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Abstract: This paper investigates the performance of integrated wireless sensor and multibeam
satellite networks (IWSMSNs) under terrestrial interference. The IWSMSNs constitute sensor nodes
(SNs), satellite sinks (SSs), multibeam satellite and remote monitoring hosts (RMHs). The multibeam
satellite covers multiple beams and multiple SSs in each beam. The SSs can be directly used as
SNs to transmit sensing data to RMHs via the satellite, and they can also be used to collect the
sensing data from other SNs to transmit to the RMHs. We propose the hybrid one-dimensional
(1D) and 2D beam models including the equivalent intra-beam interference factor β from terrestrial
communication networks (TCNs) and the equivalent inter-beam interference factor α from adjacent
beams. The terrestrial interference is possibly due to the signals from the TCNs or the signals of
sinks being transmitted to other satellite networks. The closed-form approximations of capacity
per beam are derived for the return link of IWSMSNs under terrestrial interference by using the
Haar approximations where the IWSMSNs experience the Rician fading channel. The optimal joint
decoding capacity can be considered as the upper bound where all of the SSs’ signals can be jointly
decoded by a super-receiver on board the multibeam satellite or a gateway station that knows all of
the code books. While the linear minimum mean square error (MMSE) capacity is where all of the
signals of SSs are decoded singularly by a multibeam satellite or a gateway station. The simulations
show that the optimal capacities are obviously higher than the MMSE capacities under the same
conditions, while the capacities are lowered by Rician fading and converge as the Rician factor
increases. α and β jointly affect the performance of hybrid 1D and 2D beam models, and the number
of SSs also contributes different effects on the optimal capacity and MMSE capacity of the IWSMSNs.

Keywords: integrated wireless sensor and multibeam satellite networks; terrestrial interference;
optimal capacity; minimum mean square error; Haar approximation; Rician fading

1. Introduction

Wireless sensor networks (WSNs) have been highly developed, which have lowered costs along
with the rapid development of wireless communications and electronics technologies, and are widely
used in various areas [1]. The researchers focused on different issues appropriate for particular
WSN applications. WSNs have been applied to many fields and even cannot be replaced, in the
areas of target tracking [2], disaster warning [3], wildlife monitoring [4], military applications [5,6],
health monitoring [7], monitoring and navigation [8–10], etc. Obviously, the communications are
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very important to WSNs, as the sensing information must be transmitted to the remote monitoring
hosts (RMHs).

Multiple input and multiple output (MIMO) has been regard as the important technology
application for the future high data rate wireless communication networks [11,12]. Therefore, [13–18]
investigated the MIMO transmission for the WSNs. The work in [13] studied the cooperative MIMO
(C-MIMO) technology and adopted the low density parity check (LDPC) code as the error-correcting
code, while [14,15] analyzed the virtual MIMO (V-MIMO) for WSNs. The former configured the
minimum energy consuming route and satisfied the end-to-end data rate and bit error rate (BER)
requirements, and the latter analyzed the impact of the modulation techniques for the cooperative
V-MIMO of WSNs. The work in [16] proposed an adaptive multi-node MIMO transmission to improve
the transmission reliability and capacity of mobile sink nodes for the WSNs. The work in [17]
presented an efficient and adaptive mutual authentication framework for the heterogeneous WSNs.
Meanwhile, [18] introduced the nonlinear MIMO networks with the characteristics of low cost and
low complexity for the WSNs.

However, the research in [13–18] has mainly focused on the terrestrial network applications,
such as the lack of terrestrial networks coverage or where terrestrial networks were challenged by
the operating environment, e.g., forest, wilderness and military environments. Since the multibeam
satellite communication networks have the advantages of global coverage, unrestricted geography, low
cost, quick response [19], and so on, satellite-based sensor networks have been investigated for various
application scenarios [20–22]. The satellite networks can be considered as an important auxiliary to
WSNs and may be used as the transmission link of the integrated wireless sensor and multibeam
satellite networks (IWSMSNs). Multibeam satellite networks share some of the same characteristics,
such as low cost, low complexity and unrestricted geography, which are very suitable for WSNs.

Like terrestrial WSNs, the satellite-based WSNs can also be applied to many fields, such as target
detection and tracking, vehicular navigation and environmental monitoring [23–25]. The work in [23]
proposed a hybrid architecture for which the first category performed detection and tracking functions
and the second category transmitted sensing data through the satellite communication networks.
The work in [24] proposed a data fusion technique based on radial basis function neural networks,
which integrated a global positioning network with terrestrial sensor networks. The work in [25]
presented a sink selection algorithm for the satellite-based environmental monitoring networks against
the fading, noise and component failure.

In particular, [26] investigated the architectures and scenarios for satellite-based WSNs
and the potential role of satellite/space networks might play in certain WSN applications to
provide integrated configurations. Then, [27] addressed four integrated sensor-satellite network
architectures and analyzed the performance of packet loss rate, average end-to-end packet delay
and overall energy consumption. The work in [28] evaluated the remote sensor and satellite
network capacity and attempted to optimize the integrated wireless sensor and satellite network
schedules. Furthermore, [29,30] investigated the applications of near-space and high altitude platform
(HAP)/satellite for the WSNs. The work in [29,30] proposed a novel integrated HAP/satellite and
designed a link-state advertisement to estimate the link state information; ultimately, an innovative
adaptive algorithm was addressed to obtain the energy-efficient transmission; whilst introducing
several near-space vehicle-based radar configurations, which seems to offer a lower cost, such as
near-space passive bistatic radar and high-resolution wide-swath synthetic aperture radar.

