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Abstract: With the rapid growth of wireless sensor applications, the user interfaces and configurations
of smart homes have become so complicated and inflexible that users usually have to spend a great
amount of time studying them and adapting to their expected operation. In order to improve user
experience, a weighted hybrid recommender system based on a Kalman Filter model is proposed
to predict what users might want to do next, especially when users are located in a smart home
with an enhanced living environment. Specifically, a weight hybridization method was introduced,
which combines contextual collaborative filter and the contextual content-based recommendations.
This method inherits the advantages of the optimum regression and the stability features of the
proposed adaptive Kalman Filter model, and it can predict and revise the weight of each system
component dynamically. Experimental results show that the hybrid recommender system can
optimize the distribution of weights of each component, and achieve more reasonable recall and
precision rates.

Keywords: enhanced living environments; big data; recommendation filter model; smart home;
Internet-of-Things

1. Introduction

Recently, multisensory big data analytics and smart homes are playing a crucial role for developing
Enhanced Living Environments (ELEs). By being enriched with several sensing capabilities and
communication interfaces, a smart environment can be built to improve the quality of life effectively
for the elderly or people with special requirements in ELEs. However, there is a major challenge for
capturing or recording, storage, searching, correlating, transferring, sharing, and analyzing the huge
amounts of data in ELEs owing to the characteristics of multisensory data, for instance, uncertainty,
unpredictability or massiveness. Recent advancements in the fields of sensing computing, wireless
communication, wearable computing and ubiquitous network environments have paved the way for
the emergence of the Internet-of-Things (IoT) paradigm, which aims to connect and network trillions
of smart devices, capable of sensing and interacting with the physical world [1]. Figure 1 shows the
data forwarding in an ELE and it indicates the transformation between the dormant and active states
of sensor nodes. As a result, the energy consumption of nodes can be optimized so as to significantly
prolong the network lifetime.
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Figure 1. Data forwarding in an ELE. 

In addition, nowadays smart homes have attracted more and more attention with the rapid 
development of technologies and applications of the IoT. A smart home (i.e., home automation) 
consists of a suite of hardware devices which may associate wireless sensor networks with the home 
environment. By being operated remotely, automatically or scheduled, it meets the requirements of 
user convenience, safety and efficiency [2]. Provisioning autonomous and intelligent interactions 
with the environment requires empowering conventional sensor networks with other emerging 
technologies, such as mobile hybrid recommender systems, wearable devices and mobile nodes, 
which are collectively referred to as emerging sensor networks [3,4].  

Due to the progress in user mobility applications and the rapid popularization of wearable 
devices, how to provide effective wearable computing and personal recommendations in 
complicated conditions has become a challenging issue, such as when users are situated in different 
locations, with various user behaviors and ubiquitous network environments. The increasing 
popularity of wearable computing sensing boosting devices, such as Google Glass, watches, helmets, 
shoes, etc., results in potential demands and opportunities for ubiquitous computing via wireless and 
mobile devices [5,6]. Meanwhile, mobile recommendation technology helps users to extract 
information which meets their requirements automatically and effectively from the vast ocean of 
available sensor information. In emerging sensor networks, the prime objective of the topology 
control techniques is to sustain coverage while ensuring network connectivity and energy 
conservation. Along with the verging evolution of conventional sensor networks to the IoT, some 
novel approaches and algorithms are needed to support the above requirements [7–9]. Figure 2 shows 
a mobile sink node in the IoT. 
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In addition, nowadays smart homes have attracted more and more attention with the rapid
development of technologies and applications of the IoT. A smart home (i.e., home automation)
consists of a suite of hardware devices which may associate wireless sensor networks with the home
environment. By being operated remotely, automatically or scheduled, it meets the requirements
of user convenience, safety and efficiency [2]. Provisioning autonomous and intelligent interactions
with the environment requires empowering conventional sensor networks with other emerging
technologies, such as mobile hybrid recommender systems, wearable devices and mobile nodes,
which are collectively referred to as emerging sensor networks [3,4].

Due to the progress in user mobility applications and the rapid popularization of wearable
devices, how to provide effective wearable computing and personal recommendations in complicated
conditions has become a challenging issue, such as when users are situated in different locations,
with various user behaviors and ubiquitous network environments. The increasing popularity of
wearable computing sensing boosting devices, such as Google Glass, watches, helmets, shoes, etc.,
results in potential demands and opportunities for ubiquitous computing via wireless and mobile
devices [5,6]. Meanwhile, mobile recommendation technology helps users to extract information
which meets their requirements automatically and effectively from the vast ocean of available sensor
information. In emerging sensor networks, the prime objective of the topology control techniques is
to sustain coverage while ensuring network connectivity and energy conservation. Along with the
verging evolution of conventional sensor networks to the IoT, some novel approaches and algorithms
are needed to support the above requirements [7–9]. Figure 2 shows a mobile sink node in the IoT.
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In this paper, a novel hybrid model is presented based on the optimal regressive features of the
Kalman Filter. By learning from the training data, the system parameters can be obtained for the
Kalman Filter mathematically. Next, the weight of the different component is set through analysis
and comparison of the predictions and tangible results. We perform an experiment in a real practical
environment, and our algorithm is compared with the item-based collaborative filtering algorithm and
content-based algorithm. The experimental results show that the proposed hybrid recommendation
algorithm has a positive significant impact on the quality of recommendations.

The rest of paper is organized as follows: Section 2 presents a brief introduction about wireless
sensor networks, contextual item-based collaborative filtering recommender systems, contextual
content-based recommender systems, hybrid recommender systems and the Kalman Filter model.
In Section 3, we review the weaknesses and shortcomings of the traditional hybrid recommendation
algorithms and propose a weighted hybrid model based on the Kalman Filter with the optimal
estimation feature. In Section 4, the weighted hybrid recommendation algorithm is proposed.
The results of the experiments and the analysis of results will be given in Section 5. In Section 6,
we draw our conclusions and outline potential future work.

2. Related Works

Emerging sensor networks combined with sensor computing, wearable computing, mobile
computing, wireless communications and other technologies, have been widely used in the fields of
smart cities, smart homes and so on. Although smart homes can provide people great convenience,
they are mostly equipped with very complicated closed configurations and user interfaces [10,11].
The inhabitants living in such a smart home have to waste a great amount of time to set and operate
these complicated devices and software suites [12,13]. To simplify the user interface and operation,
some researchers and engineers have taken advantage of recommender systems to solve this problem.

Rasch [14] proposed an unsupervised hybrid recommender system, which learns the habits
of inhabitants automatically and builds much simpler user interfaces. Besides, it can predict what
the inhabitant might want to do currently and highlights the most interesting choices available.
Vavilov et al. [15] offered a “light” recommendation algorithm for healthcare applications, which is
effective, cheap and flexible enough to recommend activities for users and easily adapted to the
healthcare goals.

The boom of emerging sensor networks, especially wireless sensor networks, has provided a
strong opportunity for smart homes in recent years. Besides, when people are located in the wireless
sensor network, abundant contextual information will be obtained for the current environment from
various kinds of sensors, such as time, location, temperature, device status, pressure, humidity, and so
on [16,17]. Figure 3 shows the view of smart home system. This contextual information is very useful
in that it can help us to better analyze the mobility and activity of the inhabitants and even predict
what people want to do in the next time period.

