 7, in the range of 0.1 to 0.5 and
0.8 to 1, the F1 measure values change is not so obvious. Thus, our proposed model can be insensitive
to parameter settings in the certain range.Sensors 2016, 16, 1756 9 of 16 
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In the experiment, the parameter setting of the proposed model is , = 0.2, 1 . The major 
influences that affect segmentation accuracy are the weak target edges and the interference from the 
edges of other objects near the target. Figure 8 shows the original infrared images used in the 
experiment and Figure 9 shows the segmentation results of various active contour models. The last 
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Figure 7. The observation of relationship between segmentation accuracy and the value of τ (the valve
of K is constant “1”).

4.4. Segmentation Results for Common Real-World Infrared Images

In this subsection, we will use the infrared images to evaluate the comprehensive performance of
the proposed model. We captured the infrared images of the airplane, ship and tank using the infrared
camera at a resolution of 640 × 480. After being pre-processed, including grayscale conversion and
edge map calculation, the images are segmented using the proposed model and other traditional
algorithms. The segmentation results are then compared.

In the experiment, the parameter setting of the proposed model is {K, τ} = {0.2, 1}. The major
influences that affect segmentation accuracy are the weak target edges and the interference from
the edges of other objects near the target. Figure 8 shows the original infrared images used in the
experiment and Figure 9 shows the segmentation results of various active contour models. The last
column is the ground truth. From Figure 9, it can be seen intuitively that the propose model can
segment the infrared images very accurately and is superior to other traditional models in terms of
accuracy. As discussed at the beginning of this section, subjective evaluation has some limitations.
Hence, we perform quantitative analysis of these results based on Equations (21)–(23).
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Figure 8. Original images and initial contours used in the experiment. (a) “plane”; (b) “ship”;
(c) “tank”; (d) Initial contour of “plane” (size: 165 × 75); (e) Initial contour of “ship” (size: 158 × 86);
(f) Initial contour of “tank” (size: 123 × 98).
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The data in Table 1 intuitively reveal the advantages and disadvantages of the proposed method
over other algorithms in terms of infrared image segmentation. Consider the metric of F1 measure,
which can reflect the segmentation performance overall. The value of this metric of the proposed
method is higher than the other algorithms across the three images. This demonstrates the undisputed
superiority of the proposed method.

Table 1. Quantitative analysis results of usual infrared images after segmentation.

GVF GGVF NGVF NBGVF CN-GGVF LIF SOAC Proposed

plane Precision 0.9475 0.8958 0.7723 0.8984 0.914 0.955 0.9948 0.9484
Recall 0.9246 0.9759 0.9407 0.9688 0.9618 0.3628 0.3829 0.9427

F1 0.9359 0.9341 0.8482 0.9323 0.9373 0.5259 0.553 0.9456

ship Precision 0.9398 0.9497 0.9859 0.9835 0.9494 0.9961 0.9269 0.9597
Recall 0.8645 0.9453 0.8858 0.8331 0.9399 0.3391 0.9399 0.9386

F1 0.9006 0.9475 0.9332 0.9021 0.9446 0.506 0.9334 0.949

tank Precision 0.925 0.8972 0.8993 0.8929 0.8846 0.8625 0.6616 0.9122
Recall 0.8621 0.9549 0.9116 0.8868 0.9295 0.7073 0.3389 0.9505

F1 0.8924 0.9251 0.9054 0.8899 0.9065 0.7772 0.4482 0.931

4.5. Segmentation Results of Noise-Corrupted Infrared Images

The images used in the experiment of the previous subsection were captured in the experimental
environment and were processed specifically. However, in the real-world applications, the images we
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obtain are mostly corrupted with the noise, thereby expecting the proposed algorithm to smooth these
noises. In order to verify the proposed algorithm’s insensitivity to the noise, we corrupt the original
infrared images with the noise using the “imnoise” function in MATLAB. In this subsection, we will
use these noise-corrupted images for experiments. We add the salt–pepper and multiplicative noises
to the original images. The images corrupted with the salt–pepper noise are named planeN, shipN
and tankN (Figure 10), and the parameter setting of “D” (noise density) is 0.001. The images corrupted
with the multiplicative noise are named planeN2, shipN2 and tankN2 (Figure 11), and the parameter
setting of “V” (variance) is 0.01.Sensors 2016, 16, 1756 11 of 16 
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Figure 10. Images corrupted with the salt–pepper noises and initial contours in the experiment. (a) 
“planeN”; (b) “shipN”; (c) “tankN”; (d) Initial contour of “planeN” (size: 160 × 72); (e) Initial contour 
of “shipN” (size: 155 × 85); (f) Initial contour of “tankN” (size: 120 × 95). 
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Figure 11. Images corrupted with the multiplicative noises and initial contours in the experiment. (a) 
“planeN2”; (b) “shipN2”; (c) “tankN2”; (d) Initial contour of “planeN2” (size: 170 × 75); (e) Initial 
contour of “shipN2” (size: 156 × 85); (f) Initial contour of “tankN2” (size: 125 × 95). 