However, the transmission research of integrated wireless sensor and satellite networks [23–29]
did not consider the interference from the other terrestrial networks. As has been stated, the beam
radius of the multibeam satellite covers hundreds of kilometers, tens of times larger than the cell
radius of terrestrial wireless communication networks. Some sensor nodes may be outside of the
terrestrial communication networks (TCNs) and can transmit through the multibeam satellite, while
some other TCNs inside the satellite beam will bring interference to the satellite. Thus, there is potential
interference from TCNs in the return link of the IWSMSNs.
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The work in [31] investigated the spectrum and power efficiency of an extremely high-frequency
(EHF) satellite system, being integrated with terrestrial systems, and showed that the terrestrial
systems caused interference for the satellite communication system. The work in [32] analyzed the
Shannon-theoretic approximation to the Gaussian cellular channel. Using the framework of Wyner’s
Gaussian cellular channel, [33] studied the performance of the return link for the multibeam satellite
systems under Rician fading, but did not consider the terrestrial interference. The work in [34–36]
analyzed the Ka band of cognitive satellite communications with incumbent terrestrial networks, which
mainly considered the interference from satellite terminals to the terrestrial networks in the return
link of the satellite, as the Ka band is predominantly a kine of sight (LOS) channel. Yet, [37–41] have
performed research mainly concerning the forward link of the hybrid satellite terrestrial communication
systems. Hence, this paper first investigates the performance of the integrated wireless sensor and
multibeam satellite networks experiencing the Rician fading channel under the terrestrial interference.

The main contributions of this paper are summarized as follows.

• The performance of integrated wireless sensor and multibeam satellite networks experiencing
the Rician fading under the terrestrial interference is firstly analyzed. The hybrid beam models
are constructed by introducing the inter-beam interference factor α and intra-beam interference
factor β. The relationships between the substitution α and the beam isolation parameter ρ,
the substitution β and the terrestrial interference elevation angle ϕ are also analyzed.

• The optimal joint decoding capacity and linear minimum mean square error capacity
approximations are derived by using the Haar approximation for the return link of IWSMSNs.
The simulations show that the interference factor α and β contribute different effects to the capacity
of different beam models, and the number of sinks also affects the performance of the optimal
capacity and MMSE capacity differently. The capacity is decreased obviously by the Rician fading
and is increased to the limit as the Rician factor increases to infinity, which will be turned to
the Gauss channel. Meanwhile, the optimal capacity can be considered as the upper bound of
the IWSMSNs.

The rest of the paper is organized as follows. Section 2 describes the IWSMSNs’ architecture and
signal model, the hybrid beam models are also constructed; Section 3 uses the Haar approximation
to derive the optimal capacity and MMSE capacity; Section 4 shows the summary of the simulation
numerical results and especially analyzes the effects of α, β and K on the performance of the IWSMSNs;
finally, conclusions are presented in Section 5.

Notations: Bold lowercase and uppercase letters represent the vectors and matrices. ( · )† and
( · )H respectively denote the Hermitian transpose and the transpose of vectors or matrices. ⊗ is the
Kronecker product operator, and E [·] is the expectation operator. Tr( · ) and det( · ) represent the
trace and determinant of a matrix. Ru×v and Cu×v stand for spaces of u× v real and complex matrices.
The operators | · | and ‖ · ‖ respectively denote the absolute value and two-norm of the Frobenius
norm. 1u = (1, ..., 1) is the 1× u all one vector, and Iu is the u× u unit diagonal matrix. While ◦ is
the degree.

2. Network Architecture and Signal Model

2.1. Network Architecture

Figure 1 shows the architecture of the integrated wireless sensor and multibeam satellite networks
under the terrestrial interference. IWSMSNs are composed of sensor nodes (sensing), multibeam
satellite (communication transmission) and remote monitoring hosts (data processing). The multibeam
satellite covers multiple beams and multiple sensor fields connecting multiple satellite sinks per beam,
while multiple TCNs may cause interference to the satellite. Obviously, multibeam satellite networks
connect SNs to RMHs. The following provides more detail.
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Figure 1. Integrated wireless sensor and multibeam satellite networks’ architecture.

Sensor nodes: SNs sense different dynamic physical quantities for different scenarios, which
can translate the quantities into electrical signals through the appropriate devices [20]. The electrical
signals can be digitalized and encapsulated into data packets and transmitted to RMHs through
multibeam satellite networks.

Multibeam satellite: The multibeam satellite can be considered as the important component of
the IWSMSNs to connect SNs and RMHs. In Figure 1, we see that the sinks transmit the sensing data,
including audio, video, images and other data streams, from the SNs to the gateway station, which
exchanges the information with the RMHs through the return link of the satellite. The return link of
multibeam a geosynchronous earth orbit (GEO) satellite is assumed to be operated at the S/L band
where the channels experience the Rician fading [33,42]. The multibeam technology can improve the
frequency and power efficiency, which reduces the required antenna aperture and power amplifier of
sinks to lower the communication cost [42,43].

Remote monitoring hosts: RMHs mainly receive and process data packets from the SNs to obtain
the required information.

Terrestrial interference: The terrestrial interferences are mostly from the sidelobe interferences of
the adjacent channel or co-channel from the terrestrial communication networks.

2.2. Signal Model

Figure 2 shows the 2D beam arrangement [33]. We define it as a hybrid 2D beam arrangement,
which can be regarded as the arrangement of the multiple beams of a satellite in Figure 1. L and M
denote the rows and columns of the 2D beam, respectively. The IWSMSN mainly considers a multibeam
satellite equipped with N antennas (feeds) covering N beams, K sinks (K sensor fields) per beam and J
TCNs contributing to the terrestrial interference. K sinks per beam and the total number of sinks result
in NK transmitting signals to the satellite, while N antennas or feeds and a super-receiver on board
the satellite are assumed to receive all of the signals that can be considered as single input multiple
output (SIMO) networks. The RMHs receive the sensing data via the multibeam satellite. Due to the
characteristics of the satellite channel, the satellite sinks are equipped with a single antenna. The sinks
transmit signals (sensing data) to the satellite, while signals transmitted by TCNs are considered as the
terrestrial interference to the satellite.
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Figure 2. The hybrid 2D beam arrangement.