The user interfaces and configurations of smart homes are very complicated and inflexible, which
results in too much time-consumption for determining and completing the expected actions of users.
Furthermore, the problem of information overload is already inevitable in a ubiquitous network
scenario. Many researchers have devoted themselves to finding better ways to help users to filter
useless information and retrieve valuable contents. Individualization recommendation technology is
regarded as an effective and practical approach to solve the information overload problem, especially
after the collaborative filtering recommendation algorithm being put forward by Goldberg and
others [18]. Although recommendation systems provide users with suggestions for a variety of
items from mass data sources, the technique has many disadvantages (e.g., cold-start problems, data
sparsity problems).

Due to the complexity of wireless sensor networks, it is hard for a single context-aware
recommender system to produce precise recommendations. Many researchers have proposed hybrid
recommendation systems which combine two or more techniques to achieve some synergy between
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several recommendation methods and customize the responses to every user [19]. There are already a
lot of applications and experiments that make us understand that hybrid recommender systems can
profitably improve the effectiveness of the recommendation process, and most correlation researches
are about some hybrid of content-based and collaborative filtering recommendations [20].Sensors 2016, 16, 1706 4 of 26 
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Mark C. et al. [21] proposed a hybrid approach that combines user profiles which were
extracted from the history with the collaborative filter technique, which enhances the effectiveness of
prediction results by using a weighted average. However, the accuracy of the predictions is affected
mostly by the collaborative filtering prediction, and occasionally the weight value is not precise.
Jonathan G. et al. [22] come up with a linear-weighted hybrid framework for making recommendations
in social annotation systems, and experiments were conducted using six real-world datasets to
prove that the recommender system was more effective and flexible. Gong et al. [23] extracted
information from social networks related to users, which can be integrated into a collaborative
filter to improve the performance of the system. Fatemeh et al. [24] applied the weighted hybrid
recommendation for heterogeneous networks which controls the meta-path to determine which
components to include in a hybrid. Domingus et al. [25] proposed a hybrid recommendation model
that mixes a blacklisting mechanism with the limitation that the idea is established on the long tail
features of music. Lai et al. [26] combined content filtering, neighborhood-based collaborative filter
and latent factor model algorithms together using a linear model to achieve high accuracy, but the
complexity of the model is too high. Many researchers have improved the performance of weighted
hybrid recommendations based on collaborative filters and content-based algorithms. In this task how
to optimize the weight is one key for the weighted hybridization, and that is the topic to which we pay
more attention in this paper.

Wireless sensor networks (in particular wireless sensor and actuator networks) consist of plenty
of specialized sensor nodes, which are spatially dispersed and have a dedicated communication
infrastructure. By monitoring the physical or environmental conditions at diverse locations, the sensors
measure, collect and process information about the target area, such as light, sound, location, pressure,
temperature, humidity, and so on. With the progress of technology, sensors have already become small,
cheap, lightweight, and portable. Despite limited processing and computing ability, each tiny sensor is
equipped with transducer, microcomputer, and transceiver. After sensing and collecting information
from the target area of interest, the sensor node should transmit the collected data to users or other
devices using certain wireless communication techniques [27]. The deployment of sensors in emerging
sensor networks is shown in Figure 4.
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Some wireless sensor network communication protocols have been widely applied, such as WiFi,
Bluetooth, ZigBee, and Wireless HART. Due to the limited capacity of batteries and unrechargable
environment, an effective power management scheme must be considered. In wireless sensor
networks, a large number of tiny nodes are deployed randomly and capable of assembling and
configuring by themselves to withstand harsh environmental conditions and ease of use. In the
early design stages, wireless sensor networks were mainly focused on specifically promoting the
effectiveness of military action. But nowadays they have been applied in many fields, such as target
tracking and identification, biological health monitoring, air pollution monitoring, smart homes,
medical applications, and industrial automation [28], etc. In the smart home based on wireless sensor
networks, a wide range of automation devices like entrance management components are provided,
and inhabitants who lived in the smart homes can manage and control the systems locally or remotely.

A wireless sensor network consists of small, low-cost, and low-energy sensor nodes that
cooperatively monitor physical quantities and control actuators, and thousands of randomly deployed
nodes can operate autonomously to form a multi-hop topology. In this point, the numerous
self-configurable sensor nodes should run in an adaptive manner with their environment and execute
sensing, computing, actuating, and communication tasks. The architecture of a typical wireless sensor
network is illustrated in Figure 5.
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Context describes the information which characterizes the situation of the entity in the ubiquitous
computing. Emerging sensor networks can provide us much abundant context information.
The widely used context usually reflects the physical environment (e.g., location, time). However, some
contexts can include other types of data, for instance, information about the user (the user’s habits,
bio-physiological conditions, etc.), physical conditions (noise, light, temperature, etc.), and social
environment (social interaction, co-location with other users, etc.) [29]. In this system, we observe the
context of information about the user and physical conditions, and the context can be given as a vector
of different context types [30]:

C = (C1, C2, · · ·Cz) (1)

where Ct (t ∈ 1,2, . . . ,z) is a context type, such as location, time, temperature, and so on.
The Pearson Correlation Coefficient method is adopted to measure the simility between two

different contexts Sim(x,y). Then, we have:

Sim(x, y) =
n∑ xy−∑ x∑ y√

n∑ x2 − (∑ x)2 ×
√

n∑ y2 − (∑ y)2
(2)

where x and y are two different contexts.
Based on Equation (2), we define the number of operations or activities done by the user u on the

device i in the context x as ru,x,i:

rel(x, y, i) = k
∑u∈U (ru,i,xt − ri)× (ru,i,yb − ri)

σx × σy
(3)

where k is a coefficient that is used to adjust the sensity of the relavance, and ri is the average number
of operations. U represents the set of all users in the system. σx, σy are the standard deviations for
the two contexts. rel(x,y,i) returns the relevance of the two context values in C over all the number of
operations done by users. To get a better and clearer result, we can incorporate this relevance feature
into the similarity calculations. Besides, context information usually involves in privacy problems.
For this reason, in our recommender system, the information data is encrypted.

For most item-based collaborative filtering algorithms the similarity (conditional probability-base
similarity, cosine-based similarity, etc.) between different items can be calculated by analyzing historical
use or purchasing data, which is usually presented as a user-item matrix. Then, a recommendation list
which is sorted by using some interest measure for items will be derived in a Contextual Item-based
Collaborative Filtering (CICF) recommender system [31]. The main idea of collaborative filtering
is to predict the items that people will buy or prefer according to what they liked or bought in the
past [32,33]. The process of the contextual item-based collaborative filter algorithm has three steps:

1. Disposal of the historical data about the users and items and building of the user-item matrix.
2. Calculation of the similarity between each pairs of items, and building of an item-item

similarity matrix.
3. Calculation of the current user’s location-aware taste for each item by the item-item similarity

matrix and the user’s historical record, and choosing the most interesting items to generate
the recommendations.

Different from the case of desktop calculation, there is more abundant context information in the
wireless sensor environment, and the recommendation systems that can achieve better performance
benefits from the context, for example, location or time [34]. CICF is also based on the idea of collective
intelligence, and brings contextual information into the similarity of items and collaborative filtering
model. The key of CICF is that calculates preference similarities of items in the context condition.

