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Abstract: Surface electromyography (sEMG) signals are closely related to the activation of human
muscles and the motion of the human body, which can be used to estimate the dynamics of human
limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral
rehabilitation, where hemiplegic patients can train their affected limbs following the motion of
unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused
on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral
rehabilitation. In order to overcome this problem, in this paper, we built a relationship between
sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the
conducted experiments, four participants were required to perform elbow flexion and extension on
the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were
not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads
or high acceleration. The contrastive experimental results show that continuous motion can also be
obtained within an acceptable precision range.
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1. Introduction

Stroke is one of the most harmful diseases which results in adults losing their ability to read,
speak, understand and move. Patients may even lose their lives. Based on reports from seven
countries (the US, France, Germany, Italy, Spain, the UK and Japan), stroke occurs in an average of
214 out of 100,000 people per year, with the incidence rate growing annually by 1.9% due to an aging
population [1]. With the increase of the aging population, new rehabilitation technology is required
more and more urgently, especially using robotics in home rehabilitation. Compared to traditional
rehabilitation strategies, robot-mediated rehabilitation has been widely considered as a promising
method to improve patient access to therapy [2]. There are several rehabilitation strategies used widely
in robot-mediated rehabilitation, including passive training, active training and active-resistce training.
On the other hand, bilateral rehabilitation is also a very promising strategy because it is suitable for
hemiparesis in home rehabilitation. Over half of stroke patients suffer from hemiparesis, which affects
one side of the patient’s body while the other side is unaffected. Bilateral rehabilitation based on
robotic systems appeared several years ago [3]. One of the typical systems using bilateral rehabilitation
for upper limbs is a Mirror Image Movement Enabler (MIME), which adopted an industry robot
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(PUMA 560) that applies forces to the paretic limb [4]. In this system, to acquire the motion of the
unaffected limb, a forearm splint was used to fix the unaffected limb, and its motion can be detected
by the sensors installed on the splint. It is a constraint for unaffected limbs. In this paper, we proposed
a method to detect the motion of unaffected limbs without a constraint, which is to adapt surface
electromyography (sEMG) signals [5]. Moreover, the sEMG signals can be detected by a wireless
communication device [6]. On the other hand, sEMG reflects the activation of muscle and human
motion, not only including the movement of human limbs but also including the trend of motion that
cannot be detected by other sensors directly.

Generally speaking, there are two main parts to process sEMG signals according to previous
literature: feature extraction and feature classification. Moreover, from the perspective of processing,
the method of feature extraction can be grouped into three types: time domain, frequency domain and
time–frequency domain [7]. The methods of time domain mainly include Integrated EMG (IEMG),
Mean Absolute Value (MAV), and so on [7]. The methods of frequency domain mainly include
auto-regressive coefficients, frequency median, and so on [8]. The methods of time–frequency domain
were developed based on in frequency domain and include Wavelet Transform (WT) and Wavelet
Packet Transform (WPT) [9–13]. For the process of feature classification, artificial neural networks
were used widely because they are good at dealing with nonlinear problems. On the other hand,
a fuzzy logic classifier and support vector machines [14] are also effective methods to deal with the
classification of features. In this paper, WPT is chosen as the basic method of feature extraction because
of its predominant characteristics in the filter and feature extraction of signals.

In the past several decades, many researchers have studied motion pattern recognition based on
sEMG signals, such as in prosthesis. However, much of the research has focused on the recognition of
motion patterns, namely, discrete patterns. Continuous motion recognition was merely mentioned.
On the other hand, most motion pattern recognitions focused on some special motions that can induce
high activation of muscle and strong sEMG signals, such as hand grasping, so that they can obtain
high recognition accuracy. In this research, we focused on the recognition of human elbow flexion
and extension on the sagittal plane for bilateral rehabilitation with only one electrode attached to the
bicep muscle. The subjects were required to perform this motion in the sagittal plane without any
load on their upper limbs, except for an inertia sensor (MTx) (30 g). It is more difficult to build the
relationship between the sEMG signals and human motion. For bilateral rehabilitation, continuous
motion recognition is necessary in real-time. In our previous research, we had developed the upper
limb rehabilitation robotics and conducted some experiments for processing the sEMG signals with
healthy subjects [15–18]. In this paper, we first extracted four motion patterns for elbow flexion and
extension in the sagittal plane, and compared differences of results between the proposed weighted
peak method and the improved version. At last, the continuous motion for elbow flexion and extension
was implemented based on two proposed methods.