The return link of the satellite is regarded as cognitive and cooperative, which is due to the limits
of satellite payloads. This paper assumes the perfect symmetry for the IWSMSN; meanwhile, the
IWSMSN is also considered under the Rician fading and channel interference. K sinks per beam
transmit signals to the satellite, and J terrestrial interferences also exist per beam. Thus, the antennas
(feeds) on board the satellite receiving signals from sinks can be modeled as:

y = HRs + n (1)

where y is the received signal vector on board the satellite and y ∈ CN×1. H is the channel matrix
and H ∈ CN×NK, which includes the hybrid interference matrix T and will be discussed later. R is
the fading matrix and R ∈ CNK×NK. s is the transmitted signal vector from K sinks in each beam,
s ∈ CNK×1, and E[ss∗] = PINK. n is the vector of complex circularly symmetric (c.c.s.) Gaussian noise
with zero mean, covariance E

[
nn†] = σ2IN and n ∈ CN×1.

The Rician model is usually adopted for the satellite communication networks as they are mainly
under the direct LOS propagation channel. The Rician fading coefficient κ is independent and
identically distributed (i.i.d.) c.c.s. Gaussian with independent real and imaginary parts, which
is distributed as N (µR/

√
2, δ2

R) and can be defined as [44]:

κ =
µ2

R
2δ2

R
(2)

Moreover, the Rician fading can be converted to the nonfading channel as κ → ∞, while the
Rician fading can also be converted to the Rayleigh fading as κ = 0. The signals transmitted from sinks
are assumed to be subjected to the Rician fading, and the receiver on board the satellite or on board
a gateway station knows the fading coefficient of each sink from the return link of the IWSMSNs.

The gain coefficient from K sinks in each beam to the satellite are assumed approximately equal,
because the distances between sinks are about 1% compared with the distance from the sinks to
the satellite, as the beam radius may range from 100–300 km, except in the extreme case of sinks
distributed on the beam edge. This assumption could be seen in [33]. Then, the channel gain matrix
can be given by:

H = T⊗ 1K (3)

where T is defined as the interference matrix for the hybrid 1D and 2D beam models. Thus, the
receiving signals under the fading channel can be rewritten as:
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y = (T⊗ 1K)Rs + n (4)

2.3. Hybrid Interference Matrix

The interference matrix T is constructed from the following analysis. The antennas on board
the satellite receive signals, including the desired signals from SSs intra-beam to be modeled as
an equivalent factor 1, interference signals from TCNs intra-beam to be modeled as an equivalent
interference factor β and interference signals from SSs inter-beam and TCNs inter-beam respectively to
be modeled as equivalent interference factors α and αβ, respectively. α can be used as a substitute for
α = 10−4ρ, where ρ is defined as a parameter to vary beam isolation [32]. The j-th interference signal
from the TCNs is assumed to be equivalent to β j, and the interference from the TCNs per beam is
equivalent to β = β1 + ... + β J ( 1 ≤ j ≤ J). From the Annex 4 of International Telecommunications
Union-Radio (ITU-R) F.1336-4 [45], the mathematical model of omnidirectional generic average
radiation patterns can be approximated and used for terrestrial antenna radiation patterns and are
expressed as β j = G(ϕ). The following average side-lobe patterns should be used for elevation angles
that range from −90◦ to 90◦, given by [45]

G(ϕ) =


G0 − 12

(
ϕ
ϕ3

)2
, 0 ≤ |ϕ| < ϕ4

G0 − 12 + 10 log (t + 1) + F (ϕ) , ϕ4 ≤ |ϕ| < ϕ3

G0 − 12 + 10 log
[(
|ϕ|
ϕ3

)−1.5
+ k
]
+ F (ϕ) , ϕ3 ≤ |ϕ| ≤ 90◦

(5)

with:

ϕ3 = 107.6× 10−0.1G0

ϕ4 = ϕ3

√
1− 1

1.2 log (t + 1)

G0 = 2 + 15 log (D/λ)

F(ϕ) = 10 log
(

0.9sin2
(

3πϕ
4ϕ3

)
+ 0.1

)
where:

G(ϕ): gain relative to an isotropic antenna (dBi).

G0: the maximum gain in the azimuth plane (dBi).

ϕ: elevation angle relative to the angle of the maximum gain (degrees) (−90◦ ≤ ϕ ≤ 90◦).

ϕ3: the 3-dB beamwidth in the elevation plane (degrees).

t: in cases involving typical antennas operating in the 1–3 GHz range, the parameter t should be 0.7;
in cases involving antennas with improved side-lobe performance in the 1–3 GHz range and for all
antennas operating in the 3–70 GHz range, the parameter t should be zero.

Figure 3 shows the relationships between the substitution α and beam isolation parameter ρ, the
substitution β and elevation angle ϕ. In Figure 3b, we can see that the terrestrial interference for the
satellite depends on the terrestrial antenna elevation angle (λ = 0.1 m, D = 0.3 m, where λ is the
wavelength and D is the equivalent antenna diameter); there may be tens of terrestrial communication
networks per satellite beam. Whilst α and β may not reflect the actual characteristics of the beam
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patterns and antenna patterns, they can be utilized to analyze the effects of α and β on the performance
of IWSMSNs.
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Figure 3. The relationships between the substitution and the practical parameter. (a) α versus beam
isolation parameter ρ; (b) Normalized radiation pattern of β versus elevation angle ϕ.

The arrangement of a hybrid 1D beam is 1× N, where L = 1 and M = N, as shown in Figure 2.
The 1D beam interference matrix can be expressed as T1D [32], while only considering satellite sink
interference from the adjacent beams:

T1D =


1 α

α 1
. . .

. . . . . . α

α 1

 (6)

The 1D terrestrial interference matrix from the TCNs intra-beam and inter-beam can be expressed
as B1D, while again, only considering the TCNs interference from the adjacent beams:

B1D = β


1 α

α 1
. . .

. . . . . . α

α 1

 (7)

Thus, the received signals intra-beam can be equivalent to (1 + β), and the normalized desired
signal can be equivalent to 1

/
(1 + β). The interference from adjacent beams is equivalent to (α + αβ).

The hybrid 1D interference matrix T1D is an N × N Toeplitz block Toeplitz (TBT) matrix as:

T1D=
1

1+β


1 α(1+β)

α(1+β) 1
. . .

. . . . . . α(1+β)

α(1+β) 1

 (8)
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If the terrestrial interference and beam interference from all beams are considered, then the
modified hybrid 1D interference matrix ˆ̄T1D is also constructed as an N × N TBT matrix:

ˆ̄T1D =


1

(1+β)
α · · · αN−1

α 1
(1+β)

· · · αN−2

...
...