Chen proposed a context-aware collaborative filtering recommender system that integrates
contextual information of items and user-context information into the collaborative filtering,
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and represents the similarity calculation method based on the item-context correlation coefficient [35].
Based on their work, we also consider the distance between the active use and items using a
similar method.

The probability of the operation i that the user u does in the context c can be defined as P(u,i,c),
and it can be formulated as:

P(u, i, c) =
ni,c

log(1 + ∑
C

n(u)
i )

∑
x∈C

∑
j∈N(U)

Sim (x, c, j) ru,j,c (4)

where N(U) represents the set including all the operations that the user u ever did, ni,c is the number
of operations i done by current user in the context c, n(u)

i is the total number of operations i done by all
users, ru,i,c is the probability of user doing the operation i in the context c.

A Contextual Content-Based (CCB) recommender system in one which compares the contents
of items and the profiles of users. Its main idea is to recommend items whose content attributes are
similar to those of the items that users ever liked or bought before. There are many ways to present the
items. In this paper, a TF-IDF model is applied to assign different weight to the item attributes, which is
regarded as a vector space with a given weight. The TF-IDF model is the product of two statistics: term
frequency and inverse document frequency. Then it can be calculated using the following equation:

di = {(e1, w1) , (e2, w2) , (e3, w3) · · ·} (5)

In which, ei is the certain keyword in the attributes of the item i, and wi is the weight of
corresponding keyword. The process of the contextual content-based recommendation method also
includes four steps:

1. Extract the item character to build the model for presenting the item.
2. Use the features of items which the user ever liked or bought to create the user preference.
3. Generate a list of recommended items for the user by comparing the relevancy of the user

preference and items.

A contextual content-based recommender system brings contextual information into the
content-based recommendation algorithm, emphasizing the matching rate of user preferences, context
and item properties. Through mining user preferences for different item properties in different contexts,
the algorithm combines with the property descriptions of each specific item to predict potential user
preferences and generate recommendations.

Chihiro et al. constructed a Bayesian network model to acquire user preferences for an item
set with respect to different contexts (prior probability). Next, by calculating the post-probability of
user potential preference to unseen or never-bought items with specific property vectors in a specific
context environment, N items of higher preference to users can be extracted and recommended [36].
In our system, we also integrate the Bayesian network model into the content-based recommendation
algorithm, similar to Chen’s algorithm.

3. Discrete Kalman Filter Model

3.1. Hybrid Recommender System

Either item-based collaborative filtering or different content-based methods have their own
weakness and strengths. Hybrid recommender systems produce their output by combining various
methods organically [37]. They can choose different strategies according to the particular case,
and avoid the defects of the recommendation methods to improve the recommendation performance
and provide more valuable recommendations.
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In general, there are several hybrid ways: weighted, switching, mixed, feature combination,
feature augmentation, cascade and meta-level [38]. Weighted is about the output of the different
recommender system components combined using a linear weight scheme.

By using a linear weight formula, the weighted hybridization produces the results by combining
the output of the two or more components, and the simplest weighted hybridization can be represented
by the following equation:

P =
n

∑
i=1

ciPi (6)

where Pi is the result generated by the recommendation component i, and ci is the weight of the
component i.

However, the above model does not consider takes into account the individual characteristics
rather than the holistic character of weights. To avoid these defects, we use the following model to
calculate and assign weights:

P(u, i) = ∑
m∈M

c(m, u, i)× P(m, u, i) (7)

where P(u,i) is the degree of interest of user u in item i. P(m,u,i) is the interest degree of the user u to
the item i produced by the recommender component m. c(m,u,i) is the weight of user u to the item i
produced by the recommender component m. M represents all of recommendation components in the
recommender system.

3.2. Discrete Kalman Filter Model

Kalman filtering, usually referred to the discrete Kalman Filter, is a linear quadratic estimation
algorithm that tries to produce an unbiased estimate of the state of a dynamic uncertain system [39].
If all samples of the system noise demonstrate a Gaussian distribution, a Kalman Filter can minimize
the mean square error of the estimated parameters, which can be proven as an optimal estimator.

The prediction and revision process of a Kalman Filter is relatively fast because of not keeping
any history other than the previous estimate state. As a result, it can run in real time and doesn’t
need much memory space. It is also easy to implement in practical applications. The Kalman Filter
has numerous applications in technology and is widely employed in the fields of the communication,
GPS navigation, robot vision and image painting [40–42].

The discrete Kalman Filter is mainly applied to estimate the state of a discrete-time controlled
system [43,44]. The controlled process of a discrete Kalman Filter can be represented as two linear
stochastic difference equations [45–47]. xk is the system state at the time k, which can be estimated by
the following Equation (8):

xk = Akxk−1 + Buk + wk−1 (8)

where uk is the system control variable, the variables Ak and Bk represent the parameters of the system
state model, wk is the process noise.

With an observed equation:
zk = Hkxk + vk (9)

In which, zk is the system measurement, Hk is the model parameter of the observed system, vk is
the measurement noise.

In the above Equations, both the system process noise and the measurement noise are assumed as
Gaussian white noises. wk is a Gaussian distribution with mean 0 and standard deviation Qk. Here,
Qk represents the process noise covariance, which is a non-negative definite matrix. wk is a Guassian
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distribution with mean 0 and standard deviation Rk, Rk represents the measurement noise covariance,
which is a positive definite matrix: {

p(v) ∼ N(0, Rk)

p(w) ∼ N(0, Qk)
(10)

Lemma 1. assuming that Ps is a constant, it will have optimal solution P∗r =
{

P∗r1
, P∗r2

, ..., P∗rM

}
for

Equation (10). It satisfies:
M

∑
m=1

P∗rm ≤
M

∑
m=1

Prm (11)

Proof. For λ(P), if we can prove it is a concave function, the global optimal point is the only optimal
point. By taking the derivative of λ(P) to Prm , we have:

∂λ

∂Prm

=
GrmdGsrm Ps

(
Gsrm Ps + σ2)

(Prm Grmd + PsGsrm + σ2)
2

σ2
> 0 (12)

where Grmd = |hi1mk|2 and Gsrm = |hi3mk|2.

