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Abstract: This study evaluated the ability to improve Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) chl-a retrieval from optically shallow coastal waters by applying algorithms specific
to the pixels’ benthic class. The form of the Ocean Color (OC) algorithm was assumed for this
study. The operational atmospheric correction producing Level 2 SeaWiFS data was retained since
the focus of this study was on establishing the benefit from the alternative specification of the
bio-optical algorithm. Benthic class was determined through satellite image-based classification
methods. Accuracy of the chl-a algorithms evaluated was determined through comparison with
coincident in situ measurements of chl-a. The regionally-tuned models that were allowed to vary
by benthic class produced more accurate estimates of chl-a than the single, unified regionally-tuned
model. Mean absolute percent difference was approximately 70% for the regionally-tuned, benthic
class-specific algorithms. Evaluation of the residuals indicated the potential for further improvement
to chl-a estimation through finer characterization of benthic environments. Atmospheric correction
procedures specialized to coastal environments were recognized as areas for future improvement as
these procedures would improve both classification and algorithm tuning.

Keywords: chl-a; water quality; eutrophication; optically shallow; bottom reflectance; SeaWiFS;
ocean color remote sensing; validation; modeling; algorithms

1. Introduction

As an index for phytoplankton, remotely-sensed chlorophyll a (chl-a) has been recognized as
useful for establishing a baseline for water quality conditions and for assessing current status, even in
optically-complex nearshore [1,2] and inland [3] environments. The Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) sensor (1997–2010) provides a valuable archive of synoptic data with one day revisit
and bands tuned for retrieval of chl-a. However, the Ocean Color (OC) Chlorophyll algorithm, the chl-a
algorithm currently operational for SeaWiFS, is known to overestimate chl-a in nearshore waters [4,5].
The OC algorithm uses empirical correlations derived from global in situ data and, therefore, cannot
account for systematic differences in the bio-optical relationship that may temporarily or permanently
exist in certain geographic zones [6].

Compared to satellite-derived chl-a for oceanic waters, nearshore environments pose challenges
from colored dissolved organic matter (CDOM), suspended sediments, bottom reflectance and
atmospheric conditions which, like chl-a, absorb blue light preferentially. Semi-analytical approaches
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for distinguishing between the optically significant constituents in the water column exist; however,
these algorithms require accurate remote sensing reflectance (Rrs) and may fail in the presence of
negative Rrs so that they sacrifice coverage in comparison to empirical algorithms [6].

Few, if any, studies have evaluated improvements to the accuracy of SeaWiFS chl-a retrievals
in optically shallow water where bottom reflectance is substantial. Le et al. [2] developed a
Red-Green-Chlorophyll-Index for SeaWiFS retrieval from estuarine waters achieving uncertainties
comparable to those from the OC algorithm in open ocean waters, but pixels contaminated by bottom
reflectance were excluded. Using Rrs falling outside the transparency window (i.e., Rrs412 and Rrs670),
Cannizzaro et al. [7] improved chl-a algorithm accuracy for optically-shallow water with substantial
bottom reflectance. Although the algorithm developed by Cannizzaro used wavelengths available from
SeaWiFS, that work utilized shipboard and mooring-collected reflectance data and did not explicitly
test the applicability to satellite-based ocean color data.

The present study evaluated the ability to improve satellite chl-a retrieval from optically shallow
coastal waters by employing algorithms specific to the pixels’ benthic class. Because of the global use
of the OC algorithm, and because band-ratio algorithms have been shown to have the potential to
derive chl-a in estuarine waters [8], the formulation of the OC algorithm was assumed for this study.
The operational atmospheric correction producing Level 2 SeaWiFS data was retained because the
focus of this study was on establishing the benefit from the class-specific tuning of the algorithm. The
regionally-tuned models that were allowed to vary by benthic class produced more accurate estimates
of chl-a than the single regionally-tuned model. Evaluation of the residuals indicated the potential for
further improvement to chl-a estimation through better characterization of benthic environments.

2. Materials and Methods

2.1. In Situ Data

A network of water quality monitoring stations, the South Florida Water Quality Management
Network, was established in Florida Bay by the Southeast Environmental Research Center at
Florida International University. Field measurement of chl-a was conducted at water quality
stations distributed across Florida Bay with data from six stations included in this study (Figure 1).
Water column measurements and samples were collected every other month from July 1989 to
December 1990 and monthly from March 1991 to September 2008 [9]. The data are available from the
Center’s website [10]. Details on sampling methodology and laboratory analysis for chl-a are described
by Boyer and Fourqurean [11] and Briceño and Boyer [9].
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Figure 1. Location of study area sample stations in Florida Bay, FL, USA showing bathymetry contours
as colored lines. The contours were created by the Florida Fish and Wildlife Commission based on
trackline data collected in 1990 [12].
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2.2. Satellite Data

SeaWiFS Level 2 data spanning 10 years from 1998 to 2008, as listed in Table 1, were downloaded
from the NASA Goddard Space Flight Center’s website [13]. Single pixels containing in situ samples on
the same day as the satellite overpass were considered as matchups to the in situ measurement. Pixels
flagged for land, cloud, stray light, sun glint, high top-of-atmosphere, low Rrs555 and atmospheric
correction failure were excluded as in Bailey and Werdell [14]. Matchups were also screened to exclude
data where the viewing and zenith angles exceed 60◦ and 75◦, respectively, accounting for limitations
on the atmospheric correction algorithms at extreme viewing and solar geometries [14].

