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Abstract: Coordinate measuring machines (CMM) are main instruments of measurement in laboratories
and in industrial quality control. A compensation error model has been formulated (Part I). It integrates
error and uncertainty in the feature measurement model. Experimental implementation for the
verification of this model is carried out based on the direct testing on a moving bridge CMM.
The regression results by axis are quantified and compared to CMM indication with respect to the
assigned values of the measurand. Next, testing of selected measurements of length, flatness, dihedral
angle, and roundness features are accomplished. The measurement of calibrated gauge blocks for
length or angle, flatness verification of the CMM granite table and roundness of a precision glass
hemisphere are presented under a setup of repeatability conditions. The results are analysed and
compared with alternative methods of estimation. The overall performance of the model is endorsed
through experimental verification, as well as the practical use and the model capability to contribute
in the improvement of current standard CMM measuring capabilities.

Keywords: CMM uncertainty; CMM error mapping; CMM verification; flatness measurement;
angle measurement; circularity measurement

1. Introduction

The needs of quality control demand tight standards of product inspection and the development
a reliable approach for the measurement of manufacturing parts supported by the industrial metrology.
Coordinate Measuring Machines (CMM) are versatile instruments used for precision inspection
in industrial verification rooms or in research laboratories. Capable of measuring complex parts,
a coordinate-measuring machine is a measuring system involving several steps. Firstly, the data
extraction of the spatial coordinates of points belonging to the surfaces of an artefact through a probe,
a complex sensor itself. Next, processing of the gathered data. Finally, the generation of geometry
substitution from fitting algorithms and its use for measurement result. A new model of CMM error
compensation by axis and the associated uncertainty estimation have been developed in [1].

An overall CMM error bounding is currently a standard approach for machine verification
to complement the best value of measurement. It is a black box treatment of machine bounds of
acceptance or verification by ISO 10360-2 standard. CMM’s acceptance or verification tests are useful
for performance verification and contractual agreement on CMM performance, but they are outside
the ordinary metrology chain of measurement traceability. Nevertheless, international standards
do not renounce to uncertainty estimation in CMM measurements, but they consider firstly the
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error, while uncertainty should be also considered, in particular to comply with ISO/IEC 17025 [2].
Complementing the ISO 10360-2 [3] verification test, the test uncertainty can be estimated by ISO
23165 [4]. In practical terms of CMM use, the indication can be bounded by the maximum permissible
error in the rated operating conditions, or for particular measurements ISO 15530-3 [5] can be used to
evaluate measurement uncertainty under strict procedures.

The aim of this study is to propose a new compensation error model for CMM measurements
based on the experimental behavior of the CMM, including the estimation of the associated uncertainty.
This work is presented in two parts. In Part I [1] the basic error model of length was developed
by introducing basic considerations of CMM measurement. A linear model of error by axis and its
aggregation was proposed. Part I of this work included and interpreted the models for flatness, angle
and dihedral angle measurement and roundness measurement. In Part II, the formulations obtained
in Part I of the paper are used to develop the experimental implementation. The experimental error
mapping from standard verification test of a moving bridge CMM is included in Section 2. The overall
interpretation of the model from experimental results is evaluated in Section 3. Next, in Section 4
the measurement model is implemented to evaluate the length and angle from calibrated artefacts
(gauge blocks), the roundness from a precision glass hemisphere and the flatness of the CMM granite.
Results are discussed and the overall performance of the model and its experimental validation and
use are analysed with concluding remarks.

2. CMM Experimental Error Mapping

2.1. The Mapping of Error by Axis

A Moving Bridge CMM TESA Micro-Hite 3D is used to evaluate experimentally its errors. Its field
of measurement is XxYxZ of 450 mm × 500 mm × 460 mm and it has a resolution of 1 µm. According
to ISO 10360-2, calibrated artefacts for bidirectional length measurements are used, in particular a set of
calibrated gauge blocks of grade 0 up to 100 mm nominal and grade 2 from 125 mm nominal onwards.
The uncertainty of those gages is below the resolution of the CMM, so that the deviations from the
calibrated length will be assigned to measurement error. Measuring is developed under controlled and
stable temperature at 20 ± 1 ◦C and the tests have been carried out by the same skilled member of our
team. The CMM is set up according to the manufacturer’s instructions, with the standard approach of
performing the measurement after compensating for any known bias.

The test includes five different gauge blocks from 50 mm to 300 mm nominal that cover at least
66% of the CMM field of measurement of every axis. Gauges are positioned at the middle of the
volume of the CMM (Figure 1). A set of five points on each block side in a bidirectional measurement
is followed for all three axes X, Y and Z, with five repetitions. A total of 50 measurements per gauge
block grouped into five series of bilateral measurements is taken. This grouping follows the gauge
block calibration certificate, where the assigned value of the block is obtained from five measured
points on a face, with reference to the opposite face. In the case of Z axis, standing on the granite table,
the second reference face in the bilateral measurement technique is the granite table itself. Ordinary
ISO verification test only requires three repetitions for repeatability verification. The study intends to
take advantage of the standard verification techniques with a different purpose of evaluating the mean
error and its variability on the three main axis positions included in the model proposed in Part I.

The measurements are obtained through a Renishaw probe of the minimum length compatible
with the step block measurement and choosing the probe of maximum tip diameter following the
good practices and CMM manufacturer recommendations.