. . .
...

αN−1 αN−2 · · · 1
(1+β)

 (9)

The arrangement of a hybrid 2D beam is L×M, and the total beam number is N = L×M as
shown in Figure 2, where L and M are respectively the rows and columns of the hybrid 2D beam. While
the hybrid 2D interference matrix just considers the TCNs interference and beam interference from the
adjacent beams, thus the hybrid 2D interference matrix T2D can be constructed as a (L×M)× (L×M)

TBT matrix, constituted by L× L submatrices, and the submatrix is M×M, given by:

T2D =


T1D S

SH T1D
. . .

. . . . . . S
SH T1D

 (10)

where T1D is defined in Equation (8) and considers the interference from the adjacent beam of the
same row in the 2D beam model. S̄ considers the interference from the adjacent beam of the same
column in the 2D beam model and can be constructed as:

S̄=
1

(1 + β)


α + αβ

α + αβ α + αβ
. . . . . .

α + αβ α + αβ

 (11)

Then, we obtain the eigenvalues of the hybrid matrix, which will be used in the capacity
approximation. The eigenvalues of T1D for the hybrid 1D model are derived as [46]:

λi(T1D) =
1

1 + β
(1+2α(1 + β) cos(

iπ
N + 1

)). i= 1,..., N. (12)

The eigenvalues of ˆ̄T1D for the modified hybrid 1D model are derived as [46]:

λi(
ˆ̄T1D) = (

1
1 + β

− 1) +
1− α2

1 + 2α cos( iπ+ε
N+1 ) + α2

(13)

The eigenvalues of T2D for the hybrid 2D model are derived as [47]:

λ(l−1)M+m(T2D) =
1

1+β (1+2α(1 + β)(cos(2πl
/

L)
+ cos(2πm/M) + cos(2πl

/
L + 2πm/M))).

l= 1,..., L, m= 1,..., M.
(14)

3. Capacity Analysis of the IWSMSNs

The multibeam satellite has previously been stated as operated at the S/L band, and the Rician
fading channel is used as the LOS return link of IWSMSNs. The optimal joint decoding capacity and
linear MMSE capacity are analyzed under the Rician fading channel. The Haar measure approximations
are utilized to derive the closed form approximations of the optimal capacity and MMSE capacity; [48]
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has proven that the random Haar matrices could get the asymptotic performance as most deterministic
precoding matrices.

3.1. The Optimal Joint Decoding Capacity

rn,k is denoted as the Rician fading coefficient for the k-th sink in the n-th beam, and
R = diag(r1,1, ..., r1,K, ..., rN,1, ..., rN,K). The Rician fading coefficient rn,k is assumed to be complex,
independent, strictly stationary and ergodic and normalized as E[rn,kr∗n,k] = 1. Because the distance
between the sink and receiving antennas (feeds) on board the satellite is far longer than the distance
between the receiving antennas (feeds) on board the satellite, thus the signal of the sink to the
satellite would experience the same fading at every receiving antenna on board the satellite. It is
quite clear that the same fading to the receiving antenna is different from the TCNs where each sink
experiences independent fading at every receiving antenna of the base stations. Sinks from all beams
can be optimally jointly decoded by a super-receiver on-board the gateway station or on-board the
satellite to be as the optimal joint decoding. The optimal capacity per beam can be expressed as the
log-determinant formula [49]:

lim
N→∞

Copt(HR; α, β, γ)

= lim
N→∞

Copt((T⊗ 1K)R; α, β, γ)

= 1
NE

[
logdet(IN + γ(T⊗ 1K)RR†(T⊗ 1K)

†
]

= 1
NE

[
logdet(IN + γTΘT†]

= 1
NE

[
logdet(IN + γT†TΘ

]
(15)

where Θ = diag{θ1, ..., θN} ∈ CN×N , and θn = ∑K
k=1 (rn,kr∗n,k). γ = P/σ2 is the signal-to-noise ratio

(SNR) for the receiver, while the interference and Rician fading will be analyzed in the matrices H and R.
From Equations (6)–(8), the interference matrix T can be considered as a fixed matrix for N; α and β are
constant as fixed. The fading matrix R is distributed as i.i.d. c.c.s. Gaussian with independent real and
imaginary parts. T and R generally are not unitary matrices. The work in [48] has shown that the Haar
distributed approximations achieved the asymptotic performance with the theoretical performance.
Thus, we adopt the Haar distributed approximations to solve the problem, where the Haar matrix is
employed to replace the fixed matrix T. The capacity approximations will converge as N increases.
T†T can be decomposed as T†T = QΣQ†, where Q is a unitary matrix and Σ is a diagonal
matrix. A Haar matrix W is used to replace the fixed matrix and T†T≈WΣW† [50] and
T†TΘ≈WΣW†Θ = ΣWΘW†. The approximation will be more precisely asymptotic as the beam
number N increases. Thus, the Haar approximation of capacity is given by:

lim
N→∞

COPT ((T⊗ 1K)R; α, β, γ)

≈ 1
NE

[
logdet(IN + γΣWΘW†)

] (16)

From [51], the moment-generating function (MGF) FMGF(u) of f (X) is given by E[exp(u · f (X))].
In order to get the approximations of COPT, therefore, the MGF of logdet(IN + γΣWΘW†) can be
rewritten as:

F(u) ≈ E
[
exp

(
u · logdet(IN + γΣWΘW†)

)]
= E

[
det(IN + γΣWΘW†)u]

≈
∫

W det(IN + γΣWΘW†)udW
(17)

dW is defined as the Haar measure from [52]. In [53], the integral can be written as a hypergeometric
function and expressed in terms of a scalar argument,
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F(u) =
∫

W det(IN + γΣWΘW†)udW
=1F0(−u;−γΣ, Θ)

= ∏N
n=1 (n−1)!

∏N
n=1 (−u−N+1)N−n

· det(1F0(−u−N+1;−γζiθj))
V(−γΣ)V(Θ)

= ∏N
n=1 (n−1)!