∂2λ

∂2Prm

= −GrmdGsrm

2GrmdGsrm P2
s + 2σ2GrmdPs

(Prm Grmd + PsGsrm + σ2)
3

σ2
< 0 (13)

∂2λ

∂Prm Prn

= 0, (m 6= n) (14)

�
Since Ps is a constant, λ(P)’s Hessian matrix must be a negative definite matrix. Therefore, λ(P) is

a concave function.
Next, the optimal solution can be obtained by Lagrangian methods, and the Lagrange function is

defined as follows:

L(P, γ) = N
M

∑
m=1

Prmk − γ

1 + λD
ik + ∑

r∈{r1,r2,...,rM}
λr

ik − λ0

 (15)

where γ is the Lagrange multiplier and P = {Prm1, Prm2, . . . , PrmN} . Then, by taking the derivative of
L(P,γ) to Prmk and equating it to zero, we have:

∂L(P, γ)

∂Prmk

= N − γ

∣∣hi2mk
∣∣2∣∣hi3mk

∣∣2Psk
(∣∣hi3mk

∣∣2Psk + σ2 )(
Prmk

∣∣hi2mk
∣∣2 + Psk

∣∣hi3mk
∣∣2 + σ2

)2
σ2

= 0 (16)

By simplifying and some manipulations to Equation (16), we estimate Prmk as:

Prmk =

√
γ|hi3mk|2Psk (|hi3mk|2Psk + σ2 )

N|hi2mk|2σ2 −
Psk
∣∣hi3mk

∣∣2 + σ2

|hi2mk|2
(17)

According to Equation (17), λ(P) can be written as:

λ(P) = 1 +
Psk|hi1mk|2

σ2 +
M

∑
m=1

∣∣hi2mk
∣∣2∣∣hi3mk

∣∣2PskPrmk(
Prmk

∣∣hi2mk
∣∣2 + Psk

∣∣hi3mk
∣∣2 + σ2

)
σ2 = λ0 (18)
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In practical application, it is reasonable to assume that Psk |hi3mk|2 σ2. Otherwise, the relay node
will be excluded by the source node at the beginning. Hence, we can assume that Psk |hi3mk|2 + σ2 ≈
Psk |hi3mk|2 and substitute it and Equations (17) and (18), giving:

√
γ =

σPsk
M
∑

m=1

|hi3mk|2
√

N
|hi2mk |

Psk|hi1mk|2 − σ2 (λ0 − 1) + Psk
M
∑

m=1
|hi3mk|2

(19)

For the sake of notation simplicity, we define D = |hi1mk|2 + ∑M
n=1 |hi3mk|2 , Am =

|hi3mk|2
/
|h12mk|2 and Bm = |hi3k|2

/
|h12k|2. By substituting them into Equation (19), the optimal power

consumption of relay node rm is given by:

P∗rmk
=

AmP2
sk

(DPsk − σ2 (λ0 − 1))

M

∑
n=1

An − BmPsk (20)

In this section, we have briefly introduced the hybrid recommender system and the discrete
Kalman Filter model. Because of the complexity of current hybrid methods, the hybrid
recommendation is hard to apply to real environments, and the Kalman Fitler can help us reduce
the complexity.

4. The Weighted Hybrid Recommendation Algorithm

Our hybridization approach is based on combining collaboration filtering component prediction
with content-based component prediction. The key of weighted hybridization is that the weight of
each component can be precisely assigned and predicted using a Kalman Filter, which can optimally
estimate the system state with the measurements.

Focusing on the hybrid context-aware recommender system for predicting users’ preference
in the contextual environment, a Weighted Hybrid Recommendation Algorithm based on Kalman
filter (WHRA-KF) is introduced. This strategy aims to design a novel weighted hybrid recommender
system, which can understand the activities of users more clearly and unambiguously derived from
much abundant contextual information in the wireless sensor network environment. In addition,
the algorithm can predict and revise the weight of each system component dynamically by taking
advantages of the optimum regression feature of the Kalman Filter model under a variety of different
requirements. The proposed algorithm applies the Kalman Filter model to predict and revise the
weight in emerging sensor networks. As the collaboration filter and content-based recommendation
components, we will use the two common algorithms based on the work of other researchers, so we can
pay our attention on the way of the weighted hybrid recommendation based on Kalman Filter model.

4.1. The Hybrid Recommendation Model

We will model the process for predicting the weight in accordance with the framework of the
Kalman Filter. For the user u in the recommended time i, we assume that x(i,u) is the ratio of
the content-based component weight wCCB(i,u) to the item-based collaborative filtering component
weight wCICF(i,u):

x(i, u) =
wCCB(i, u)
wCICF(i, u)

(21)

If we want to make use of the optimal estimation of the Kalman Filter reasonably, the first step is
to build a reasonable and precise state transition model. There is an assumption that the ratio x(i,u)
is stochastic and linear in any given time for the user u according to the notion that the user’s habit
changes display some regularity.
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For convenience, we will omit the index u in the following section. There is a linear relation f
between x(i) and x(i − 1):

x(i) = x(i− 1) + αv(i− 1) (22)

v(i) = x(i− 1)− x(i− 2) (23)

where α is the system parameter used to enhance or slow the speed of change of the ratio and its
value can be obtained by multiple tests. Therefore, the system state of the Kalman Filter can be
represented as:

xk = [x(k), v(k)]T (24)

We collect the counts of last recommendations of both components the user really liked or bought,
then we calculate the ratio of the numbers of two components successfully recommended. The a
posteriori estimation is also being represented in the observation zk:

xk = x−k−1 (25)

The model parameters Ak, Hk can be deduced by the linear relation of Equations (12) and (13):

Ak =

[
1 α

0 1

]
, Hk =

[
1 0

]
(26)

In addition, we assume that the first matrix of the predictive error covariance is:

P0 =

[
1 0
0 1

]
(27)

The Kalman Filter process includes two steps: prediction and correction. The prediction process
includes the prediction for the a priori state estimate and estimate covariance. The correction process
includes innovation or measurement residual, residual covariance, optimal Kalman Gain, and updating
the state estimate and estimate covariance.

The prediction for the preliminary weight is given as

x̂k|k−1 = Ax̂k−1 + Buk (28)

The prediction for the a priori error covariance is given as:

Pk|k−1 = APk−1 AT + Qk (29)

The process of correction is to revise “Kalman Gain”, we have:

∂tr(Pk)

∂Kk
= −2(HkPk−1

k ) + 2KkSk = 0 (30)

KkSk = (HkPk|k−1)
T = Pk|k−1HT

k (31)

Sk = cov(zk − Hk x̂k|k−1) (32)

where Sk is the innovation covariance. From the above Equations (19)–(21), Kk can be calculated as:

Kk = Pk|k−1HT(HPk|k−1HT + R)
−1

(33)

Then, the a posteriori state estimate for the weight can be replaced as:

x̂k = x̂k|k−1 + Kk(zk − Hx̂k|k−1) (34)
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Consequently, the a posteriori error covariance matrix can be updated, and we have:

Pk|k = (I − Kk H)cov(xk − x̂k|k−1)(I − Kk Hk) + Kkcov(vk)KT
k (35)

Equation (25) is better known as the “Joseph form” of the covariance update Formula. It turns out
that if Kk is the optimal Kalman Gain, this can be simplified as:

Pk = (I − Kk H)P−k (36)

The Kalman Filter is a recursive estimator in that it actually makes an iterative calculation for the
state x̂k and its error covariance Pk.

4.2. Optimal Adaptive Factor

Under normal circumstances, we usually assume that the process noise wk and the measurement
noise vk are Gaussian white noises with mean of 0 and known covariance Qk, Rk. Through trial and
error, the statistical properties of Qk can be obtained, but the statistical properties of Rk are unknown,
especially in a complicated environment. Furthermore, both of them are not invariable and change
in accordance with the conditions of the application environment. Thus, we can make use of the
measurement information to adjust the noise excitation of the Kalman Filter, and the system model
should be continuously refined if we do this.