The aggregated results of the verification of calibrated blocks aligned with each axis are shown in
Figure 2. The overall linear regression model yields an average error E of 2.95 µm. Even when the
verification only includes the three main axes the overall error result EMPE,L of 6.7 µm (prediction
bounds at 95% confidence) is in close agreement with the verification of the machine at the time of
acquisition (±6.7 µm over 300 mm) and a previous recent machine verification [6], both following



Sensors 2016, 16, 1705 3 of 18

direct application of the standard verification test ISO 10360-2. This ISO test evaluates an overall
model of maximum permissible error in the rated operating conditions of the machine and without
distinction of error by each axis.
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the basic assumption of the regression model of uniform variance across the known variable 
(homocedastic) is violated. The ISO verification test assumes the random error spread can grow by 
the length of measurement (heterocedactic) when proposes EMPE,L = A + BL as one of the possible 
models of error for the machine. Even when nothing is indicated in the ISO 10360-2 standard, this 
weakness of using the regression technique could be eventually overcome by weighting the 
measurement with the inverse of their variance [7]. In fact this behavior of uncertainty growing with 
length is also the basic model of uncertainty of calibrated gauge block sets. The growing spread with 
the length can be the sign of an aggregated behavior that ordinary ISO verification test does not 
separate by grouping the results of the three axes. 
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In the regression model, the length of the gauge blocks is the known variable and the error is
the random variable. The residual graph shows a spread growing with the length of measurement,
so the basic assumption of the regression model of uniform variance across the known variable
(homocedastic) is violated. The ISO verification test assumes the random error spread can grow by the
length of measurement (heterocedactic) when proposes EMPE,L = A + BL as one of the possible models
of error for the machine. Even when nothing is indicated in the ISO 10360-2 standard, this weakness of
using the regression technique could be eventually overcome by weighting the measurement with the
inverse of their variance [7]. In fact this behavior of uncertainty growing with length is also the basic
model of uncertainty of calibrated gauge block sets. The growing spread with the length can be the
sign of an aggregated behavior that ordinary ISO verification test does not separate by grouping the
results of the three axes.
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The verification, under proposed model, only checks the three axes independently. For this reason
the variability or spread of the measurements has not the clear heteroscedastic appearance that in the
bulk test exhibits: the residuals do not show a functional trend to grow with length, see Figures 3–5.
The regression by axis reflects that the mean error is approximately linear function with the length
of measurement. This underlying growing spread with the length is alike because in a CMM a main
source of error is the angular error of the machine [8]. These errors are captured by considering
independently each axis error.

Note that the gauge blocks are grade 0 until 150 mm and grade 2 over 150 mm. Nevertheless,
the length variability associated to the gauge grade difference is below the resolution of the CMM,
so no evidence of blocks’ quality influence is appreciated in the experimental results.

In Figure 3, only the results for the X axis are represented. The error sum of squares SSE is lower
than for the bulk model. The prediction bounds for the error are ±2.32 µm with a probability of 95%.
The R-square coefficient indicates that up to 70% of the variability is explained by the regression line.
It means that a new measurement by the X axis will be inside that interval around the model value at
95% level of confidence. A maximum spread or repeatability of 4.5 µm for the 300 mm block is obtained.
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With the same meaning of Figure 3, in Figure 4 the results corresponding to the Y axis are
represented. In this case, the linear model explains about 75% of the variability and the prediction
bounds are ±2.93 µm. The maximum repeatability in the Y axis is 3.95 µm.

The results of the verification by the Z axis are represented in Figure 5. The model shows
a fairly constant relationship of the average error over the Z range, compared with the X and Y
axes. As a consequence, R-square is low and shows only about a 50% variability explanation by
the regression line. The SSE shows a similar goodness of the model and the prediction bounds are
±1.53 µm. A maximum repeatability of 2.23 µm is obtained.

In addition, we must note that the values of adjusted R-square are close to those of R-square in
the regression by axis, so the sampled points has an effective contribution to R-square. Conversely,
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in the bulk model the adjusted R-square is even negative, so the aggregation of all points into a bulk
regression model does not contribute to the proposed regression model.

Sensors 2016, 16, 1705 5 of 18 

 

in the bulk model the adjusted R-square is even negative, so the aggregation of all points into a bulk 
regression model does not contribute to the proposed regression model. 

 
Linear model: 
    E(Ly) = Ay + By × Ly (μm) with Ly (mm) 
Coefficients (with 95% confidence bounds): 
    By = 2.563 × 10−2  (1.933 × 10−2, 3.193 × 10−2) 
    Ay = 2.015 (0.7768, 3.252) 
Prediction bounds average over range (dashed line) 
    Ûy = ±2.93 μm

Goodness of fit:
    SSE: 4.264 × 10−5 
    R-square: 0.755 
    Adjusted R-square: 0.7443 
    RMSE: 0.001362  

Figure 4. CMM error model by Y axis. 

 
Linear model: 
    E(Lz) = Az + Bz × Lz (μm) with Lz (mm) 
Coefficients (with 95% confidence bounds): 
    Bz = −7.192 × 10−3 (−1.049 × 10−2, −3.897 × 10−3) 
    Az = 1.527 (0..8742, 2.181) 
Prediction bounds average over range (dashed line) 
    Ûz = ±1.53 μm 

Goodness of fit: 
    SSE: 1.107 × 10−5 
    R-square: 0.4822 
    Adjusted R-square: 0.4587 
    RMSE: 0.0007094  

Figure 5. CMM error model by Z axis. 

Figure 4. CMM error model by Y axis.

Sensors 2016, 16, x FOR PEER  5 of 19 

 

In addition, we must note that the values of adjusted R-square are close to those of R-square in 

the regression by axis, so the sampled points has an effective contribution to R-square. Conversely, 

in the bulk model the adjusted R-square is even negative, so the aggregation of all points into a bulk 

regression model does not contribute to the proposed regression model. 