∏N
n=1 (−u−N+1)N−n

·
det
(
(1+γθiζ j)

u+N−1
)

i,j

V(−γΣ)V(Θ)

(18)

where V(X) denotes the Vandermonde determinant and λs are the eigenvalues of X.
V(X) = ∏s>t (λs − λt), and V(bX) = b∑N

n=1 nV(X). ζi and θj are the diagonal element of diagonal
matrices Σ and Θ, respectively. Meanwhile, 1F0(a, x) = (1− x)−a [54]. ()i,j expresses the element of
the i-th row and j-th column for a matrix, and we denote Y(u) = {(1 + γθiζ j)

u+N−1}i,j. From [51],

the mathematical expectation [exp(u · f (X))] can be obtained by E[X · exp(u · f (X))] = dFMGF(u)
du ,

and E[X] = dFMGF(u)
du

∣∣∣
u=0

; then:

lim
N→∞

COPT((T⊗ 1K)R; α, β, γ) =
1
N

dF(u)
du

∣∣∣∣
u=0

(19)

Hence, we must derive dF(u)
du :

dF(u)
du =

d
(

∏N
n=1 (n−1)!

V(−γΣ)V(Θ)
· det Y(u)

∏N
n=1 (−u−N+1)N−n

)
du

= ∏N
n=1 (n−1)!

V(−γΣ)V(Θ)
·

d
(

det Y(u)
∏N

n=1 (−u−N+1)N−n

)
du

(20)

Then, we denote G(u) = ∏N
n=1 (−u− N + 1)N−n, and use the quotient rule:

d
(

det Y(u)
∏N

n=1 (−u−N+1)N−n

)
du

=
d
(

det Y(u)
G(u)

)
du

=
d(det Y(u))

du ·G(u)−det Y(u)· d(G(u))
du

G2(u)

(21)

We must obtain d(det Y(u))
du and d(G(u))

du to solve (21). From [55], the differential of determinant
d(det F(X)) = det F(X) · tr

(
F(X)−1dF(X)

)
; thus, we get:

d(det Y(u))
du = det Y(u) · tr

(
Y(u)−1 · dY(u)

du

)
= det Y(u) · tr

(((
(1 + γθiζ j)

u+N−1
)

i,j

)−1
·

d
(
(1+γθiζ j)

u+N−1
)

i,j
du

)

= det Y(u) · tr
(((

(1 + γθiζ j)
u+N−1

)
i,j

)−1
·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
= det Y(u) · tr

(
Z(u) ·

(
log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1
)

i,j

)
(22)

where Z(u) is defined as Z(u) = (((1 + γθiζ j)
u+N−1)i,j)

−1
. As we want to solve d(G(u))

du , we rearrange
the factorial order and get:

∏N
n=1 (−u− N + 1)N−n

= (−u− N + 1)N−1(−u− N + 1)N−2 . . . (−u− N + 1)1(−u− N + 1)
= (−u− N + 1)N−1(−u− N + 2)N−2 . . . (−u− 2)1(−u− 1)
= ∏N−1

n=1 (−u− n)n

(23)
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Since log(∏N−1
n=1 (−u− n)n) = ∑N−1

n=1 n log(−u− n), then:

d log(G(u))
du = d(G(u))

du
1

G(u)

=
d
(

N−1
∑

n=1
n log(−u−n)

)
du

=
N−1
∑

n=1
n d log(−u−n)

du

=
N−1
∑

n=1

n
u+n

(24)

Then, we can get that:

d (G(u))
du

= G(u)
N−1

∑
n=1

n
u + n

(25)

We substitute the Equations (22) and (25) into Equation (21), then:

d det Y(u)
du ·G(u)−det Y(u)· dG(u)

du
G2(u)

=
det Y(u)·tr

(((
(1+γθiζ j)

u+N−1
)

i,j

)−1
·
(

log(1+γθiζ j)·(1+γθiζ j)
u+N−1

)
i,j

)
·G(u)−det Y(u)·G(u)

N−1
∑

n=1

n
u+n

G2(u)

= det Y(u)
G(u)

(
tr
(

Z(u) ·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
−

N−1
∑

n=1

n
u+n

) (26)

After substituting Equations (20) and (26) into Equation (19), we derive the optimal capacity of
the return link for the IWSMSNs as:

lim
N→∞

COPT ((T⊗ 1K)R; α, β, γ)

≈ 1
N

∏N
n=1 (k−1)!

V(−γΣ)V(Θ)
det Y(u)

G(u) ·
(

tr
(

Z(u) ·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
−

N−1
∑

n=1

n
u+n

)∣∣∣∣
u=0

(27)

To compute the optimal capacity approximation (27), θi can be determined as θi ≈ λ2
i (T), and

λi(T) is approximately expressed as Equations (12) and (13) respectively for the hybrid 1D beam model
and modified hybrid 1D beam model. Since λ(l−1)M+m(T2D) of the hybrid 2D beam model are affected
by L and M and computed repeatedly in (27), we use the integral of the inverse function [51] to get θi
for the hybrid 2D beam model,

FT2D
(x) =

1
π

∫ 1

0
arccos(

1
2 cos 0.5πt

(
x− 1

1+β

2α
− cos πt))dt (28)

which can be computed as F−1
T2

2D
(x). The distribution of x was determined by λ(l−1)M+m(T2D) and by

using the standard probability theory [51].
For the Rician fading channel, fζ(x) is a noncentral chi-squared density [56],

fζ(x) = (κ + 1)
(
(κ + 1)x

Kκ

) K−1
2

e−((κ+1)x+Kκ) IK−1

(
2
√

Kκ(κ + 1)x
)

(29)

where In(x) is the first kind of modified Bessel function and the order is n. Thus, ζ j can be computed
as ζ j ≈ Fζ2(x).