To enhance the adaptability, a maximum posterior estimator is developed to estimate the
statistical properties of the process noise and the measurement noises dynamically, which is one
of the evolutionary methods based on the Sage adaptive filtering algorithm [48]. With the help of Sage
adaptive filtering, we can work out:

q̂k = (1− 1
k
)q̂k−1 +

1
k
(x̂k − Ak x̂k−1) (37)

r̂k = (1− 1
k
)r̂k−1 +

1
k
(xk − Hk ŷk−1) (38)

Q̂k = (1− 1
k
)Q̂k−1 +

1
k
(Pk − AkPk AT

k ) (39)

R̂k = (1− 1
k
)R̂k−1 +

1
k
(xkxT

k − HkPk HT
k ) (40)

In which, q̂k is the a posteriori estimation of the mean of the process noise, and Q̂k is the a posteriori
estimation of the process error covariance matrix. It is the same for r̂k and R̂k as well. The above four
formulas help us estimate the statistical properties of the process and measurement noises.

Moreover, the variation of the residual ŷk can be measured to determine whether the parameters
Qk and Rk should be modified or not. The residual ŷk is the difference between the real measurement
value and the estimated measurement value in the Kalman Filter model at the time k:

yk = zk − Hk x̂k|k−1 (41)

The residual yk reflects the level of dependency of the system model on the measurements. As
above, the residual is white noise with mean 0, if the model is accurate enough. If the residual ceases
to be white noise with mean 0, problems occur with the filter, and further, the Kalman Gain won’t
be optimal.



Sensors 2016, 16, 1706 13 of 26

We use the mean and estimated covariance of the residual in the Kalman Filter to judge the
performance of the filtering. Assuming n represents the statistical number over a period of time,
the mean of the residual can be calculated by the following equation:

y =
1
n

t

∑
j=t−n

rj (42)

The covariance matrix of the residual Pr is related to Qk, Rk which can be calculated by the
following formula:

Pr = Hk(EPk−1ET + Qk)HT
k + Rk (43)

Then, the posterior estimated covariance of the residual P̂r can be calculated as:

P̂r =
1
n

t

∑
j=t−n−1

yjyT
j (44)

Next, the estimation P̂r and Pr should be analyzed. When P̂r is more and more greater than Pr,
and the mean y gradually moves away from 0, the filtering becomes increasing unstable, then we
adjust the excitation of noises through Equations (29) and (30). Otherwise, we just keep the way of the
calculation for the noise Qk, Rk unchanged. If Pr is close to 0 and mean approximates to 0, then Qk and
Rk should remain unchanged. Otherwise, while both Pr and the mean are far from 0, then Qk = Q̂k
and R̂k = Rk.

Due to the adaptive feature, the noises of the system and measurement impact the real result
calculated by the Kalman Filter slightly [49]. We can observe that the Kalman Filter tries to coverage to
correct estimations, even if they are poorly estimated. We have performed some rough tests to estimate
the covariance matrix of the system noise and measurement noise:

Q0 =

[
1
2 1
0 1

2

]
, R0 =

[
1

10

]
(45)

4.3. The WHRA-KF Process

Only the estimated state from the previous time step and the current measurement are what
the Kalman Filter model needs to compute and predict the estimate for the current state [50]. In the
following processes, x̂k|k represents the a posteriori state estimate at time k given observations up to
and including at time k. Pk|k represents the a posteriori error covariance matrix, namely a measure
of the estimated accuracy of the state estimate [43]. The main process of the proposed algorithm is
as follows:

1. Disposal and input of the user data and item data.
2. Run the CICF and CCB algorithm to generate the initial recommendations.
3. Start the adaptive Kalman filtering process, and predict the weight ratio.
4. According to the stochastic linear relation f, calculate the final weights of two components, and

generate the final recommendation list.
5. Verify the recommendations, and add the number of recommended items that users really liked

or bought. Then calculate the ratio of the above two numbers, and make the ratio the next
measurement variable zk+1.
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This iterative process is continued until the optimal estimation of the system state is obtained
at every turn. As time goes on, we can make effective predictions of the weight of the hybrid
recommender system and improve the quality of recommendations with the use of the regression
optimization features of the Kalman Filter. Figure 6 shows the process of WHRA-KF.Sensors 2016, 16, 1706 14 of 26 
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5. Experiments and Evaluation

In this section, we explored some simulations to evaluate the effectiveness of our hybrid approach.
To test the proposed method empirically, we constructed a smart home at KuTing using emerging
sensor networks and performed preliminary experiments with our algorithm using the real dataset
from KuTing. Further simulations were also conducted with some traditional recommendation
algorithms for the sake of a comparison between their performance and that of the proposed method.

5.1. Description of Dataset

The experiment dataset is collected from a real practical environment at the KuTing smart home
project. It includes the behavioral data of 300 users and the context data from smart homes over a period
of 30 days. The smart homes are divided into two different types: small and big. The standard small
smart home is equipped with 50 sensors, and the deluxe big smart home is equipped with 100 sensors.
Clearly, the more sensors deployed, more context information can be obtained. These smart sensors
monitor the status of doors, fridges, TVs, or air conditioners continuously, and plenty of contextual
information can be obtained. For example, we collected the data, such as time, temperature, and so on,
generated by these sensors every 20 s over a period of 30 days. Human activities are identified as the
operation of smart devices, such as opening/closing the front door, cranking up/turning down the
air-conditioners and so on. Figure 7 shows the distribution of cluster heads in WHRA-KF.
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5.2. Evaluation Metrics

To verify the performance of the proposed algorithm, several evaluation indexes (e.g., precision,
recall, F-measure and coverage) are considered, which are popular ways of measuring top-N
recommender systems. For predicting the user’s next activity, it’s necessary for the proposed
recommender system to run in real-time and generate the recommendations in time, so we also
measure the time cost of the system.

Precision is defined as the proportion of recommendations that are valid recommendations, while
Recall is the proportion of valid recommendations that appear in top recommendations [44–46]:

Precision =
∑u |R(u) ∩ T(u)|

∑u |R(u)|
(46)

Recall = ∑u |R(u) ∩ T(u)|
∑u |T(u)|

(47)

Here, the variable R(u) is the recommendation list for the user u, T(u) represents all items in the
test dataset with relation to the user u.

The F-measure, namely F1, is a measure that is the harmonic mean of the precision and
recall, which originally was often used in the fields of measuring information retrieval, document
classification, and query classification performance, and now is widely used in the recommender
system for a summary measure. The term coverage refers to the proportion of items that the
recommender system can recommend. The common measure of Coverage is the percentage of
all items that are recommended to users during an experiment. The coverage can be represented as:

Coverage =
|∑u∈U R(u)|

I
(48)

In which, the variable U represents all users, and I represents all items.

5.3. The Analysis of Results

In the experiments, the initial state x0 just has an impact on the speed of the convergence of the

algorithm, so we set the parameter of the state as x0 =

[
1
0

]
and n is expressed as the number of

sensors in the emerging sensor networks.
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This is due to the fact that in the smart homes the inhabitants usually make use of various software
programs embedded in resource constrained mobile phones or wearable devices to control the home
devices, and there is not enough space to show more recommendation choices. If the number of choices
is more than 10, inhabitants may waste a lot of time to browse all the recommendations, so we have set
the range of the recommendation list as 2–10.