 
Linear model: 
    E(Ly) = Ay + By × Ly (µm) with Ly (mm) 
Coefficients (with 95% confidence bounds): 
    By = 2.563 × 10−2  (1.933 × 10−2, 3.193 × 10−2) 
    Ay = 2.015 (0.7768, 3.252) 
Prediction bounds average over range (dashed line) 
    Û y = ±2.93 µm 

Goodness of fit: 
    SSE: 4.264 × 10−5 
    R-square: 0.755 
    Adjusted R-square: 0.7443 
    RMSE: 0.001362  

Figure 4. CMM error model by Y axis. 

 
Linear model: 

    E(Lz) = Az + Bz × Lz (µm) with Lz (mm) 

Coefficients (with 95% confidence bounds): 

    Bz = −7.192 × 10−3 (−1.049 × 10−2, −3.897 × 10−3) 

    Az = 1.527 (0.8742, 2.181) 

Prediction bounds average over range (dashed line) 

    Û z = ±1.53 µm 

Goodness of fit: 

    SSE: 1.107 × 10−5 

    R-square: 0.4822 

    Adjusted R-square: 0.4587 

    RMSE: 0.0007094  

Figure 5. CMM error model by Z axis. 

 

 

Figure 5. CMM error model by Z axis.



Sensors 2016, 16, 1705 6 of 18

There are two methodological points about the former model. First, the bilateral measuring
following the recommendations of ISO 10360 on the faces of a gauge block is properly compensated
against slight misalignment of the block with the measurement axis and the five points on each
face determine a least-squares plane of reference to the points of the opposite face, following
recommendation of ISO 10360-2 Appendix C. This criterion of least-squares averaging the block
face plane is in accordance with the reference ISO standard and its behavior has been experimentally
tested versus the minimum zone tolerance alternative [9], with consistent good results. A second point
of interest is the meaning of the overall prediction of error bounds for a new single observation or
measurement. It will include the variability estimation by the mean square error for n − 2 degrees
of freedom, but also the error caused by the variance of the slope of the regression line, amplified by
the distance of the value to the centroid of the dataset and the variation of the centroid properly [10].
The formulation of the prediction bounds P for the regression model (E = A + Bx), with a dataset of
size n, it is given by Equation (1), with t being the critical value at 95% confidence of the t-student with
n − 2 degrees of freedom.

P = y± t
√

SSE
n−2

(
1 + 1

n + L−L
Sxx

)
;

where SSE = ∑ (Ei − A− B · Li)
2; Sxx = ∑ (L− L)2; L = ∑ Li

n ;
(1)

2.2. CMM Repeatability Estimation

The repeatability results expressed as the standard deviation of the results must be incorporated
into the uncertainty budget [11]. Nevertheless, the ISO 10360-2 defines R0 as the range (maximum
minus minimum value). In the case of a set of measures of non-calibrated artefacts, the mean value is
not an estimation of the true value due to the presence of error. When measuring calibrated artifacts the
difference between the mean value of the measurements and the assigned value to the calibrated gage
can be considered a bias correction. Consequently, the standard deviation of the measurements under
repeatable condition is a contribution to the uncertainty. Repeatability conditions include the same
experimental hardware (CMM and gauges), the same operator, used under the same measurement
operational procedure, in the same location and with repetitions over a short period of time.
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Under the rated operating conditions of the CMM, three repetitions are specified in ISO 10360-2,
just for verification purposes. Based on a such a reduced number of samples, three, a direct estimation
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of the standard deviation of the mean could include a big deviation [12,13]. In our test up to
50 measurements to determine 5 error values are used for each length of test, that is presumed more
representative of the CMM behavior. In the verification test of Figures 3–5, the maximum repeatability
has been 4.5 µm and the grand average by axes and the different lengths is 2.7 µm, Figure 6.

2.3. CMM Probe Error Estimation

While the estimation of length error is an application to distance measurement or diameters,
in general probe error must be included in the estimations of form tolerance. The verification of
the maximum permissible error of the probe EP,MPE is accomplished by measuring the roundness
error of calibrated artefacts. According to ISO 10360-5 [14], the evaluation should be made with the
radii range (maximum minus minimum) after determining the minimum least-squares sphere of the
dataset from the measurement of a reference sphere. Note that the tolerance of form can be assessed
by the least-squares or minimum zone tolerance criteria, and the last one is preferred by ISO 1101.
Nevertheless, in general the least-squares criterion is more robust in the presence of outliers and its
algorithm is widespread and easier.

According to ISO 10360-5, probe error should be verified positively before proceeding with ISO
10360-2 length verifications, and it is checked at each initial CMM setup on its own reference sphere of
about 30 mm diameter. Therefore, the probe center offset and the form error in the probe is always
evaluated before starting measuring operations. For the former batteries of measurements, the same
probe of 4 mm nominal diameter has been used. An overall mean indicated error of sphericity of
0.004 mm has been appreciated by the CMM across probe setups.

An independent verification of the probe error will be obtained in Section 4 through a certified
glass hemisphere with roundness of tens of nanometers. Even when ISO 10360-5 mentions the error
of sphericity by minimum least-squares criteria, the standard is certified in its roundness, not its
sphericity, thus the measurement trials will be in planes to get circles and evaluate their roundness.