2. Materials and Methods

To build the mapping between the sEMG signals and elbow flexion and extension on the sagittal
plane when the motion is performed very smoothly, so that the dynamic efficacy can be omitted,
the statics are analyzed, which are easier and simpler than dynamics. It is not difficult to notice that
there are two main forces involved in this motion: gravity and muscle extraction force of the biceps.
Thus, it is possible to acquire and process the sEMG signals from the biceps to find the relationship
between elbow flexion and extension. The most important phase is to extract the features. In the
case of discrete recognition, acquired features are classified into several groups, so the recognition
results would be correct as long as the features are classified into the right groups. However, in the
case of continuous recognition, the features are not classified into certain groups, but mapped into
the quantitative values, such as position, torque, and so on. Therefore, more discriminative features
are required for continuous recognition than those for discrete recognition. To evaluate our proposed
sEMG processing method, four discrete patterns were classified during elbow flexion/extension,
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with the upper arm remaining static and perpendicular to the ground, with the forearm hanging down
(A), flexion towards horizontal plane (B), lifting in the horizontal plane (C), and extension back to
the vertical plane (D) (Figure 1). To ensure that the actions of A and C can be performed correctly,
an orthogonal framework was made to indicate the horizontal and vertical plane. During elbow
flexion and extension, the upper arm was fixed statically and the forearm was required to move very
slowly, according to the four aforementioned motion patterns, so that the motion can be assumed to be
in equilibrium.
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2.1. SEMG Signal Acquisition and Experiments

The bipolar surface electrodes were used and the sampling rate is 1000 Hz (Figure 2).
The electrodes are reusable and are adhered to bicep muscles, and a reference electrode is adhered
to the body where no muscles exist as ground signals. The sampling data were pre-processed with a
commercial sEMG acquisition and filter device (Oisaka Electronic Device Ltd., Fukuyama, Japan) with
eight channels before sending to the processing program with the sampling rate of 1000 Hz. To obtain
sufficient skin contact with the electrodes, every subject’s skin was shaved and cleaned with an alcohol
swab. Figure 3 shows the recorded raw sEMG signals from a subject’s bicep muscle. The window length
of the sEMG samples was set to 256 ms for the real-time requirement in an engineering application.
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Sixteen subjects (healthy students in our lab) participated in the experiments. They were asked to
perform elbow flexion and extension ten times as shown in Figure 1. The tilt angle of the forearm was
detected via an inertia sensor when sEMG signals were being detected in Figure 4, which shows the
four discrete patterns clearly. Because the frequency of sEMG acquisition is higher than that of angle
value acquisition, the amount of sampling for angle information is less than that for sEMG signals.
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2.2. Wavelet Packet Transform (WPT)

Wavelet transform was proposed because its advantages not only involve time and frequency
domain features of EMG signals, but also exacting certain frequency domain features such as the
frequency section of most EMG signals. Wavelet Packet Transform (WPT) generates a full wavelet
basis decomposition tree. In each scale, not only the approximation signals, but also the detail signals
are filtered to obtain two additional low and high-frequency signals.

For given sEMG signals s(t), whose scaling spaces are assumed as U0
0 , wavelet packet transform

can decompose U0
0 into small subspaces in a dichotomous way, which can be calculated according to

Equation (1):
Un

j+1 = U2n
j ⊕U2n+1

j , j ∈ Z; n ∈ Z+ (1)

where j is the resolution level and ⊕ stands for orthogonal decomposition, Un
j+1, U2n

j and U2n+1
j

are three close spaces corresponding to un(t), u2n(t) and u2n+1(t). un(t) satisfies the following
Equation (2) [14]: 

u2n(t) =
√

2 ∑
k∈Z

h(k)un(2t− k)

u2n+1(t) =
√

2 ∑
k∈Z

g(k)un(2t− k)
(2)

where the function u0(t) can be identified with the scaling function ϕ and u1(t) with the mother
wavelet ψ. h(k) and g(k) are the coefficients of the low-pass and the high-pass filters, respectively.
The sub-signals at Un−1

j , and the nth subspace on the jth level, can be reconstructed by Equation (3):

sn
j (t) = ∑

k
Dj,n

k ψj,k(t), k ∈ Z (3)

where ψj,k(t) is the wavelet function, and Dj,n
k was the wavelet packet coefficients at Un−1

j , which can
be calculated by Equation (4):