Figure 8 shows the Recall values for the different recommendation algorithms. During the
experimental phase, the parameters in the standard and deluxe smart homes are set according to
the KuTing smart home dataset, respectively. The x-axis denotes the number of recommendations,
and the y-axis is the Recall. Figure 8a represents the situation of the standard smart home
equipped with 50 sensors, and Figure 8b represents the situation of the deluxe smart home equipped
with 100 sensors.
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Figure 8. Recall VS number of recommendation for smart home, (a) n = 50; (b) n = 100.

It’s obviously that the value of Recall increases with the number of recommendations for all
recommendation algorithms, but the extent of the increase reduces as the number of recommendations
increases too. For n = 100, when the number of recommendations is 10, the recall achieves the best
value of 0.82, that’s to say that 82% of all valid recommendations appear in the top recommendations.
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On the contrary, the proposed recommender system gives the worst Recall value of 0.57 when the
number of recommendations is 2. The phenomenon in the standard smart home is similar.

Figure 9 shows the comparison of the value of Precision under the same conditions. Unlike the
Recall trend, we can see that the value of Precision decreases with the number of recommendations
in both smart homes except for the Random recommendation algorithm. The precision value
of the Random algorithm increases along with the number of recommendations just the other
way. For n = 100, when the number of recommendations is 2, the proposed system shows its best
performance, then the recall is 0.83 and far surpasses the other algorithms. On the contrary, when the
number of recommendations is 10, the Recall value is only 0.48 which is close to the Precision of CICF
and CCB. Figure 9 shows that the value of recall decreases along with the number of recommendations
for the WHRA-KF, CICF and CCB.
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Figure 9. Precision VS number of recommendation for smart home, (a) n = 50; (b) n = 100.

The F-measure value along with the number of recommendations in the two datasets is shown in
Figure 10.
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Figure 10. F-measure VS number of recommendation for smart home, (a) n = 50; (b) n = 100.

For the F-measure values, the value of each algorithm, such as WHRA-KF, CICF and CCB, is small
in the end and big in the middle except for the Random recommendation method. The F-measure
value of the Random algorithm increases along with the number of recommendations. When N is near
5, we get the highest F-measure value for both types of smart home.

Figure 11 shows the relation between coverage and number of recommendations. Compared
to the Random algorithm, WHRA-KF, CICF and CCB have better coverage as the number of
recommendations increases. The number of sensors has little influence on the coverage, as seen
by comparing the Figure 11a,b. Based on the experimental results above, we can see that the coverage
of our approach is higher than that of the other recommendation algorithms, especially when N ≤ 10
regardless of the number of sensors. It can also be inferred from the results that the algorithm works
better in the deluxe smart home. Actually more sensors in the deluxe smart home than the standard
smart home can provide more detailed contextual information about the users and their environment,
and the proposed algorithm can effectively make use of this information.
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Figure 11. Coverage VS number of recommendation for smart home, (a) n = 50; (b) n = 100.

The average time cost of generating a recommendation is shown in Figure 12. Clearly, the Random
method has the lowest time cost due to its simple idea and theory. Compared to the standard smart
home, the deluxe one has a higher time cost when the number of recommendations is the same. That is
because more sensors will provide more contextual information, and this results in the recommender
systems having to spend more time for processing. Owing to its hybrid characteristics, the time cost in
our proposed algorithm is more than CCB and CICF, and there is no large gap among them. This is a
benefit of the real-time features of the Kalman-Filter model. It is also proved that our proposed system
can be applied in real-time environments.
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Figure 12. Time VS number of recommendation for smart home, (a) Standard smart home (n = 50);
(b) Deluxe smart home (n = 100).

It is proved that the proposed hybrid algorithm has better performance, gets more reasonable
Recall rate and Precision rate, and has the ability to promote and enhance the quality of
recommendations in most environments.

5.4. Influences of Sensor Networks

Although previous classical on-demand methods have been proposed to address the problem of
power saving, the scheme should be customized to satisfy the differences and diversity of every user
in the smart home. As our proposed approach is able to effectively predict the user activities, we can
predict when and where the sensors should work in return. We have combined our method with
power saving schemes for smart home sensor networks. We compare WHRA-KF and Collaborative
Weighted Clustering Algorithm (CWCA) [47] in sensor networks.
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Figure 13 shows the number of active sensors over a period of a day on average for one month
time after using WHRA-KF compared with the situation without WHRA-KF. It could be seen that the
number of active sensors is obviously smaller for WHRA-KF than the other scenario. Most of the time,
the difference between them is more than 15. We can conclude that new scheme can effectively set the
sleep times of sensors.Sensors 2016, 16, 1706 21 of 26 
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Figure 13. Active sensors over a period of a day on average, (a) n = 50; (b) n = 100.

Figure 14 shows the energy consumption of the network during the simulation runs for the four
recommendation algorithms. It can be observed that the WHRA-KF uses less energy compared to
CICF, CCB and CWCA in each round.
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Figure 14. Total energy consumed by the four recommendation algorithms.

Figure 15 shows the comparison of the energy consumption for different scheduling cycles and
daily request arrivals, respectively. It is worth mentioning that the energy consumption plotted in
Figure 15a varies depending on the scheduling cycle. It shows that CICF, CWCA and CCB consume on
average 1.45, 1.31 and 1.34 kWh per scheduling cycle, respectively. Moreover, the proposed WHRA-KF
algorithm achieves a minimum energy consumption of 1.28 kWh per scheduling cycle, with over 20%
energy savings compared to the other algorithms. As we can see from Figure 15, WHRA-KF shows
more excellent performance in most cases and achieves greater energy savings. It is worth noting that
WHRA-KF starts from several initial values simultaneously, and the dependence on the initial values
can be effectively reduced so as to speed up the overall search speed.
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6. Conclusions 

With the rapid growth of wireless sensor applications, the user interfaces and configurations of 
smart homes have become complicated and inflexible so users usually have to spend a lot of time in 
searching and completing their expected actions. Weighted hybrid recommendation algorithms are 
a popular research topic in the field of personalized recommendation systems, in which the weight 
optimization method is key. The specific contributions of this paper include:  

(1) A weighted hybrid recommender system based on a Kalman Filter model is proposed for smart 
home big data analytics for enhanced living environments; 

(2) A weighted hybrid recommendation algorithm based on a Kalman Filter is proposed, which can 
predict and revise the weight of each system component dynamically.  

Our experimental results show that the hybrid recommender system can optimize the 
distribution of weights of each component, and get more reasonable Recall and Precision rates. 
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6. Conclusions

With the rapid growth of wireless sensor applications, the user interfaces and configurations of
smart homes have become complicated and inflexible so users usually have to spend a lot of time in
searching and completing their expected actions. Weighted hybrid recommendation algorithms are
a popular research topic in the field of personalized recommendation systems, in which the weight
optimization method is key. The specific contributions of this paper include:

(1) A weighted hybrid recommender system based on a Kalman Filter model is proposed for smart
home big data analytics for enhanced living environments;

(2) A weighted hybrid recommendation algorithm based on a Kalman Filter is proposed, which
can predict and revise the weight of each system component dynamically.

Our experimental results show that the hybrid recommender system can optimize the distribution
of weights of each component, and get more reasonable Recall and Precision rates.