Table 1. Summary of matchup data showing per season counts and average in situ chl-a annually.

Year Spring Summer Fall Winter Total Mean chl-a (mg·m−3)

1998 1 1 0.6
1999 6 2 8 0.5
2000 2 3 3 1 9 1.3
2001 2 3 5 0.4
2002 4 7 11 1.6
2003 1 5 6 2.7
2004 5 2 1 3 11 0.3
2005 3 3 3 7 16 1.1
2006 1 9 11 21 1.7
2007 6 4 3 13 1.1
2008 2 2 0.7

Overall 26 27 24 26 103 1.2

2.3. Seagrass Class Data

A previous, supervised classification of the study area’s benthic habitat [15] was employed in
the present study. A brief summary of the classification methodology is presented here. A maximum
likelihood classifier was applied to remote sensing data, of the study area, that were recorded during
the time-of-year when the benthic signal was assumed to dominate the variation in the top-of-water
reflectances with negligible contribution from the water column. Five Landsat images, from each
year in the period 2007–2011, along with Florida Bay Fisheries Habitat Assessment Program in situ
surveys of seagrass cover, conducted in the spring of each year, were employed to train and validate
the classifier. Data from 2009–2011 were used to train the classifier while data from 2007 and 2008 were
used for validation. Pixels were classified as (1) medium-dense seagrass; (2) low seagrass; (3) sparse
seagrass; or (4) turbid, as determined from three depth-invariant bands derived from the visible
wavelength bands [15].

Sparse and low classes were combined in the present study so that a 2-class scheme was
used to distinguish between all study area benthic habitats. The benthos were classified each
year (1998–2008) from spring and early summer images when phytoplankton concentrations are
generally low. The classifications produced from the spring/early summer data were assumed
constant throughout the calendar year (from the January before the classified image to the December
following the classified image). New maps, describing the mode of a 1 km radius around each 30 m
Landsat grid cell, were created to account for SeaWiFS spatial resolution of 1.1 km at nadir.

2.4. Bio-Optical Algorithm

The empirical OC algorithm estimates were evaluated against the in situ measurements.
The current version of the operational algorithm, OC4v6, relates chl-a to a log-transformed ratio
(X) of remote sensing reflectance (Rrs) [16]:

chl − a = 10a0+a1∗X+a2∗X2+a3∗X3+a4∗X4
(1)
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X = log10
λb
λg

(2)

For the OC4v6 algorithm, λb is the greatest of Rrs443, Rrs490, and Rrs510, and λg is Rrs555. The best
fit polynomial was derived using the globally-distributed NASA Bio-optical Marine Algorithm Data
set [17] with coefficients a1 = 0.3272, a2 = −2.9940, a3 = −1.2259 and a4 = −0.5683.

2.5. Statistical Analyses

Regionally-tuned algorithms, including models (1) that use alternative band ratios but no
distinction by seagrass class and (2) based on band ratio X with coefficients tuned to benthic cover
class, were tested for potential improvement of the chl-a estimates. All tested algorithms were derived
through linear regression against the in situ data set conducted in SPSS version 21 (IBM, Armonk,
NY, USA).

Two alternative band ratios, Xbr and Xrg, were evaluated as substitutes for X in optically-shallow
nearshore water. Band ratio Xbr retains the maximum of Rrs443, Rrs490, and Rrs510 in the
numerator and employs λr, Rrs670, as the reference wavelength while ratio Xrg avoids the blue
wavelengths entirely:

Xbr = log10
λb
λr

(3)

Xrg = log10
λr

λg
(4)

The in situ chl-a data set was segmented by benthic cover class in order to derive unique algorithms
for (1) medium-dense seagrass and (2) sparse-low seagrass cover. The yearly satellite image-based
seagrass classification products described previously were used to segment the chl-a dataset. Statistics
used to assess the accuracy of the various algorithms included the adjusted R2 and the mean absolute
percent difference (APD).

3. Results

Beyond the quadratic, statistical agreement (i.e., adjusted R2) between in situ and modeled chl-a
generally did not improve with increasingly higher order polynomial formulations for any of the band
ratios tested. Therefore, a quadratic formulation was adopted for all regressions.