Dj,n
k =

∫ ∞

∞
s(t)ψj,k(t)dt (4)

In this paper, the Daubechies wavelet was used as the mother wavelet. In addition, we chose
Daubechies 2 and decomposed raw sEMG signals to the fourth level. The initial features can be
obtained via the reconstructed wavelet via Equation (4). WPT generates a high-dimension feature
vector. Some research proposed many methods to reduce the dimensions to save on calculation costs,
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such as principle component analysis and a self-organizing feature map [19]. In this paper, the most
effective feature vectors are selected rather than all of the vectors, namely nodes 4.0 and node 4.1
(see Figures 5 and 6) due to the effective components of sEMG signals being distributed in a low-frequency
domain. This step could reserve the low-frequency signals and filter the high-frequency noise.
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2.3. Feature Extraction Methods

After processing via WPT, sEMG signals were still not used to obtain the features of motion
directly. The target of feature extraction is to obtain some typical data, which can reflect the motion
patterns of human motion. Currently, most research in motion pattern recognition using sEMG signals
focuses on discrete motion patterns such as hand opening, grasping, and so on, and traditional feature
extraction methods can obtain the typical data to reflect the motion characteristics, such as MAV.

• Mean Absolute Value

MAV =
1
N

N

∑
n=1
|sn| (5)

where sn is the reconstructed sEMG signals processed by WPT. The overlapped window is also used in
this procedure.

In general, the entropy of the reconstructed sEMG was commonly discussed. Meanwhile,
Mahdi et al. [20] proved that static methods are also effective, such as MAV (see Figures 7 and 8).
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2.4. Weighted Peaks

In this research, motion patterns to be recognized are continuous in the time domain, which
required the processed sEMG to have highly distinguishing characteristics related to elbow flexion
and extension. To achieve this goal, a new feature extraction method was proposed in this paper with
weighted peaks, which involve the following steps:

• Zero Crossing

ZC =
N−1

∑
n=1

[sgn(sn × sn+1) ∩ |sn − sn+1| ≥ threshold] (6)

where the sgn (x) =

{
1 if x < 0

0 otherwise
threshold equals zero.

All the reconstructed sEMG signals of zero crossing are saved to obtain peaks and valleys
among them.

• Trend Acquisition with Weighted Peaks

Human motion information is immersed in the peaks of sEMG signals, not in one peak, but in
many series of peaks. Thus, groups of peaks are chosen and processed to find the implied information:

If max(szc(i) : szc(i+1)) + min(szc(i) : szc(i+1)) ≥ 0

P(i) = max(szc(i) : szc(i+1)) (7)

Else if max(szc(i) : szc(i+1)) + min(szc(i) : szc(i+1)) < 0

P(i) = (−1)×min(szc(i) : szc(i+1)) (8)

where szc(i) are the reconstructed sEMG signals of zero crossing; P(i) are the peaks or valleys between
the data of zero crossing, and valleys are transformed into positive numbers (see Figures 9 and 10).
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1/3 P(i + 1) > P(i)
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• Adapted Weighted Peaks Method

From Figures 11 and 12, the weighted peaks method aimed to extract features of the peaks of EMG
signals based on increasing the component of the higher amplitude and decreasing the component
of the lower amplitude. The weight bias of the high peaks can obtain the main features, however,
the constant weighted parameter cannot smooth the feature trajectory because of the instability of
the sEMG signals. Therefore, the variable weighted parameters will be useful to process the instable
peaks. The main method to adapt the weighted peaks is tuning the weighted parameter based on the
variation of current data to the previous data. If the value obtained by the weighted peaks method is
a certain value B higher or lower than the previous value, then the method will be carried out once
more, until the variation is under the certain value B. In fact, the effect of carrying out the weighted
peaks method changed the weighted values.