The parameter setting of the proposed model is 	 , = 0.1, 0.2 . In addition to the two major 
influences discussed in previous subsection, the noise is another factor that affects segmentation 
accuracy. For some models such as GVF and NBGVF, there is a trade-off between noise smoothing 
and weak edge protection. This is particularly true for images ship and tank. Some models tradeoff 
weak edge protection for noise smoothing for the purpose of obtaining better results. However, the 
proposed model is capable of protecting weak edges without sacrifice of noise smoothing, thereby 
resulting in greater accuracy. Figures 12 and 13 shows the segmentation results of various active 
contour models. As in the previous subsection, we perform quantitative analysis of experimental 
results using the same three metrics (Precision, Recall, and F1 measure). The analysis results are 
given in the Tables 2 and 3. 

Figure 10. Images corrupted with the salt–pepper noises and initial contours in the experiment.
(a) “planeN”; (b) “shipN”; (c) “tankN”; (d) Initial contour of “planeN” (size: 160 × 72); (e) Initial
contour of “shipN” (size: 155 × 85); (f) Initial contour of “tankN” (size: 120 × 95).
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The parameter setting of the proposed model is {K, τ} = {0.1, 0.2}. In addition to the two
major influences discussed in previous subsection, the noise is another factor that affects segmentation
accuracy. For some models such as GVF and NBGVF, there is a trade-off between noise smoothing and
weak edge protection. This is particularly true for images ship and tank. Some models tradeoff weak
edge protection for noise smoothing for the purpose of obtaining better results. However, the proposed
model is capable of protecting weak edges without sacrifice of noise smoothing, thereby resulting in
greater accuracy. Figures 12 and 13 shows the segmentation results of various active contour models.
As in the previous subsection, we perform quantitative analysis of experimental results using the same
three metrics (Precision, Recall, and F1 measure). The analysis results are given in the Tables 2 and 3.Sensors 2016, 16, x  12 of 16 
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Table 2. The comparison of Quantitative evaluation results on infrared images corrupted with
salt–pepper noise.

GVF GGVF NGVF NBGVF CN-GGVF SOAC LIF Proposed

planeN Precision 0.9177 0.7606 0.8643 0.8705 0.7147 0.9337 0.9769 0.8861
Recall 0.9296 0.9899 0.9668 0.9859 0.996 0.4814 0.3819 0.9849

F1 0.9236 0.8603 0.9127 0.9246 0.8322 0.6353 0.5491 0.9329

shipN Precision 0.9756 0.9097 0.9262 0.944 0.8767 0.9798 0.9555 0.9527
Recall 0.8284 0.9753 0.9045 0.8963 0.9733 0.9045 0.4159 0.9406

F1 0.896 0.9414 0.9152 0.9195 0.9225 0.9406 0.5795 0.9466

tankN Precision 0.9381 0.8944 0.9145 0.9027 0.8607 0.9407 0.9104 0.8815
Recall 0.8528 0.9431 0.9196 0.8893 0.9518 0.3432 0.7168 0.9567

F1 0.8934 0.9181 0.9171 0.896 0.904 0.5029 0.8021 0.9176
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Table 3. The comparison of Quantitative evaluation results on infrared images corrupted with
multiplicative noise.