3. Error and Uncertainty Model Overall Evaluation Results

In Part I of the model development, the relationship between the Abbé error and the slope B of
error model by each axis was formulated. This linear error propagation model is valid for any length
dimension, so the L matrix is singular, also evident by inspection (Equation (2)). The pseudoinverse
allows getting a particular solution of the linear system. We can estimate the errors B from the error
by each axis through the models of Figures 3–5 for a reference length of 150 mm = Lx = Ly = Lz,
and measured by the center of the volume of work by each axis. In our machine, the Abbé distances
by the middle of the work volume are Dx = 225 mm, Dy = 250 mm and Dz = 50 mm, approximately.
With those inputs the matrix results in Equation (2), where bold symbols denote a matrix or vector.

These values of overall angular errors in the XY plane are fully consistent with those found in the
verification through the squareness of a calibrated artefact in the same machine [3]:

 Bx · Lx

By · Ly

Bz · Lz

 =

 0 −Dy Dz

Dx 0 −Dz

−Dx Dy 0


 θx

θy

θz

 ; B = D · θ;

 −2.7225
3.8445
−1.0788

 [µm] =

 0 −250 50
225 0 −50
−225 250 0

 · 103[µm] ·

 θx

θy

θz

→
 θx

θy

θz

 =

 0.1580
0.0985
−0.0548

 · 10−4[rad] =

 3.25
2.03
−1.13

 [′′]

(2)

After considering the average explained variability of the linear model, the non-explained
variability in the regression model can be incorporated into the uncertainty budget. This approach is
used when the overall estimation EL,MPE is taken as a first estimation of the machine uncertainty [11] in
those testing conditions. In the case of our proposed model the non-explained uncertainty is sensibly
lower. For a proper estimation of the uncertainty in other valid operative conditions of the CMM
operational range, all other factors that introduce variability should vary in the experimentation [15,16].
Considering the variability of the error a random variable, and due to the real interdependence of
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CMM hardware in the error of the coordinates, we can expect covariance in the error between axes,
so four out of the seven testing positions in the ISO bulk model are diagonal directions in the cube of
the volume of measurement. Because the proposed model only evaluates variances by axis, the issue
is whether the variability of error is infra-evaluated or not.

Two supporting facts of the consistency of the model can be pointed out: As already mentioned,
the overall maximum permissible error by the ISO model (seven trial directions) and the proposed
model are very similar, about ±6.7 µm. The second fact is the result of the regression. Most of the total
variability is explained by axis and it is captured by the proposed model. Note that the SSE in the
bulk model is 8 × 10−4, while the SSE sum from the three different axes is 8 × 10−5, so a big portion
of the non-explained variability present in the bulk model or the ISO model is explained through
the proposed model by axis, reducing of an order of magnitude the sum square error, with little
residual covariance.

As already mentioned, the verification of the CMM following ISO 10360 verification tests produces
an overall error quantification very similar to the error model presented just by evaluating the
three main axes. In this sense the proposed model by axis seems to capture the variability of error of
the CMM. Next, an additional trial on the XY plane is accomplished to measure directly the errors and
compare the experimental result with the predicted values of the proposed model. The measurement
of a gage block of nominal 175 mm is checked, oriented in a direction of 45◦ with respect to Z and the
projection on the XY plane is 30◦ with respect to X. The direct estimation of the standard uncertainty
u is given by Equation (3), where the estimation of the variance is based for small samples on the
t-distribution with n − 1 degrees of freedom.

Set of measurements. CMM Indication [mm]

xi = (174.99681, 175.00248, 175.00183, 174.99931, 175.00067) ; n = 5

x = 175.00022 mm; s =
√

(xi−x)2

n−1 = 2.256 µm; u =
√

n−1
n−3

s√
n = 1.43 µm

(3)

Considering the uncertainty by axis estimated by the proposed model, the standard uncertainty
by the law of propagation of uncertainty can be estimated, under the initial hypothesis of independent
variables, see Part I of this work, by Equation (4).

Noteworthy, the uncertainty model resulting from the error model of length does not depend
on the length itself in a first order approach. This means that the uncertainty does not grow with the
length by axis in a first order approach. This has a correspondence with the homocedastic behavior of
error in Figures 3–5, where the error variability is approximately constant. Note that the independence
of x1, x2, y1, y2, z1, z2 could be alike when only one axis varies at a time. The independence of x1 and
x2, for instance, is also supported by following good practices of bilateral measurement, according to
the recommendations of ISO 10360-2.

L = 175 mm; ϕ = 45◦; θ = 30◦ → cosϕ = sinϕ = 1√
2

; sinθ = 1
2 ; cosθ =

√
3

2

From the error models Fig X− Y , the expanded uncertainty (coberture coefficient k = 2) [µm] :
Ûx = 2.32; Ûy = 2.93; Ûz = 1.53
Thus, the standard uncertainties ux = 1.16; uy = 1.47; uz = 0.77
u2 = 2 (cosϕcosθ)2 · ux

2 + 2 (cosϕsinθ)2 · uy
2 + 2sin2 ϕ · uz

2 = 1.01 + 5.37 + 5.85 = 2.13 µm2;
u = 1.46 µm

(4)

The uncertainty obtained by the direct estimation from the sample of measurements (Equation (3))
and that obtained from the proposed model of independent variable and standard uncertainty by
axis (Equation (4)) can be compared. The results are the same value, u = 1.4 µm. The proposed
model captures most of the error variability (uncertainty), so the covariance can be disregarded in
a first order approach. Further experimental evidence should corroborate these results following the
methodology. The error model by axis based on length measurement captures the trend of the errors
and the remaining non-explained or random variability becomes uncertainty, and it is uniform by each
axis in a first order approach for any length.
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4. Experimental Feature Results and Discussion

4.1. Rectangular Gauge Blocks

Case 1 is a calibrated gauge block of nominal length 175 mm measured with azimuth angle
with respect to the Z axis, and with respect to the X axis. A proper orientation of the block axis
is corrected properly by the normal to the faces through the measurement process. It is measured
50 times, from five repetitions in a bilateral technique with 10 points sampled, five on each block face.
The results are compared to those expressed by the ordinary model of EL,MPE. In addition, Case 2 is
a calibrated gauge block of 300 mm lying on the granite table with its axis oriented with respect to X.
It is measured five times on five points on the two faces, so a total of 50 times, either way. The results
for both cases are listed in Table 1.