Sensors 2016, 16, 1711 12 of 22

3.2. The Linear MMSE Capacity

Another important performance for the capacity of IWSMSNs is the linear MMSE. The work
in [57] proposed a framework to describe the linear MMSE performance of the return link for the
multibeam satellite communication systems, which analyzed average MMSE spectral efficiency per
user of the multibeam satellite systems and did not give a closed approximation for the MMSE capacity.
The work in [58] investigated the impact of spatially-correlated rain attenuation on the performance
of a multibeam satellite return link above the K-band. The work in [58] also did not give the closed
approximations of MMSE capacity for the multibeam satellite systems under Rician fading. Thus, the
arithmetic mean over the K sinks per beam of the MMSE is given by [49]:

MMSEavg((T⊗ 1K)R; α, β, γ)

= 1
NK minE

[
‖x−My‖2

]
= P

NK tr
{(

IN + KγTΘT†)−1
}

= P
(

1− 1
NK γ d

dγ

(
logdet(IN + KγTΘT†)

)) (30)

where M is the linear MMSE filter and My is the linear MMSE filter output. The linear MMSE capacity
has been studied in [49], and we also adopt the Haar approximation to obtain the MMSE capacity,
given by:

lim
N→∞

CMMSE((T⊗ 1K)R; α, β, γ)

= K log( P
MMSEavg((T⊗1K)R;α,β,γ) )

≈ −K log
(

1− 1
NK γ d

dγ

(
logdet(IN + KγTΘT†)

)) (31)

From Equation (19), we have logdet(IN + KγTΘT†) ≈ dF(u)
du

∣∣∣
u=0

; thus:

lim
N→∞

CMMSE((T⊗ 1K)R; α, β, γ)

≈ −K log
(

1− 1
NK γ d

dγ

(
dF(u)

du

))∣∣∣
u=0

(32)

In order to solve CMMSE, we must derive d
dγ

(
dF(u)

du

)
:

d
dγ

(
dF(u)

du

)
= d

dγ

(
1
N

∏N
n=1 (k−1)!

V(−γΣ)V(Θ)
det Y(u)

G(u) ·
(

tr
(
Z(u) ·(log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1)i,j

)
−

N−1
∑

n=1

n
u+n

))
= 1

N
∏N

n=1 (k−1)!
V(Σ)V(Θ)G(u)

d
dγ

(
(−γ)−

N(N−1)
2 ·det Y(u)·

(
tr
(
Z(u) ·(log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1)i,j

)
−

N−1
∑

n=1

n
u+n

))
= 1

N
(−γ)−

1
2 N(N−1) ∏N

n=1 (k−1)!
V(Σ)V(Θ)G(u)

(
− 1

2γ N(N− 1)·det Y(u)·tr
(
Z(u) ·(log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1)i,j

)
+ d

dγ (det Y(u)) · tr
(
Z(u) ·(log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1)i,j

)
+det Y(u) · d

dγ

(
tr
(
Z(u) ·(log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1)i,j

))
+ 1

2γ N(N− 1) · det Y(u) ·
N−1
∑

n=1

n
u+n −

d
dγ (det Y(u)) ·

N−1
∑

n=1

n
u+n

)
(33)

Being similar to the process of solving Equation (22), we get:

d
dγ (det Y(u))

= det Y(u) · tr
(

Y(u)−1 · dY(u)
dγ

)
= det Y(u) · tr

(((
(1 + γθiζ j)

u+N−1
)

i,j

)−1
·
(
(u+N−1)θiζ j

1+γθiζ j
· (1 + γθiζ j)

u+N−1
)

i,j

)
= det Y(u) · tr

(
Z(u) ·

(
(u+N−1)θiζ j

1+γθiζ j
· (1 + γθiζ j)

u+N−1
)

i,j

) (34)
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From [55], the differential of trace d(tr(X)) = tr(d(X)); thus:

d
dγ tr

(
Z(u) ·

(
log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1
)

i,j

)
= tr

(
d

dγ

((
((1 + γθiζ j)

u+N−1)i,j

)−1
·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

))
= tr

(
Z(u) ·

(
log(1 + γθiζ j) ·

(u+N−1)θiζ j
1+γθiζ j

· (1 + γθiζ j)
u+N−1

)
i,j

+Z(u) ·
(

θiζ j
1+γθiζ j

· (1 + γθiζ j)
u+N−1

)
i,j

− d
dγ

(
((1 + γθiζ j)

u+N−1)i,j

)−1
·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
(35)

Furthermore, from [55], the differential of inverse matrix d(X−1) = −X−1(dX)X−1; then, we get:

d(Z(u))
dγ

= −
((

(1 + γθiζ j)
u+N−1

)
i,j

)−1
· d

dγ

(
(1 + γθiζ j)

u+N−1
)

i,j
·
((

(1 + γθiζ j)
u+N−1

)
i,j

)−1

= −Z(u) ·
(

θiζ j
1+γθiζ j

· (1 + γθiζ j)
u+N−1

)
i,j
· Z(u)

(36)

After substituting Equations (32)–(36) into Equation (31), we derive the linear MMSE capacity of
the return link for the IWSMSNs as:

lim
N→∞

CMMSE((T⊗ 1K)R; α, β, γ)

≈ −K log
(

1− γ
N2K

(−γ)−
1
2 N(N−1) ∏N

n=1 (k−1)!
V(Σ)V(Θ)G(u)

·
(
− 1

2γ N(N− 1) · det Y(u) · tr
(

Z(u) ·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
+ det Y(u) · tr

(
Z(u) ·

(
(u+N−1)θiζ j

1+γθiζ j
· (1 + γθiζ j)

u+N−1
)

i,j

)
· tr
(

Z(u) ·
(

log(1 + γθiζ j) · (1 + γθiζ j)
u+N−1

)
i,j

)
+ det Y(u) · tr

(
Z(u) ·

(
log(1 + γθiζ j) ·

(u+N−1)θiζ j
1+γθiζ j

· (1 + γθiζ j)
u+N−1

)
i,j

+ Z(u) ·
(

θiζ j
1+γθiζ j

· (1 + γθiζ j)
u+N−1

)
i,j

+Z(u) ·
(

θiζ j
1+γθiζ j

(1 + γθiζ j)
u+N−1

)
i,j
· Z(u) ·

(
log(1 + γθiζ j) · (1 + γθiζ j)

u+N−1
)

i,j

)
+ 1

2γ N(N− 1) · det Y(u) ·
N−1
∑

n=1

n
u+n

−det Y(u) · tr
(

Z(u) ·
(
(u+N−1)θiζ j

1+γθiζ j
· (1 + γθiζ j)

u+N−1
)

i,j

)
·

N−1
∑

n=1

n
u+n

)∣∣∣∣
u=0

(37)

To compute the MMSE capacity approximation (37), θi can also be determined as θi ≈ λ2
i (T).

