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Abstract: Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis
of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of
Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies,
simple and cost-effective methods for the sensitive and selective detection of hCG have always been
desired. In this work, we have developed a graphene oxide (GO)-based fluorescent platform for the
detection of hCG using a fluorescein isothiocyanate (FITC)-labeled hCG-specific binding peptide
aptamer (denoted as FITC-PPLRINRHILTR) as the probe, which can be manufactured cheaply and
consistently. Specifically, FITC-PPLRINRHILTR adsorbed onto the surface of GO via electrostatic
interaction showed a poor fluorescence signal. The specific binding of hCG to FITC-PPLRINRHILTR
resulted in the release of the peptide from the GO surface. As a result, an enhanced fluorescence
signal was observed. The fluorescence intensity was directly proportional to the hCG concentration in
the range of 0.05–20 IU/mL. The detection limit was found to be 20 mIU/mL. The amenability of the
strategy to hCG analysis in biological fluids was demonstrated by assaying hCG in the urine samples.

Keywords: graphene oxide; fluorescent biosensors; peptide aptamer; human chorionic gonadotropin;
antibody-free

1. Introduction

Human chorionic gonadotropin (hCG) is a glycoprotein hormone produced by the embryo and
presented in the blood and urine of pregnant women [1]. Recently, elevated levels of hCG were
found in many cancerous tumors, such as prostate cancer, testicular cancer, trophoblastic cancer
and gestational choriocarcinoma [2]. Thus, hCG can be regarded as a biomarker for the diagnosis
of pregnancy and some cancers. Because the lateral-flow immunoassay (the most commonly used
method for hCG detection) has trouble accurately quantifying the level of hCG, a few new techniques
have been made recently to determine hCG in blood and urine, such as enzymelinked immunosorbent
assay (ELISA) [3], fluorescent immunoassay [4], immunochromatography [5], photoluminescence [6,7],
surface plasmon resonance (SPR) [8] and electrochemical immunosensors [9–20]. These methods are
sensitive and selective, but they are usually expensive, time-consuming and labor intensive and require
the use of less stable antibodies. Moreover, the drive to produce disposable Point of Care Testing
(POCT) devices uses a lot of antibodies, much more than in test kits used in a medical laboratory. This is
by virtue of the very nature of design, sample handling, and equipment used by the skilled laboratory
technician, which is not available to the laboratory unskilled user of POCT devices. However, there is
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a question in manufacturing terms of the consistence of biologically produced antibody batches and
supply to meet the demand for POCT devices.

Of the alternatives to antibody-based sensing techniques, aptamer-based methods have become
popular over the past decade. Recently, peptide aptamers have attracted great attention as promising
candidates to replace antibodies since they are more stable and resistant to harsh environments and
can be readily prepared with the desired sequences to bind the specific targets. Using the in vitro
screening techniques, a large number of engineered peptide aptamers have been found and used
as the recognition elements for biosensing [21–25]. Also, with the phage display technique, Yang’s
group found an hCG-binding peptide aptamer (KD = 0.9 nM) with a sequence of PPLRINRHILTR [2].
The findings gave the researchers a hint that the peptide could be used as an hCG-receptor for
design of antibody-free biosensors. Typically, Lin and co-workers have developed two colorimetric
biosensors based on the specific interaction between peptide aptamer and hCG and the good catalytic
or optoelectronic properties of gold naoparticles (AuNPs) [26,27]. This AuNPs-based colorimetric
sensing technique is simple and does not require modification of any analyte-binding molecules onto
AuNPs. However, the unmodified AuNPs-based colorimetric assays show low sensitivity and poor
anti-interference ability for protein assays in biological samples because the presence of some matrix
components in biological fluids may protect or promote the aggregation of bare AuNPs [26,27].

It has been suggested that graphene oxide (GO) exhibits extraordinarily high quenching ability
toward fluorescently labeled (e.g., dye, quantum dots or metal nanoclusters) DNA and peptides due
to the prominent nanoscale–surface energy transfer effect from the fluorophore to GO [28–33]. Thus,
many GO-based fluorescent chem/bio-sensors have been developed for monitoring the enzymatic
activities [34–39], measuring the levels of various analytes including nucleic acids, proteins, metal
ions and small molecules [40–44], and imaging of cells as well as animals [45,46]. Based on the high
quenching ability of GO and the specific aptamer–target interaction, several groups have reported the
detection of proteins (e.g., thrombin, cyclin A2, amyloid-β oligomers, α-bungarotoxin and antibodies)
with the dye-labeled DNA or peptide probes as the recognition elements [47–51]. In a typical detection
model, the fluorescence of a dye-labeled probe would be quenched when it was absorbed onto the
surface of GO. However, the specific binding of a target protein to the fluorescently labeled probe
would induce the release of the probe from the GO surface, thus resulting in the fluorescence recovery.
In the present work, we found that the fluorescently labeled hCG-binding peptide can adsorb onto
the surface of GO (Scheme 1). Consequently, the fluorescence of the peptide was quenched effectively
through the energy-transfer or electron-transfer processes. However, with the addition of hCG, the
specific binding of hCG to the peptide probe resulted in the release of the peptide from the GO surface,
thus leading to the recovery of the fluorescence signal. Based on this fact, we have developed a
GO-based fluorescent platform for the detection of hCG in the urine samples.
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Scheme 1. Schematic illustration of the GO-based fluorescent method for hCG detection with a peptide
of FITC-PPLRINRHILTR as the probe.
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2. Materials and Methods