In Case 1, there is no remarkable difference between models in the best value of measurement
after correction. The proposed model and the ISO model pass by the centroid of the dataset and
the block of 175 mm is by the centre of the range of verification (50 ÷ 300 mm). Nevertheless, the
estimation of uncertainty is smaller by our proposed model with respect the EL,MPE. In Case 2, a block
of 300 mm by the extreme of the range of verification is used. The proposed model presents a better
result of the measured value, more accurate and precise than if the standard ISO model was applied.

Table 1. Length tests from calibrated artefacts.

CASE 1

Gauge block nominal 175 mm with certified calibrated length 175.00120 ± 0.00022 mm
(expanded uncertainty k = 2).
Mean indication L= 175.00022 mm (without CMM bias correction).
Position: ϕ = 45◦; θ = 30◦

Model ISO Proposed Model
Lm = L + bias ± EL,MPE = Lnm ± EL,MPE Lm = L + E ± Û = Lnm ± Û
Bias = 2.95 µm (by Figure 2) Lnm = 175.00442 mm
EL,MPE = 6.74 µm (by Figure 2) E = Lnm− L = 4.20 µm
Lnm = L + bias = 175.00022 + 0.00295 = 175.00317 mm Û = 3.71 µm
Lm = 175.003 ± 0.0067 mm Lm = 175.004 ± 0.0037 mm

CASE 2

Gauge block nominal 300 mm with certified calibrated length 299.99939 ± 0.00026 mm
(expanded uncertainty k = 2).
Mean indication L = 299.99402 mm (without CMM bias correction)
Position: ϕ = 0◦ ; θ = 30◦

Model ISO Proposed Model
Lm = L + bias ± EL,MPE = Lnm ± EL,MPE Lm = L + E ± Û = Lnm ± Û
Bias = 2.95 µm (by Figure 2) Lnm = 300.00019 mm
EL,MPE = 6.74 µm (by Figure 2) E = Lnm− L = 0.00617 mm
Lnm = L + bias = 399.99402 + 0.00295 = 399.99697 mm Û = 0.00370 mm
Lm = 299.997 ± 0.0067 mm Lm = 300.000 ± 0.0037 mm

4.2. Flatness of the CMM Granite

A sample of 30 points is taken from the granite of the CMM by the center of the measurement
volume, Table A1. The calculation of flatness by an accurate algorithm [17] results in a normal direction
of the surface by the Z axis of the CMM and it identifies the critical points of the sampled surface,
Table 2.

Table 2. Granite flatness measurement. CASE 3. Critical points (2,4–3,20), Data Table A1, Values in (mm).

u v t MZFuvt Euvt Ûuvt

C1 (−0.183,23.678,0) (−153.594,101.860,0) (13.753,13.039,0.002) 0.0019995 0.0002295 0.00130
C2 (−0.183,23.678,0) (−153.594,101.860,0) (−139.841,114.899,0.002) 0.0019995 −0.0012973 0.00283
C3 (−0.183,23.678,0) (−153.594,101.860,0) (13.936,−10.639,0.002) 0.0019995 0.0017561 0.00023
C4 (−0.183,23.678,0) (−153.594,101.860,0) (−139.658,91.221,0.002) 0.0019995 0.0002294 0.00130

Mean 0.002 0.00023
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From the calculation of the four configurations a flatness value of 0.002 mm after indication
correction with the mean error is obtained. A conservative uncertainty estimation can be the maximum
value from the four configurations, 0.00283 mm. In the proposed model the uncertainty from error
variability (Equation (5)) is estimated. Additionally, the uncertainty of flatness from the projection of the
vectorial point uncertainty in the direction of the surface [14] can also be directly estimated. Note the
basic agreement for the sample between the proposed method (Equation (5)) and the alternative
(Equation (6)):

Uk=2 = 2

√
c− 1
c− 3

s√
c

; s =

√
(Ei − E)2

c− 1
→ Uk=2 = 0.00216 mm (5)

Uk=2 =
√

2 · Û · n =
√

2·(0.00232, 0.00293, 0.00153) · (0, 0, 1) = 0.00216 mm (6)

From the former calculations a flatness measurement of 0.002 ± 0.00216 mm can be offered.
Note that the granite is flat about 0.002 from indication, but applying the proposed model an estimation
of uncertainty can be provided. The uncertainty and flatness are in fact at the same level of the mean
repeatability of the machine, estimated in Section 2 of about 0.003 mm. Therefore, we can infer that the
granite is flat at the level of the CMM repeatability.

4.3. Angle Blocks

Angle blocks are realization of an angle defined by two faces. Regardless of the theoretical
consideration about the unit of measurement (radian or dimensionless) [18] the angle blocks can be
evaluated from the proposed model of direct vectorial calculation incorporating the errors and the
uncertainty of the distance between the critical points that define the each face of the angular block.
Therefore, the dihedral angle model and the minimum zone criteria are used.