λi(T) is approximately expressed as Equations (12) and (13) respectively for the hybrid 1D beam model
and modified hybrid 1D beam model, and θi of the hybrid 2D beam model can be computed as F−1

T2
2D
(x)

in (28). Meanwhile, ζ j can be determined as ζ j ≈ Fζ2(x) in (29).

4. Simulations and Results

This section provides the numerical results to verify the performance of the integrated wireless
sensor and multibeam satellite networks under terrestrial interference. A GEO multibeam satellite
with N antennas or feeds is considered. The satellite covers N beams where N = 1× N beams for
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the 1D beam model and N = L×M beams for the 2D beam model. There are K sinks with a single
antenna as the sensor nodes or connecting the sensor fields, which can sense information in each beam,
and J terrestrial interferences in each beam. K sinks in each beam transmit signals to the satellite,
and N antennas or feeds and a super-receiver on board the satellite are assumed to receive all of the
signals, which can be considered as SIMO networks. The L/S band is assumed for the return link, and
the signals experience Rician fading. Either the satellite decodes the received signals or the gateway
station decodes the signals, and then, the gateway station sends sensing information to the remote
monitoring hosts. This paper mainly investigates the optimal capacity and linear MMSE capacity
for the IWSMSNs under Rician fading. α is defined as the equivalent inter-beam interference from
inter-beam and 0 ≤ α ≤ 1, while β is defined as the equivalent intra-beam interference from TCNs and
0 ≤ β ≤ 1. We mainly investigate the effects of α and β on the capacity. The numerical simulations are
plotted by using MATLAB. In the simulations, the number of hybrid 1D beams is N = 300; the number
of hybrid 2D beams is L = 50 and M = 50; and the Rician fading factor is chosen as κ = 0, κ = 10
and κ = 50.

Figures 4–6 respectively compare the optimal capacity with MMSE capacity for the hybrid 1D
beams, the hybrid 2D beams and modified hybrid 1D beams; in the higher SNR γ = 10, the number of
sinks is K = 1, versus interference factors α and β.

Obviously, the linear MMSE capacities are lower than the optimal capacity with the same Rician
fading factor. The capacities of three models are approximately 2.38 nats/beam when α = 0, β = 0,
K = 1 and κ = 50 in the higher SNR. The performance of this paper is fit to [33] when β = 0.
Figures 4 and 5 show that the interference factor β from the TCNs decreases the capacity of T̄1D

and T̄2D and increases the capacity as α increases to one. That is to say, the capacity decreases first
and then increases with α, while the coordinate values of inflection points (α, β) decrease as α and β

increase. The optimal capacity and linear MMSE capacity respectively increase as the Rician fading
factor increases.
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Figure 4. The optimal capacity and MMSE capacity of the hybrid 1D beams with γ = 10 and N = 100
(κ = 0, κ = 10 and κ = 50) versus α and β.
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Figure 5. The optimal capacity and MMSE capacity of the modified hybrid 1D beams with γ = 10 and
N = 100 (κ = 0, κ = 10 and κ = 50) versus α and β.
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Figure 6. The optimal capacity and MMSE capacity of the hybrid 2D beams with γ = 10, L = 50 and
M = 50 (κ = 0, κ = 10 and κ = 50) versus α and β.

However, the MMSE capacity with Rician fading factor κ = 10 and κ = 50 is larger than the optimal
capacity with κ = 0 when α < 0.2 and almost 0.15 nats/beam less than the optimal capacity with
κ = 0 when α = 0. In the lower region of α, β decreases the capacity clearly; while in the higher region
of α, β decreases the capacity in an unclear manner. The curve trends indicate that the effects of
intra-beam interference factor β of the TCNs are associated with the inter-beam interference factor α

on the IWSMSNs’ performance and is, to some degree, subjected to the higher region of α. Meanwhile,
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the optimal capacity and MMSE capacity respectively differ more in the lower region of α and β and
differ less in the higher region from κ = 0 to κ = 10 and κ = 50. We can see that the optimal capacity
and MMSE capacity are converging as κ increases from 0–50, due to the fact that the Rician fading is
converted to the additive Gaussian noise channel as κ → ∞ to get the nonfading channel.

Figure 6 shows that the capacity of the modified model ˆ̄T1D is lower than T̄1D and T̄2D by
considering all of the inter-beam interference in the same cases. Thus, the capacity of ˆ̄T1D decreases
obviously with α and β. β decreases the capacity of ˆ̄T1D as α increases from 0–1, which indicates
that the IWSMSNs are interference limited. The capacity decreases to zero when β = 0 and almost
decreases to zero in the lower region of β as α = 1. We can see that the linear MMSE capacity differs
by about 0.65 nats/beam from κ = 0 to κ = 10 in the lower region of the α and β and no more
than 0.2 nats/beam from κ = 10 to κ = 50 in the lower region of the α and β. The MMSE capacity gap
of κ decreases from the lower region of α and β to the higher region, and β deceases the capacity as the
same α. Comparing the optimal capacity with the MMSE capacity as κ = 50, we find that the MMSE
capacity is very close to the optimal capacity in the lower region of α and β. The optimal and MMSE
capacity gap increases first, and it is especially clear from α = 0.3 to α = 0.8 and decreases to zero from
α = 0.8 to α = 1.