GVF GGVF NGVF NBGVF CN-GGVF SOAC LIF Proposed

planeN2 Precision 0.6992 0.8713 0.6366 0.9076 0.8928 0.7794 0.978 0.9026
Recall 0.8714 0.9869 0.9477 0.793 0.9789 0.5327 0.3568 0.9869

F1 0.7758 0.9255 0.7616 0.8464 0.9338 0.6328 0.5228 0.9429

shipN2 Precision 0.9805 0.9455 0.987 0.9598 0.8277 0.9852 0.9711 0.9277
Recall 0.8336 0.9317 0.7533 0.8223 0.9662 0.884 0.3342 0.9443

F1 0.9011 0.9385 0.8545 0.8857 0.8887 0.9318 0.4973 0.9359

tankN2 Precision 0.9487 0.8297 0.8835 0.9383 0.8086 0.6616 0.9082 0.9037
Recall 0.8002 0.9307 0.8955 0.8565 0.9326 0.3389 0.7038 0.9338

F1 0.8682 0.8773 0.8894 0.8956 0.8662 0.4482 0.793 0.9185

The data show that after the noise is added to the image, the proposed algorithm can still segment
images very accurately, as the value of each metric is above 0.9. The accuracy of the proposed method is
very close or even higher than the best algorithm, and the proposed method leads the worse algorithms
by a larger margin. These results demonstrate the ability of the proposed method to smooth noises in
the infrared images more effectively.

To prove our proposed model can be applied to infrared images with different noise intensity,
we add different multiplicative noise to the infrared image “plane” by changing the parameter “V” in
the “imnoise” function from 0.01 to 0.03 (with the gap of 0.005), and then apply our proposed model to
these noise-polluted images and obtain the test results.

According to Figure 14, we can clearly see that the segmentation results are almost the same in the
different images. Thus, the results prove that our proposed model can process different noise intensity
adaptively. Our proposed model is very robust to the noise.
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4.6. Discussion 

The block diagrams in Figure 15 clearly show the segmentation accuracy of the proposed 
method and other algorithms. It can be seen that the proposed method is superior to other 
algorithms for most of the infrared images and is almost insensitive to the noise. The average CPU 
time and number of iterations in these experiments are shown in Table 4. 

 

Figure 14. Segmentation results in the infrared images with different ‘V’ values of noise intensity.
(The noise intensity gets higher from left to right.)

4.6. Discussion

The block diagrams in Figure 15 clearly show the segmentation accuracy of the proposed method
and other algorithms. It can be seen that the proposed method is superior to other algorithms for most
of the infrared images and is almost insensitive to the noise. The average CPU time and number of
iterations in these experiments are shown in Table 4.
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4.6. Discussion 

The block diagrams in Figure 15 clearly show the segmentation accuracy of the proposed 
method and other algorithms. It can be seen that the proposed method is superior to other 
algorithms for most of the infrared images and is almost insensitive to the noise. The average CPU 
time and number of iterations in these experiments are shown in Table 4. 
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Table 4. Average CPU time and number of iterations in the experiments of Sections 4.4 and 4.5.

GVF GGVF NGVF NBGVF CN-GGVF LIF SOAC Proposed

Average CPU Time (s) 81.131 84.074 93.401 88.699 86.297 184.065 117.122 79.561
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In order to prove that the proposed method is suitable for more applications, we apply the
proposed method to natural images in several sets of experiments. The results are shown in Figure 16.
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We can see that the proposed method is still capable of segmenting the natural images satisfactorily.
Hence, the high segmentation accuracy qualifies the proposed method for more applications.

To sum up, we first perform experiments to verify some basic properties of the proposed method
and prove that the proposed method is vastly superior to other classic algorithms in terms of LTI
convergence. Afterwards, we apply the proposed method to the infrared images and compare with
classic algorithms. Results show that the proposed method has great advantages over other algorithms.
Finally, we evaluate the segmentation performance of the proposed method for natural images. Results
imply that the proposed method is suitable for more applications.

5. Conclusions

The infrared image segmentation technology is of great significance to real-world life and
manufacturing. However, many issues have yet to be addressed. The research on the use of active
contour model for infrared image segmentation is in the infancy, but it has attracted a lot of attention.
In this paper, we adapt the active contour model to the infrared images by improving NBGVF. A series
of experiments have been performed to prove segmentation accuracy superiority of the proposed
method over other algorithms (GVF, GGVF, NGVF, NBGVF, CN-GGVF, LIF, and SOAC). Meanwhile,
it is proven that the proposed method can smooth noises while protecting weak edges in the infrared
images. Hence, the proposed method is vastly superior to other algorithms.
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