An angle block calibrated with assigned value in the interval 45◦ ± 2” is measured with its
axis aligned with the Y axis of the CMM, Figure 7, with CMM coordinate indication in Table A2.
The uncertainty of the block is beyond of the resolution of the CMM. Note that the resolution of the
CMM 0.001 mm is equivalent for a block face of 50 mm long to the resolution of 2.10–5 rad or 4”.
In addition, the flatness of the faces has been verified through the CMM and the indication is not less
than 0.004 mm in the datasets, equivalent to 16” on each face. This gives an order of magnitude of the
smaller angle that could be confidently resolved by the CMM.

Like in the rectangular gauge blocks, the probe error is not considered in the error budget, because
the probe contact point is almost the same when measuring each face. The comparison between the
indication by the least-squares method and the minimum zone method shows a closer result to the
assign value by the least-squares method before any correction, Table 3. After correction, the proposed
model presents a better result, but more importantly, it provides an uncertainty estimation. The final
result is very close to the assigned value of the standard. The uncertainty interval at the order of
minute is consequence of the resolution of the machine and the measured flatness of the block gauges.
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Table 3. Angle block measurement results. CASE 4. Angle gauge block 45◦ ± 2”. Data Table A2.

Dataset # Critical
Points RF

Critical
Points LF

Angle from
Indication LS α

Angle from
Indication MZ α

Error Eα Angle
αnm

Uncertainty ± Uα

1 (7,3–8,10) (8,5–6,1) 44◦59′37” 45◦3′38” −3′48” 44◦59′40” ±3′40”
2 (3,10–2,7) (8,1–10,7) 45◦0′7” 45◦3′44” −3′43” 45◦0′1” ±3′14”
3 (8,1–5,10) (10,3–9,6) 45◦0′24” 45◦0′53” −0′48” 45◦0′6” ±0′16”

Measurement result 45◦0′9” 45◦2′45” −2′30” 44◦59′55” ±3′40”

It must be considered that the error regression interval has been established over a range from
50 to 300 mm in Section 2, so the CMM error compensation at the lower bound is thus being used.
Also remarkable is the good behavior of the MZ model even when the angular blocks are ordinarily
calibrated by the least-squares method. Even when the minimum zone tolerance evaluates better
the flatness of surfaces as the geometrical substitution of the physical surface, the gauge blocks are
calibrated using the least-squares method, so a formerly proper agreement is expected between the
indication and the assigned value of the standards through the least-squares method [9]. This is the
behavior in Case 4, when calculating from indication directly. Nevertheless, the minimum zone is more
effective when the error correction is applied, with the advantage of giving an uncertainty estimation.
Because of a sample of size 3, the estimation based on the t-student distribution is not feasible.
A conservative estimation of uncertainty can be the maximum reached across the three samples.
Another alternative for very small samples is to estimate uncertainty from the Craig model [13].
Its result (Equation (7)) is not very different from the estimation carried out directly through the model:

Craig model : u2 = m−1
2

(
Γ(m−1

2 )
Γ(m

2 )

)2
s2; s =

√
(Ei−E)2

m−1 = 1.71′

For m = 3 u2 =

(
Γ(1)
Γ( 3

2 )

)2
s2 =

(
1

0.8862

)2
s2 → u = 1.93′ → Uk=2 = 2 · 1.93′ = 3.86′ = 3′52′′

(7)

4.4. Glass Hemisphere

A glass hemisphere by Taylor Hobson with roundness error of tens of nanometer is measured in
two planes, Figure 8. Its roundness error is below the resolution of the CMM, so the difference from
a perfectly round indication should be assigned to the CMM’s overall error, uncertainty or the use of
an approximate roundness algorithm. The two set of data are included in Tables A3 and A4.
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The accurate calculation of roundness from indication is accomplished by the least-squares method based
on the well-known algorithm Levenberg-Marquardt and by the accurate minimum zone method [19].
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Figure 8. Measuring a glass hemisphere in two planes.

The roundness results show the error by the CMM and the probe (about 0.004 mm). Using the
ISO model the roundness results from an indication cannot be adjusted. The bounds EL,MPE = 6.7 µm
cannot be applied. The maximum repeatability of the CMM 0.0045 mm or even the average of 0.003 mm
can hardly bound a nominal roundness in the order of 0.005 mm.

The use of the proposed model allows correcting the calculated roundness from an indication.
The maximum uncertainty calculated by the method can be adopted as a conservative measure of the
uncertainty of the error. In the two cases of application, Case 5 in Tables 4 and 5, Case 6 in Tables 6
and 7, respectively, the uncertainty of the error and the maximum uncertainty estimated through the
model are of the same order of magnitude, 1.96 and 1.47 µm. Case 5 represents a full circle with more
sampled points, but Case 6 only measures a half of a circle on the hemisphere.

Table 4. Roundness measurement results of Case 5. Roundness from dataset Table A3. Values in (mm).

MZR R a b

Minimum Zone 0.00522 26.03354 232.02654 253.39571
Least squares 0.00531 26.03335 232.02664 253.39580

Table 5. Roundness measurement Case 5. Error and uncertainty results for minimum zone criteria.
Values in (mm).

Critical Points Error and Uncertainty
Point # x (mm) y (mm) Critical points 8,15 21,29 8,29 21,15

8 222.871 277.769 E (mm) −0.000046 −0.001841 −0.000147 0.000844
21 256.453 244.383 U [mm] (k = 2) 0.000130 0.001960 0.000200 0.000736
29 226.953 227.864 Mean value E [mm] −0.00030
15 251.574 270.586 Max value U [mm] 0.00196

Uncertainty of E (n = 4; k = 2) 0.0015

s =

√
(Ei−E)2

n−1 ; u =
√

n−1
n−3

s√
n ; U = k · u

MZRm = MZR + E ± Û = 0.00522 − 0.00030 ± 0.00196 = 0.005 ± 0.00196 mm

Table 6. Roundness measurement results Case 6. Roundness from dataset Table A4. Values in (mm).