Figures 7–9 respectively compare the optimal capacity with MMSE capacity for the hybrid 1D
beams, the hybrid 2D beams and modified hybrid 1D beams; in the lower SNR γ = 1, the number of
sink is K = 1, versus interference factors α and β.
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Figure 7. The optimal capacity and MMSE capacity of hybrid 1D beams with γ = 1 and N = 100 (κ = 0,
κ = 10 and κ = 50) versus α and β.
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0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

β

α
 

C
ap

ac
it

y
 (

n
at

s/
b
ea

m
)

Optimal of T2D, κ = 0

Optimal of T2D, κ = 10

Optimal of T2D, κ = 50

MMSE of T2D, κ = 10

MMSE of T2D, κ = 50

MMSE of T2D, κ = 0

Figure 9. The optimal capacity and MMSE capacity of the hybrid 2D beams with γ = 1, L = 50 and
M = 50 (κ = 0, κ = 10 and κ = 50) versus α and β.

The capacity of three models are approximately 0.69 nats/beam when α = 0, β = 0, K = 1 and
κ = 50 in the lower SNR. We compare the capacity of the hybrid 1D beams and hybrid 2D beams
respectively in the cases of higher SNR and lower SNR between Figures 4 and 7, and Figures 5 and 8.
In Figures 7 and 8, α progressively increases the optimal capacity and MMSE capacity, while β = 0
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slightly decreases the capacity with the same α, which is different from the curve trends shown in
Figures 4 and 5. There, we see that the capacity gap is approximately 0.12 nats/beam from κ = 0 to
κ = 50 when α = 1, while the capacity gap is approximately 0.32 nats/beam from κ = 0 to κ = 50 when
α = 1. Meanwhile, β affects the capacity clearly in the lower region of α and in an unclear manner in
the higher region of α. Figure 9 shows the performance of the modified hybrid 1D beam with γ = 1,
where the curves approach zero as α increases to one. In the lower region of α, it is obvious that β

decreases the capacity; while in the higher region of α, β affects the capacity in an unclear manner and
does not approach zero as β increases to one when α = 1. In general, the curves of the modified hybrid
1D beam approximately approach zero as α and β increase.

Figures 10 and 11 respectively show the optimal capacity and MMSE capacity for the hybrid 1D
beam, the hybrid 2D beam and modified hybrid 1D beam, in the case of higher SNR γ = 10; the number
of sinks is K = 1, K = 2, K = 8, and the Rician fading factor κ = 50, versus the interference factors α

and β. The optimal capacity of the three models are approximately 3.04 nats/beam and 4.39 nats/beam
when K = 2 and K = 8 with α = 0, β = 0 and κ = 50 in the higher SNR γ = 10. However, the linear
MMSE capacity of the three models is approximately 1.29 nats/beam and 1.05 nats/beam when K = 2
and K = 8 with α = 0, β = 0 and κ = 50 in the higher SNR γ = 10. Figure 10 indicates that the optimal
capacity increases as the number of sinks increases, which rises about 0.66 nats/beam from K = 1 to
K = 2 and about 1.35 nats/beam from K = 2 to K = 8. However, Figure 11 indicates that the linear
MMSE capacity decreases as the number of sinks increases, which reduces about 0.89 nats/beam from
K = 1 to K = 2 and about 0.24 nats/beam from K = 2 to K = 8 with α = 0, β = 0 and κ = 50 in the
lower SNR γ = 1. The different tendencies of the optimal and MMSE capacities toward K are mainly
determined by the decoding strategies. The Rician fading factor is chosen as κ = 50, since the capacity
in κ = 50 can be approximately seen as the upper bound.
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Figure 10. The optimal capacity of the hybrid 1D model and modified hybrid 1D beams with γ = 10
and N = 100, hybrid 2D model with γ = 10, L = 50 and M = 50 (K = 1, K = 2, K = 8 and κ = 50)
versus α and β.



Sensors 2016, 16, 1711 19 of 22

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

 

β

α
 

C
ap

ac
it

y
 (

n
at

s/
b

ea
m

)

MMSE of T1D, K = 1

MMSE of T2D, K = 1

MMSE of T2D, K = 8

MMSE of T1D, K = 8

MMSE of ˆ̄
T1D, K = 8

MMSE of ˆ̄
T1D, K = 2

MMSE of T1D, K = 2

MMSE of T2D, K = 2

MMSE of ˆ̄
T1D, K = 1

Figure 11. The MMSE capacity of the hybrid 1D model and modified hybrid 1D beams with γ = 10
and N = 100, hybrid 2D model with γ = 10, L = 50 and M = 50 (K = 1, K = 2, K = 8 and κ = 50)
versus α and β.

Overall, from Figures 10–11, we can conclude that the MMSE capacity is lower than the optimal
capacity and exhibits a different tendency from the optimal capacity towards K, which is mainly
determined by the single decoding strategy. From Figures 4–9, we can see that the intra-beam
interference factor β affects in an unclear manner the capacity in the higher region of the inter-beam
interference factor α, which means α determines the capacity in the higher region of α. The capacity
of ˆ̄T1D demonstrates that the IWSMSN is an interference limited network. Meanwhile, the Rayleigh
fading causes performance losses for the IWSMSNs, while the strong LOS benefits the performance.

5. Conclusions

This paper has proposed the hybrid 1D and 2D beam models, which considered the equivalent
interference factor α from adjacent beams and the equivalent interference factor β from the TCNs
intra-beam for the return link of the IWSMSNs. The closed form approximations of the optimal capacity
and MMSE capacity were derived under Rician fading. The numerical simulations showed that β

lowered the capacity, and the capacity of ˆ̄T1D approximately decreased to zero as α increased to one
and as β in the lower region. The effects of intra-beam interference factor β of the TCNs were associated
with inter-beam interference factor α on the performance of the IWSMSNs and was even, to some
degree, approaching the higher region of α. Due to the LOS and channel correlation characteristic of
GEO satellite channels, which were unlike the independent channels of the users from base stations in
the TCNs, thus, the capacities of the IWSMSNs were converging as the Rician fading factor κ increased,
because the Rician fading could be converted to the additive Gaussian noise channel as κ → ∞ to get
the nonfading channel. The optimal capacity and MMSE capacity exhibited different trends toward the
number of sinks K, which were mainly determined by using different decoding strategies. Meanwhile,
from the numerical simulations, Rayleigh fading caused losses on the performance of the IWSMSNs,
while the strong LOS benefited the performance.
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