3.1. Models Without Seagrass Distinction

The operational band ratio, X, employing the maximum of Rrs443, Rrs490, and Rrs510 and Rrs555,
performed better than Xbr and Xrg for the study area as shown in Table 2. The regression that used X
produced positive coefficients for the linear and quadratic terms. The estimates of chl-a based on X
are primarily controlled by the quadratic term with estimates increasing as the ratio of blue-to-green
decreases, consistent with the absorption properties of chl-a.

Table 2. Coefficients and goodness of fit for regionally-tuned chl-a retrieval models including those
based on alternative band ratios.

Ratio a0 a1 a2 Adjusted R2

X −0.161 2.382 10.777 0.191
Xbr 0.003 0.646 0.394 −0.013
Xrg 3.704 −3.036 0.553 0.140

Figure 2 plots the estimated versus the in situ log10chl − a for the OC4v6 and regionally-tuned
model based on X. From Figure 2 it is evident that the positive bias produced through the OC4v6
algorithm is less of an issue for the regionally-tuned model.
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Figure 2. In situ measured chl-a versus (A) OC4v6 chl-a product and (B) Unified regionally-tuned
model chl-a based on X.

3.2. Benthic Class-Specific Models

The signs and order-of-magnitude of the coefficients for the algorithms tuned to benthic
class-specific data (Table 3) were the same as those for the unified, regionally-tuned model that
was also based on X. Segmenting the data by benthic class did improve the accuracy of the resulting
chl-a estimates in terms of the adjusted R2.

Table 3. Coefficients and goodness of fit for benthic class-specific chl-a retrieval models.

Class-Specific Model a0 a1 a2 Adjusted R2

Sparse-Low −0.075 5.095 25.241 0.332
Medium-Dense 0.146 5.557 16.282 0.234

Table 4 shows the range of chl-a represented by the various algorithms tested versus the range
observed in the in situ data. Chl-a readings over sparse seagrass were underestimated to a greater
degree under the regionally-tuned model compared to the class-specific model. While the class-specific
regional algorithms offer improvements over the single regional model and the OC algorithm, further
improvement to predictive power may be desired before chl-a estimates are utilized for coastal
monitoring. Therefore, assessment of the residuals by season, location and over time was conducted to
investigate how further enhancement of the algorithms might be possible.

Table 4. Dynamic range of in situ chl-a compared to ranges of chl-a retrieved through models.

Seagrass Class In Situ OC4v6 Regionally-Tuned Class-Specific

Sparse-Low 0.3–8.4 2.8–36.1 0.5–1.4 0.5–6.2
Medium-Dense 0.1–8.4 2.6–231.1 0.5–10.3 0.5–10.4

As the seagrass classification for an entire year was derived from spring or early summer data,
the seasonal accuracy of the class-specific chl-a algorithms was of particular interest. The concern being
that systematic biases in winter and fall could be representative of intra-annual changes in seagrass
density that were not captured in the annual classification. The mean absolute percent differences for
each season, presented in Table 5, show summer and winter retrievals to be the least accurate for the
regionally-tuned, benthic class-specific models (Class-specific Overall).
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Table 5. Mean absolute percent difference by season for the operational SeaWiFS and the benthic-class
specific model.

Spring Summer Fall Winter All

OC4v6 1908% 2590% 1214% 2917% 2180%
Class-Specific Overall 60% 83% 54% 107% 77%

Sparse-Low 42% 80% 80% 62% 64%
Medium-Dense 85% 87% 38% 131% 87%

Figure 3 shows the residuals of the class-specific algorithms with markers differentiated by
season. From inspection of Figure 3, the algorithm for sparse-low seagrass does not appear to produce
seasonal biases. The medium-dense seagrass algorithm appears to underestimate chl-a somewhat
in fall; however, there is no strong evidence of seasonal phenological differences in seagrass density
affecting the chl-a estimates.
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Assessment of the time-series of the residuals for the class-specific algorithms suggested biases
in the medium-dense algorithm. As shown in Figure 4, estimates of chl-a overlying medium-dense
seagrass from stations 15 and 17 are increasingly overestimated (more negative residuals) with time.
As these stations were in basins associated with increasing seagrass density, the trend of increasing
negative bias may be related to increased blue absorption from higher seagrass density.
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Similarly, all estimates of chl-a overlying medium-dense seagrass at station 13, where seagrass
was typically sparse-low, were underestimated. The bias at station 13 may be related to relatively low
seagrass density, and lesser blue absorption, compared to the average for the medium-dense class.
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These results suggest that increasing the number of seagrass classes would improve the chl-a estimates
for the study area. By creating more divisions in the benthic classification, variations in X are more
likely to be attributed to differences in chl-a as opposed to bottom reflectance.