If |P(i + 1)− P(i)| > B,

P(i + 1) =
1− n

n
P(i) +

1
n

P(i + 1) (10)

If |P(i + 1)− P(i)| ≤ B,
P(i + 1) = P(i + 1) (11)

2.5. Comparison of Features Extracted by the Proposed Methods and Traditional Methods

Though traditional feature extraction methods perform well in discrete pattern recognition,
they would not deal with the continuous pattern recognition using weak sEMG signals. In order to
compare the proposed method of feature extraction via weighted peaks to obtain the sEMG trend
with the traditional MAV method, LIBSVM library [21] developed by Chih-Chung Chang et.al was
adopted to classify the four motion patterns mentioned previously. In each procedure of classification,
the target vector can be generated automatically via the inertia sensor, and the feature vector is a 3 × n
matrix. Figure 13 shows the scatter graph of distribution of the MAV results of reconstructed sEMG
signals and integrated sEMG signals. From this figure, some features of patterns B and C overlapped
in the adjacent area because of the strong fluctuation in MAV results, which can reduce the recognition
rate. On the other hand, patterns B and D almost overlap each other, which cannot be recognized
directly. The reason is that discrete features can only represent the magnitude of muscle activation and
not reflect the direction of motion. It could be solved by using the previous status and obtaining the
current status.
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Figure 13. Example of a scatter figure on the integrated EMG (IEMG) signals and MAV of reconstructed
sEMG signals in node 4.0.

Figure 14 shows the scatter graph of an sEMG trend with a weighted peak and the IEMG signals.
From this figure, the superposition area between pattern B and pattern C obviously decreases because
the variation trend of sEMG signals is smooth and reflects the motion of the forearm. It is also
obvious that the sEMG trend with weighted peaks has more discriminative features than MAV features.
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The results of whole contrastive experiments are shown in Table 1. From this table, the recognition rate
of weighted peaks is higher than that in the MAV for all of the subjects.
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Table 1. Average recognition rate of contrastive experimental results (%).

MAV Weighted Peaks

Subject 1 85.1 93.4
Subject 2 86.6 95.3
Subject 3 79.3 87.7
Subject 4 81.1 89.3
Subject 5 81.7 91.9
Subject 6 80.3 87.0
Subject 7 77.8 84.1
Subject 8 79.0 90.6
Subject 9 80.3 89.1

Subject 10 85.7 89.9
Subject 11 81.8 92.7
Subject 12 82.1 91.5
Subject 13 80.3 93.5
Subject 14 77.1 90.7
Subject 15 79.1 85.1
Subject 16 81.9 89.2

2.6. Linear Map from sEMG Signals to Forearm Motion

Because each subject was required to perform elbow flexion and extension with his upper arm
relaxed in the sagittal plane at a very low and constant speed, the dynamics of the forearm can be
omitted. The processed sEMG signals derived via weighted peaks and adapted weight peaks show
a trend of signal variation consistent with the human motion at a certain degree; further details
are given in the following section. Therefore, it is possible to use simple linear fitting to build the
relationship between the sEMG signals and elbow flexion and extension. Namely, the activation of
the bicep muscle is considered to be proportional to the motion of the subject’s forearm. On the other
hand, to implement the real-time continuous recognition, we adapted a simple proportional fitting
line to map the weighted peaks of sEMG signals to the motion:

M(i) = aP(i) + b (12)

The least squares method was used to obtain the parameters a and b. For example, according to
the ten-time experimental results from subject 1, the average of a is 710, and the value of b is −43.
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3. Experiments and Results

Four of the subjects were required to perform elbow flexion and extension in the sagittal plane
with their upper arms relaxed. The rational angle of the forearm is about 90 deg in the sagittal plane
from a posture with the forearm vertical to the ground to the posture of the forearm being parallel
to the horizontal plane. Figure 15 shows that one subject was grasping an inertial sensor and one
electrode was attached to his bicep muscle, and the other subject wore an exoskeleton device. All of
the subjects were asked to acquire the sEMG signals from their bicep muscles, and one subject wore an
exoskeleton device to evaluate the efficacy of the proposed methods. The experiment includes two
levels. In the first level, the posture of the subject’s forearm was predicted through the weighted peaks
method. In this level, elbow flexion and extension were required to be done three times in one trial.
Each subject was required to perform elbow flexion and extension ten times. After one trial was done,
the subject was allowed to rest for one minute. In the second level, subjects were asked to wear the
device on one upper limb where the electrode was attached. The improved weighted peaks were used
to process the sEMG signals. Just like the first level, the experiments were required to be performed
ten times.
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Figure 16. The typical elbow flexion and extension for Subject 1.