MZR R a b

Minimum Zone 0.00568 25.36138 253.39556 −556.72247
Least squares 0.00712 25.35867 253.39569 −556.71841
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Table 7. Roundness measurement Case 6. Error and uncertainty results for minimum zone criteria.
Values in (mm).

Critical Points Error and Uncertainty

Point # x (mm) y (mm) Critical points 2,8 2,24 15,8 15,24

2 228.701 −430.499 E (mm) 0.000246 −0.000036 −0.000233 −0.000515
15 261.699 −414.988 U [mm] (k = 2) 0.000016 0.000003 0.000011 0.000030
24 279.314 −431.132 Mean value E [mm] −0.00013
8 235.451 −420.992 Max value U [mm] 0.00003

Uncertainty of E (n = 4; k = 2) 0.00002

s =

√
(Ei−E)2

n−1 ; u =
√

n−1
n−3

s√
n ; U = k · u

MZRm = MZR + E ± Û = 0.00568 − 0.00013 ± 0.00003 = 0.006 ± 0.00003 mm

Finally, the uncertainty of the full circle of Case 5 is estimated by the Monte Carlo method
based on 100,000 shots. Considering the expanded uncertainty from our model Û(k = 2) =
(0.00232,0.00293,0.00153) mm, the standard uncertainty can be obtained through u = (ux,uy,uz) =
(0.00116,0.001465,0.000765) mm. Using the Gaussian distributions N(0,ux) and N(0,uy), the results of
Figure 9 are obtained. Note that U(k = 2) = 0.00204 mm is very close to the maximum value obtained
for direct estimation of the model U(k = 2) = 0.00196 mm. The order of magnitude of the estimation
from the variability of the error, just from the four configurations of the solution, is U (k = 2) = 0.00147.
It must be noted that the Monte Carlo mean roundness is calculated directly from indication and gives
a result of 0.007 mm, higher than the 0.005 mm of the dataset of Case 5. This was observed before
in [19]. It is associated with the tolerance of form as distribution of positive value and the indirect
measurement of roundness obtained through a process of minimization. Nevertheless, the Monte
Carlo simulation of the roundness does not consider any error correction in the indication. Because the
hemisphere is free of roundness error at the resolution of the CMM, the roundness results are mainly
associated to the CMM repeatability of about 2.7 µm and a probe tip error of form of about 4 µm.
As a consequence, the result from just one sample based on the proposed model (Case 5) that includes
error correction is 5 ± 1.5 µm. It can be compared with the result from the Monte Carlo simulation
without any correction in the indication of 7 ± 2 µm. Noteworthy, the reference verification values of
the CMM, maximum permissible error EL,MPE = 6.7 µm or the maximum repeatability of R0 = 4.5 µm,
can serve little to a useful expression of the roundness measurement.Sensors 2016, 16, 1705 14 of 18 
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5. Conclusions

The experimental extraction of the error model by axis has been demonstrated feasible and useful.
The theoretical basis of the vectorial models of error propagation developed in Part I are endorsed by
the CMM experimental behavior.

The work developed suggests the recommendation of conducting CMM verification by following
standard ISO techniques, but with more repetitions than the standard three times. Up to five repetitions
are used in this work, but no less than four is recommended. This can allow extracting errors by axis
with a reasonable number of data for error regression. In addition, it would allow a direct estimation
of uncertainty from the variability of the error.

The homocedastic behavior of the non-explained variability of error around the linear trend is
a main advantage versus the conventional CMM ISO model of maximum permissible error. The model
by-axis has shown the capability of capturing most of the variability of the error or the measurement.
As a consequence, the non-explained variability of the measurement or the error becomes a contribution
to the overall estimation uncertainty. It is a direct calculation from the machine error model by axis
and through a proper vectorial composition in each measurement feature model.

The models of feature measurement based on coordinates under minimum zone tolerance criteria
present over-determination in terms of error and uncertainty in some cases. For instance, flatness or
roundness under minimum zone criteria are determined by four points. Those models give a unique
solution, but allowing multiple estimations of the error and uncertainty based on the same dataset.
This is an advantage more than a drawback towards an economy in CMM sampling. In the case of
simple length measurement or an angle on a plane, the best value solution, error and uncertainty
estimation, all three are unique through the proposed model.

The least-squares fittings are dominant in metrology for its robustness against outliers and
widespread algorithms, but they do not determine the critical points of the form tolerance. Therefore,
we can hardly profit from the analysis of errors based on the direct propagation of error and uncertainty
associated with the coordinate of those critical points. The proposed model of error and the derived
feature models could be approximately applied under least-squares fitting algorithms considering the
points closer to the feature under definition.

The estimation of uncertainty was discussed in the development of the models in Part I and it has
shown to be useful in the experimental trials in comparison with alternative estimations, in particular
versus the ordinary Monte Carlo method that requires to fix the distribution of uncertainty of the points
and an intense calculation in order to give just the uncertainty of one measurement. The proposed
model of error by axis is capable of getting the ordinate at the origin Ai or the error for each i-axis.
This can be adopted as an estimation of the point error of vectorial character, useful as an input to the
Monte Carlo method.