4. Discussion

The benthic class-specific chl-a retrieval algorithms were found to greatly reduce the absolute error
of retrievals compared to OC4v6, and also improve performance relative to the unified regionally-tuned
model that was tested in this study. All regionally-tuned models performed significantly better than
OC4v6 in capturing the dynamic range of chl-a, where the minimum chl-a estimated through OC4v6
was substantially higher than annual mean in situ chl-a for 10 of the 11 years of data. While the
mean absolute percent difference for the benthic class-specific models remained high (77% overall)
the results are encouraging given the much poorer performance of the operational algorithm in the
optically-shallow conditions and the oligo- to mesotrophic nature of the study area.

Because of the in vivo absorption peak near 676 nm, spectral bands near 676 nm have been widely
used for the retrieval of chl-a in coastal waters [4]. The success of these algorithms is attributed to
avoidance of the blue wavelengths which minimizes the impact from CDOM interference in the blue
wavelengths and from atmospheric correction errors that affect blue wavelengths more strongly than
green and red wavelengths [18]. While the blue to red ratio Xbr was not evidenced as useful for
retrieving chl-a concentrations in the present study, the red to green ratio Xrg achieved R2 values
similar to those for the traditional blue to green ratio. Because λb and λr both measure reflectances
associated with chl-a absorption, differences in phytoplankton concentration may be cancelled out in
Xbr (increases in phytoplankton cause increased absorption in both λb and λr), accounting for the poor
retrieval performance. The Xrg, however, compares red absorption to a green reference and warrants
further study given the known issues with satellite-retrieved blue bands. With increased attenuation
from water in the red wavelengths, Xrg in optically shallow water may be influenced by variations in
water column depth and variable modulation of the bottom reflectance. In this case, utilizing bands
that have been corrected for variable water column depth can improve the performance of Xrg in
chl-a retrieval.

While this study retained the functional form of the OC4v6 model, models that employ multiple
band ratios may improve chl-a estimates where the addition of other terms could allow for finer tuning
of class-specific models. Regardless of the band ratio and functional forms employed, type-specific
chl-a retrieval algorithms present an opportunity for greater applicability of global satellite data to
nearshore areas. For example, water type-specific algorithms (where water type is determined through
optical classification) were shown to improve the error of multi-spectral satellite retrievals of chl-a over
a unified model tuned for all water types without classification [19] in turbid estuaries. As benthic and
water types can be identified through satellite remote sensing, type-specific algorithms offer reduction
in uncertainty without sacrificing coverage.

The present study assumed negligible intra-annual variability of the seagrass class and made
use of seasonally low phytoplankton to identify annual benthic class. The applicability of these
assumptions to other study areas requires further study. In some study areas, the phenology of
submerged aquatic vegetation may require more frequent variation of bottom reflectance although
seasonal factoring may suffice in those situations.

While better characterization of the benthos showed potential to improve chl-a retrieval,
the capacity for this finer level of discrimination was not tested.

The desire for finer benthic classification and the use of the blue wavelengths in the present study
highlight the need for coastal atmospheric correction regimes. The atmospheric correction procedure
in the nearshore is complicated by the potential for absorbing aerosols, such as smoke, dust, NO2 and
CO2, and straylight contamination from nearby bright land and clouds [20]. Similar to the capability of
regionally-tuned models to better represent chl-a in nearshore areas, atmospheric correction procedures
tuned to nearshore coastal areas would result in more accurate coastal Rrs. Reducing the satellite Rrs
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uncertainty would benefit chl-a retrieval directly and allow for better identification of benthic class or
water types.

5. Conclusions

The present study demonstrates that improvements in chl a-retrieving algorithm performance
are achievable through benthic class-specific tuning of retrieval algorithms. SeaWiFS satellite Rrs

and satellite-derived bottom classifications were utilized for evaluation of potential reduction in
the uncertainty of satellite-based chl-a classification. Accounting for the variation in the benthic
environment by producing benthic class-specific models allowed for better representation of the water
column chl-a. Addressing multi-spectral ocean color satellite classification uncertainty is important, as
these datasets allow for the derivation of ecological baselines which can be used to detect changes in
coastal system dynamics as well as be used in hindsight to assess prevailing bloom conditions and to
identify the biological and physical parameters that triggered or terminated an algal event [4].

While the uncertainty in estimated chl-a for benthic class-specific algorithms remains substantial,
type-specific models may be useful for detecting the presence of chl-a concentrations above a certain
threshold [21] if not for estimating actual chl-a concentrations.

Algorithms can be optimized once benthic class and/or water types can be adequately
characterized in terms of definition of classes as well as spatial and temporal variability. Therefore,
the most promising opportunity to further improve satellite-based chl-a retrieval in nearshore areas
is atmospheric correction procedures specialized to coastal environments as these procedures would
improve both classification and algorithm tuning.
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