Acknowledgments: We wish to thank the anonymous reviewers who helped to improve the quality of the paper.
The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved
the presentation. This work was supported by the National Science Foundation of China (Grant No. 61472132,
61472131, 61603420), Natural Science Foundation of Hunan Province (Grant No. 2015JJ2027 and 2014GK3028),
and National Natural Science Foundation of Hubei province (Grant No. 2014CFB413), the Special Fund for Basic
Scientific Research of Central Colleges, South-Central University for Nationalities under Grant No. CZY14007.

Author Contributions: Hao Chen provided the idea and conceived the research. Xiaoyun Xie made test
experiments and wrote the paper. Wanneng Shu and Naixue Xiong offered advice and modified the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Akbar, M.; Javaid, N.; Khan, A.H.; Imran, M.; Shoaib, M.; Vasilakos, A. Efficient Data Gathering in 3D Linear
Underwater Wireless Sensor Networks Using Sink Mobility. Sensors 2016, 16, 404. [CrossRef] [PubMed]

2. Liu, F.M.; Shu, P.; Jin, H.; Ding, L.; Yu, J.; Niu, D.; Li, B. Gearing Resource-poor Mobile Devices with Powerful
Clouds: Architectures, Challenges, and Applications. IEEE Wirel. Commun. 2013, 20, 14–22.

3. Feng, J.; Jiao, L.C.; Zhang, X.; Sun, T. Hyperspectral Band Selection Based on Trivariate Mutual Information
and Clonal Selection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4092–4105. [CrossRef]

http://dx.doi.org/10.3390/s16030404
http://www.ncbi.nlm.nih.gov/pubmed/27007373
http://dx.doi.org/10.1109/TGRS.2013.2279591


Sensors 2016, 16, 1706 24 of 26

4. Shu, W. Quantum-Inspired Genetic Algorithm Based on Simulated Annealing for Combinatorial
Optimization Problem. Int. J. Distrib. Sens. Netw. 2009, 5, 64–65. [CrossRef]

5. Ge, X.; Huang, X.; Wang, Y.; Chen, M. Energy-Efficiency Optimization for MIMO-OFDM Mobile Multimedia
Communication Systems with QoS Constrains. IEEE Trans. Veh. Technol. 2014, 64, 2127–2138. [CrossRef]

6. Saad al-sumaiti, A.; Ahmed, M.H.; Salama, M.M.A. Smart Home Activities: A Literature Review.
Electr. Power Compon. Syst. 2014, 42, 294–305. [CrossRef]

7. Fan, X.; Yuan, C. An Improved Lower Bound for Bayesian Network Structure Learning. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI-2015), Austin, TX, USA, 25–29 January 2015;
pp. 2439–2445.

8. Li, N.; Martínez, J.F.; Díaz, V.H. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor
Networks Using Fuzzy Logic. Sensors 2015, 15, 19541–19559. [CrossRef] [PubMed]

9. Fallahpour, A.; Beyranvand, H.; Salehi, J.A. Energy-Efficient Manycast Routing and Spectrum Assignment
in Elastic Optical Networks for Cloud Computing Environment. J. Lightw. Technol. 2015, 33, 4008–4018.
[CrossRef]

10. Kim, K.; Jin, J.-Y.; Jin, S.-I. Classification between Failed Nodes and Left Nodes in Mobile Asset Tracking
Systems. Sensors 2016, 16, 240. [CrossRef] [PubMed]

11. Fan, X.; Malone, B.; Yuan, C. Finding Optimal Bayesian Network Structures with Constraints Learned from
Data. In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI-2014), Quebec City,
QC, Canada, 23–27 July 2014; pp. 200–209.

12. Brush, A.J.B.; Lee, B.; Mahajan, R.; Agarwal, S.; Saroiu, S.; Dixon, C. Home automation in the wild: Challenges
and opportunities. In Proceedings of the International Conference on Human Factors in Computing Systems
(CHI 2011), Vancouver, BC, Canada, 7–12 May 2011; pp. 2115–2124.

13. Kumar, S. Ubiquitous Smart Home System Using Android Application. Int. J. Comput. Netw. Commun. 2014,
6, 33–43. [CrossRef]

14. Katharina, R. An unsupervised recommender system for smart homes. J. Am. Intel. Smart Environ. 2014, 6,
21–37.

15. Vavilov, D.; Melezhik, A.; Platonov, I. Healthcare Application of Smart Home User's Behavior Prediction.
In Proceedings of the 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 10–13 January 2014; pp. 323–326.

16. Wan, J.; O’Grady, M.J.; O’Hare, G.M.P. Dynamic sensor event segmentation for real-time activity recognition
in a smart home context. Pers. Ubiquit. Comput. 2015, 19, 287–301. [CrossRef]

17. Meng, Z.; Lu, J. A Rule-based Service Customization Strategy for Smart Home Context-aware Automation.
IEEE Trans. Mob. Comput. 2016, 15, 558–571. [CrossRef]

18. Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using Collaborative Filtering to Weave an Information
Tapestry. Commun. ACM 1992, 35, 61–70. [CrossRef]

19. Darabkh, K.A.; Ismail, S.S.; Al-Shurman, M.; Jafar, I.F.; Alkhader, E.; Al-Mistarihi, M.F. Performance
evaluation of selective and adaptive heads clustering algorithms over wireless sensor networks. J. Netw.
Comput. Appl. 2012, 35, 2068–2080. [CrossRef]

20. Si, L.; Si, L.; Jin, R.; Jin, R. Unified filtering by combining collaborative filtering and content-based filtering
via mixture model and exponential model. In Proceedings of the 2004 ACM CIKM International Conference
on Information and Knowledge Management, Washington, DC, USA, 8–13 November 2004; pp. 156–157.

21. Claypool, M. Combining Content-Based and Collaborative Filters in an Online Newspaper. In Proceeding of
Recommender Systems Workshop at Acm Sigir, Berkeley, CA, USA, 19 August 1999.

22. Gemmell, J.; Schimoler, T.; Mobasher, B.; Burke, R. Resource recommendation in social annotation systems:
A linear-weighted hybrid approach. J. Comp. Syst. Sci. 2012, 78, 1160–1174. [CrossRef]

23. Gong, J.; Gao, M.L.; Xu, B.; Wang, W. A hybrid recommendation algorithm based on social networks.
In Proceedings of the International Conference on Heterogeneous Networking for Quality, Reliability,
Security and Robustness (QSHINE), 2015 11th International Conference on, Taipei, Taiwan, 19–20 August
2015; pp. 329–334.

24. Vahedian, F. Weighted hybrid recommendation for heterogeneous networks. In Proceedings of the 8th ACM
Conference on Recommender systems, Foster City, Silicon Valley, CA, USA, 6–10 October 2014; pp. 429–432.