The proposed model of error compensation makes use of the basic techniques of the standard
model of maximum permissible error based on a first order approach of length errors on the zone of
interest inside the volume of measurement. It is presented as an affordable alternative to a detailed
mapping of coordinate errors. As regards big fields of measurement or just a quasi-linear CMM
behavior, a first attempt could be the use of regression models by ranges, in order to cover properly
the volume of measurement. Extensive experimental trials and results comparison should reinforce
the utility of the proposed model and its potential use in laboratories or industrial environment.
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Appendix A

Table A1. Granite flatness.

Point # x [mm] y [mm] z [mm]

1 150.569 161.800 −485.069
2 151.136 138.495 −485.068
3 137.383 125.456 −485.070
4 151.319 114.817 −485.068
5 138.866 103.311 −485.069
6 150.303 95.111 −485.068
7 137.885 84.617 −485.069
8 151.491 72.219 −485.068
9 141.419 64.847 −485.069

10 206.130 218.320 −485.070
11 186.961 202.538 −485.070
12 207.748 190.807 −485.069
13 189.576 130.952 −485.070
14 192.284 94.076 −485.070
15 247.065 194.149 −485.068
16 251.169 173.446 −485.069
17 264.555 118.727 −485.069
18 250.302 84.049 −485.068
19 266.562 75.570 −485.068
20 265.033 59.649 −485.070
21 249.690 44.504 −485.070
22 263.665 40.053 −485.068
23 249.230 25.474 −485.069
24 289.791 74.976 −485.070
25 305.326 29.075 −485.069
26 291.529 112.159 −485.068
27 305.250 103.548 −485.068
28 291.550 62.152 −485.070
29 310.033 35.141 −485.068
30 290.977 23.596 −485.070

Table A2. Angle block datasets.

LEFT FACE (LF) RIGHT FACE (RF)

Dataset # Point # x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

1

1 223.391 131.940 −479.883 254.591 91.711 −479.617
2 219.711 122.976 −479.884 250.055 102.574 −479.616
3 215.284 112.192 −479.884 246.235 111.721 −479.616
4 210.959 101.660 −479.884 241.530 122.981 −479.616
5 207.223 92.559 −479.885 237.607 132.371 −479.616
6 207.222 92.569 −484.329 237.602 132.374 −484.561
7 211.098 101.999 −484.329 242.478 120.712 −484.562
8 216.158 114.316 −484.328 246.361 111.405 −484.561
9 219.984 123.640 −484.328 249.718 103.376 −484.562
10 223.168 131.386 −484.328 253.548 94.212 −484.562
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Table A2. Cont.

LEFT FACE (LF) RIGHT FACE (RF)

Dataset # Point # x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

2

1 223.169 131.388 −480.184 254.292 92.425 −480.554
2 217.718 118.119 −480.185 250.579 101.327 −480.554
3 215.051 111.622 −480.185 246.421 111.260 −480.553
4 210.872 101.451 −480.185 242.201 121.368 −480.554
5 207.353 92.879 −480.185 238.628 129.927 −480.554
6 207.352 92.881 −484.349 238.623 129.933 −484.407
7 211.612 103.250 −484.349 242.358 121.002 −484.408
8 214.910 111.289 −484.349 245.694 113.009 −484.408
9 218.950 121.122 −484.348 249.929 102.875 −484.408
10 223.357 131.840 −484.348 254.222 92.588 −484.408

3

1 223.500 132.196 −480.200 254.303 92.395 −480.549
2 218.929 121.062 −480.200 250.952 100.421 −480.548
3 215.763 113.362 −480.200 245.875 112.576 −480.548
4 210.111 99.592 −480.201 241.529 122.983 −480.548
5 207.042 92.123 −480.201 238.649 129.877 −480.548
6 207.035 92.111 −485.026 238.649 129.872 −484.622
7 210.512 100.568 −485.026 242.328 121.055 −484.622
8 215.147 111.856 −485.025 246.452 111.184 −484.623
9 219.143 121.583 −485.025 251.199 99.834 −484.622
10 223.352 131.843 −485.025 254.316 92.407 −484.623

Table A3. Hemisphere datasets. (a) Plane Z constant.

Point # x [mm] y [mm]

1 205.976 254.255
2 206.318 258.106
3 207.360 262.263
4 209.214 266.456
5 211.945 270.467
6 214.987 273.581
7 217.545 275.526
8 222.852 278.254
9 227.663 279.547

10 231.866 279.914
11 237.052 279.422
12 239.983 278.663
13 244.596 276.667
14 248.560 273.976
15 251.555 271.071
16 255.067 265.963
17 256.590 262.452
18 257.689 258.139
19 258.013 252.699
20 257.509 248.634
21 256.434 244.868
22 254.394 240.594
23 251.271 236.368
24 247.770 233.160
25 243.252 230.401
26 238.871 228.770
27 236.053 228.164
28 230.943 227.869
29 226.934 228.349
30 221.842 229.914
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Table A4. Hemisphere datasets. (b) Plane X constant.

Point # y [mm] z [mm]

1 228.089 −432.084
2 228.701 −430.499
3 229.423 −428.951
4 230.208 −427.495
5 231.142 −425.993
6 232.255 −424.450
7 233.343 −423.134
8 235.451 −420.992
9 237.200 −419.522

10 239.410 −417.991
11 242.458 −416.348
12 246.687 −414.810
13 253.367 −413.853
14 258.186 −414.191
15 261.699 −414.988
16 265.688 −416.526
17 268.427 −418.036
18 271.400 −420.195
19 273.053 −421.691
20 274.557 −423.293
21 276.085 −425.224
22 277.075 −426.699
23 278.343 −428.955
24 279.314 −431.132
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