One example of the first level of experiments was shown in Figure 16. In this figure, the vertical
axis stands for the angle of the forearm, and it is easy to understand that Subject 1 performed elbow
flexion and extension three times during status A and status B (shown in Figure 1). The blue curve
means the rational angle of the forearm detected by using the inertia sensor. The red curve stands for
the rational angle obtained by using the proposed method. Because the subjects perform the elbow
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flexion and extension from 0 deg to 90 deg, we did the simple processing that limits the minimum
values of predicted results.

Figure 17 shows more typical experimental results from Subject 2, who obtained better prediction
for continuous posture of elbow flexion and extension during the first time. On the other two occasions,
the performance did not obtain good prediction due to the unstable sEMG signals. It is also indicated
that it is difficult to predict continuous posture for upper limbs with weak sEMG signals.
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Figure 18 shows the average errors between elbow flexion and extension detected via the inertia
sensor and predicted angles of four subjects for ten experiments. Subject 1 shows the best prediction
results among them, of less than 8 deg. Other subjects also represented acceptable results of continuous
recognition of elbow flexion and extension.
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From Figures 16 and 17, the trajectories of predicted angles of the forearm are not smooth,
but the trajectories of detected angles of the forearm are smooth; caused by the ability of motion
trend identification of the proposed weighted peaks. Thus, in the following experiments, adapted
weighted peaks were used to process the sEMG signals, which are shown in Figure 19. In this figure,
the trajectories of prediction and detection for elbow flexion and extension in the sagittal plane are
almost the same. The predicted trajectory is more accurate than that in the first level experiment, which
indicated that the improved weighted peaks method is more effective in reducing the instability of
the sEMG signals. Though the trajectory is more accurate than that obtained by the weighted peaks
method, there is still some instability where the variation of data is low because the certain value B
was not set low enough. However, if the certain value B was set too low, the variation of sEMG
peaks would be reduced, and the posture of the subjects’ forearms could not be predicted accurately.
Figure 20 shows the S2’s elbow flexion and extension, which are obtained through prediction and
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detection in the second level experiment. This result also indicated that the predicted trajectory is
almost the same as the detected trajectory.
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Figure 20. The typical elbow flexion and extension for S2.

Figure 21 shows the average errors between detection and prediction motion of four subjects
using the adapted weighted peaks method to process the sEMG signals. In this figure, the errors are
lower than those in the experiments using the weighted peaks method. Different from the results
in the first level experiments, the S3 obtained the smallest errors. Another difference between the
second level results and the first level results is the smoothness of the angle trajectory and processed
sEMG signals, which was induced by the different iteration times of both levels, with the second level
requiring more iterations. Thus, the results of angle trajectory and sEMG signal trend are less smooth
than those in the first level.
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4. Discussion

With the increasing demands of rehabilitation for patients who have lost motor function,
preliminary research for bilateral rehabilitation based sEMG signals was conducted in this paper,
where human elbow flexion and extension were recognized continuously with only sEMG signals
from biceps used during the experiments conducted. Wavelet transform packet is used to filter the raw
sEMG signals. To obtain the variation trends of sEMG signals which are relative to human motion,
a new method of processing of weighted peaks of sEMG signals is proposed as well as adapted
weighted peaks. Moreover, the linear fitting method was used to map the features calculated by the
proposed methods to the motion of elbow flexion and extension, so that the continuous motion of the
forearm in the sagittal plane can be obtained within an acceptable range. According to the contrastive
experiments, the proposed methods obtained the trend of sEMG signals with a higher recognition rate
for both subjects.

5. Conclusions

SEMG signals have the potential to be used to estimate the dynamics of human limbs, which is of
benefit to rehabilitation, especially to bilateral rehabilitation, where hemiplegic patients can train their
affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional
methods to process the sEMG focused on motion discrete pattern recognition, which is not satisfactory
for use in bilateral rehabilitation. To overcome this problem, in this paper, the mapping between
sEMG signals and human motion in elbow flexion and extension on the sagittal plane was proposed.
Participants were required to perform elbow flexion and extension on the sagittal plane smoothly,
with only an inertia sensor in their hands, without considering forearm dynamics, where sEMG signals
were weak compared to those with heavy loads or high acceleration. The contrastive experimental
results show that continuous motion can also be obtained within an acceptable precision range. In the
future, these results will be improved and used to develop the exoskeleton device in order to aid
bilateral rehabilitation for upper limbs and lower limbs.
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