25. Wang, P.; Akyildiz, I.F. Spatial correlation and mobility-aware traffic modeling for wireless sensor networks.
IEEE ACM Trans. Netw. 2011, 19, 1860–1873. [CrossRef]

http://dx.doi.org/10.1080/15501320802554992
http://dx.doi.org/10.1109/TVT.2014.2310773
http://dx.doi.org/10.1080/15325008.2013.832439
http://dx.doi.org/10.3390/s150819541
http://www.ncbi.nlm.nih.gov/pubmed/26266412
http://dx.doi.org/10.1109/JLT.2015.2461449
http://dx.doi.org/10.3390/s16020240
http://www.ncbi.nlm.nih.gov/pubmed/26901200
http://dx.doi.org/10.5121/ijcnc.2014.6103
http://dx.doi.org/10.1007/s00779-014-0824-x
http://dx.doi.org/10.1109/TMC.2015.2424427
http://dx.doi.org/10.1145/138859.138867
http://dx.doi.org/10.1016/j.jnca.2012.08.008
http://dx.doi.org/10.1016/j.jcss.2011.10.006
http://dx.doi.org/10.1109/TNET.2011.2162340


Sensors 2016, 16, 1706 25 of 26

26. Lai, S.; Liu, Y.; Gu, H.; Xu, L.; Liu, K.; Xiang, S.; Zhao, J.; Diao, R.; Xiang, L.; Li, H.; Wang, D. Hybrid
Recommendation Models for Binary User Preference Prediction Problem. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining (KDD Cup’17), San Diego, CA,
USA, 21–24 August 2011.

27. Castello, C.C.; Chen, R.X.; Fan, J.; Davari, A. Context aware wireless sensor networks for smart home
monitoring. Int. J. Auton. Adapt. Commun. Syst. 2013, 6, 99–114. [CrossRef]

28. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
[CrossRef]

29. Hofer, T.; Schwinger, W.; Pichler, M.; Leonhartsberger, G.; Altmann, J.; Retschitzegger, W. Context-Awareness
on Mobile Devices—The Hydrogen Approach. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences 2003, Big Island, HI, USA, 6–9 January 2003.

30. Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-based collaborative filtering recommendation algorithms.
In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1 May 2001;
pp. 285–295.

31. Deshpande, M.; Karypis, G. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 2004, 22,
143–177. [CrossRef]

32. Ricci, F.; Rokach, L.; Shapira, B. Recommender Systems Handbook, 2nd ed.; Springer: Berlin, Germany, 2015.
33. Krause, A.; Smailagic, A.; Siewiorek, D.P. Context-aware mobile computing: Learning context-dependent

personal preferences from a wearable sensor array. IEEE Trans. Mob. Comput. 2006, 5, 113–127. [CrossRef]
34. Chen, A. Context-Aware Collaborative Filtering System: Predicting the User’s Preference in the Ubiquitous

Computing Environment. In International Symposium on Location & Context-Awareness; Springer: Berlin,
Germany, 2005; Volume 3479, pp. 244–253.

35. Pazzani, M.J.; Billsus, D. Content-based Recommendation Systems. In The Adaptive Web; Springer: Berlin,
Germany, 2007; pp. 325–341.

36. Ono, C.; Kurokawa, M.; Motomura, Y.; Asoh, H.A. Context-Aware Movie Preference Model Using a
Bayesian Network for Recommendation and Promotion. In Proceedings of the 11th International Conference
(UM 2007), Corfu, Greece, 25–29 July 2007; pp. 385–389.

37. Vahedian, F.; Burke, R. Predicting Component Utilities for Linear-Weighted Hybrid Recommendation.
In Proceedings of the 6th ACM RecSys Workshop on Recommender Systems and the Social Web, Foster City,
CA, USA, 6 October 2014.

38. Burke, R. Hybrid Web Recommender Systems. In The Adaptive Web; Springer: Berlin, Germany, 2007;
Volume 4321, pp. 377–408.

39. Greg, W.; Gary, B. An Introduction to the Kalman Filter; University of North Carolina: Chapel Hill, NC,
USA, 2006.

40. Chuntao, W.; Jim-hyung, K.; Keun-yung, B.; Jiangqun, N.; Sung-jea, K. Robust digital image stabilization
using the Kalman filter. IEEE Trans. Consum. Electron. 2009, 55, 6–14.

41. André, H.; Oliver, M. Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut.
2009, 13, 173–182.

42. Chen, S.Y. Kalman Filter for Robot Vision: A Survey. IEEE Trans. Ind. Electron. 2012, 59, 4409–4420. [CrossRef]
43. Guy, S. Tutorial on evaluating recommender systems. In Proceedings of the Fourth ACM Conference on

Recommender, RecSys 2010, Barcelona, Spain, 26–30 September 2010.
44. Avishy, C.; Gurfil, P.; Kanevsky, D. Methods for Sparse Signal Recovery Using Kalman Filtering With

Embedded Pseudo-Measurement Norms and Quasi-Norms. IEEE Trans. Signal Process. 2010, 58, 2405–2409.
45. Shu, W.N.; Wang, W.; Wang, Y.J. A Novel Energy-efficient Resource Allocation Algorithm Based on Immune

Clonal Optimization for Green Cloud Computing. EURASIP J. Wirel. Comm. 2014, 64, 1–9. [CrossRef]
46. Hayajneh, T.; Mohd, B.J.; Imran, M.; Almashaqbeh, G.; Vasilakos, A.V. Secure Authentication for Remote

Patient Monitoring with Wireless Medical Sensor Networks. Sensors 2016, 16, 424. [CrossRef] [PubMed]
47. Tang, C.; Shokla, S.K.; Modhawar, G.; Wang, Q. An Effective Collaborative Mobile Weighted Clustering

Schemes for Energy Balancing in Wireless Sensor Networks. Sensors 2016, 16, 261. [CrossRef] [PubMed]
48. Simo, S.; Ville, T.; Kannala, J.; Rahtu, E. Adaptive Kalman filtering and smoothing for gravitation tracking

in mobile systems. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015.

http://dx.doi.org/10.1504/IJAACS.2013.052925
http://dx.doi.org/10.1016/j.comnet.2008.04.002
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1109/TMC.2006.18
http://dx.doi.org/10.1109/TIE.2011.2162714
http://dx.doi.org/10.1186/1687-1499-2014-64
http://dx.doi.org/10.3390/s16040424
http://www.ncbi.nlm.nih.gov/pubmed/27023540
http://dx.doi.org/10.3390/s16020261
http://www.ncbi.nlm.nih.gov/pubmed/26907285


Sensors 2016, 16, 1706 26 of 26

49. Chen, M.; Wan, J.; Gonzalez, S.; Liao, X.; Leung, V.C.M. A Survey of Recent Developments in Home M2M
Networks. IEEE Commun. Surv. Tutor. 2014, 16, 98–114. [CrossRef]

50. Yuan, W.; Deng, P.; Taleb, T.; Wan, J.F.; Bi, C.F. An Unlicensed Taxi Identification Model based on Big Data
Analysis. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1703–1713. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SURV.2013.110113.00249
http://dx.doi.org/10.1109/TITS.2015.2498180
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Discrete Kalman Filter Model 
	Hybrid Recommender System 
	Discrete Kalman Filter Model 

	The Weighted Hybrid Recommendation Algorithm 
	The Hybrid Recommendation Model 
	Optimal Adaptive Factor 
	The WHRA-KF Process 

	Experiments and Evaluation 
	Description of Dataset 
	Evaluation Metrics 
	The Analysis of Results 
	Influences of Sensor Networks 

	Conclusions 