2.1. Reagents and Materials

Bovine serum albumin (BSA), thrombin, immunoglobin G (IgG), hCG, KH2PO4, and K2HPO4

were purchased from Sigma-Aldrich (Shanghai, China). Recombinant human erythropoietin (rHuEPO)
was provided by BioVision, Inc. (Milpitas, CA, USA). Beta-subunit of hCG (β-hCG) was obtained from
YuduoBio Co., Ltd. (Shanghai, China). Single layer GO with oxygen content of 35%–40% was provided
by Nanjing XFNANO Materials Tech Co., Ltd. (Nanjing, China). The Atomic Force Microscope (AFM)
image shows that the thickness of GO is 0.8–1.2 nm and the lateral size is 0.5–5 µm (Figure 1A).
The peptide probe labeled with fluorescein isothiocyanate (FITC) (a well-known fluorescent reporter
for design of GO-based fluorescent chem/bio-sensors) in the N-terminal (FITC-PPLRINRHILTR) was
obtained from Synpeptide Co., Ltd. (Shanghai, China). The serum sample containing 16.14 mIU/mL
follicle-stimulating hormone (FSH), 11.82 mIU/mL luteotropic hormone (LH) and 3.41 mIU/mL
thyroid stimulating hormone (TSH) from one woman donor (35 years old) and the urine samples from
one woman donor (33 years old) were provided by Anyang Maternal and Child Heath Care Hospital
(Anyang, China) and were stored at −18 ◦C for use. Amino acids used in this work were provided
by Sangon Biotech. Co., Ltd. (Shanghai, China). The peptide at the concentration of 1 mM was
dissolved with deionized-water and diluted to the desired concentration with a phosphate-buffered
saline solution (PBS buffer, 20 mM, pH 7.2).
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Figure 1. (A) AFM image and lateral size of GO; (B) Fluorescence spectra of 50 nM 
FITC-PPLRINRHILTR in the presence of different concentrations of GO; (C) Fluorescence intensity 
of FITC-PPLRINRHILTR versus the concentration of GO.  

2.2. Quenching Studies 

To determine the quenching efficiency of GO to FITC-PPLRINRHILTR, 50 μL of GO at a given 
concentration was mixed with 100 μL of FITC-PPLRINRHILTR. Then, 50 μL of PBS was added to the 
mixed solution for fluorescence measurement. Fluorescence spectra was collected on a Varian Cary 
fluorescence spectrometer with an excitation wavelength of 470 nm. The emission wavelength was 
taken with a slit of 5 nm. To determine the influence of amino acid and protein on the quenching 

Figure 1. (A) AFM image and lateral size of GO; (B) Fluorescence spectra of 50 nM
FITC-PPLRINRHILTR in the presence of different concentrations of GO; (C) Fluorescence intensity of
FITC-PPLRINRHILTR versus the concentration of GO.

2.2. Quenching Studies

To determine the quenching efficiency of GO to FITC-PPLRINRHILTR, 50 µL of GO at a given
concentration was mixed with 100 µL of FITC-PPLRINRHILTR. Then, 50 µL of PBS was added to the
mixed solution for fluorescence measurement. Fluorescence spectra was collected on a Varian Cary
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fluorescence spectrometer with an excitation wavelength of 470 nm. The emission wavelength was
taken with a slit of 5 nm. To determine the influence of amino acid and protein on the quenching
efficiency of GO to FITC-PPLRINRHILTR, 50 µL of amino acid or protein was added into 100 µL of
FITC-PPLRINRHILTR, followed by the addition of 50 µL of GO for fluorescence measurement.

2.3. Detection of hCG

For the assay of hCG, FITC-PPLRINRHILTR was first mixed with GO for 10 min to form the
FITC-PPLRINRHILTR/GO complex. Then, 50 µL of hCG at a given concentration was added to 150 µL
of the prepared FITC-PPLRINRHILTR/GO solution. After incubation at room temperature for 15 min,
the fluorescence of the mixed solution was collected as aforementioned method. For the assays of
serum or hCG in urine, the samples were centrifuged at 1300 rpm for 5 min. Then, 50 µL of the
supernatant were taken out and added to 50 µL of PBS buffer, followed by the addition of 100 µL of
the prepared FITC-PPLRINRHILTR/GO solution. Other procedures for the determination of hCG in
urine samples were the same as those for the assay of hCG in the blank PBS.

3. Results and Discussion

3.1. Quenching Efficiency of GO to FITC-PPLRINRHILTR

We first investigated the interaction between FITC-PPLRINRHILTR and GO by monitoring
the fluorescence change of FITC-PPLRINRHILTR in the presence of various concentrations of GO.
It can be seen that the fluorescence intensity of FITC-PPLRINRHILTR decreased with the increase
of GO concentration and reached the minimum value beyond 0.5 µg/mL (Figure 1B,C). The result
indicated that the fluorescence of FITC-PPLRINRHILTR was quenched efficiently by GO. It has been
demonstrated that the adsorption of peptide onto the GO surface depends upon the electrostatic and
π–π interactions between the negatively charged GO and the positively charged amino acid residues
(Lys, His, and Arg) as well as the aromatic-ring-containing hydrophobic amino acids (Trp, Tyr, and
Phe) [36,49,52]. Note that there are three Arg and one His amino-acid residues within the peptide probe
(FITC-PPLRINRHILTR). Thus, the adsorption of the peptide onto the GO surface should be attributed
to the electrostatic interaction. The quenching efficiency of 2 µg/mL GO to FITC-PPLRINRHILTR was
found to be 89.2% ± 3.6% by the formula (1 = F/F0) × 100%, where F and F0 represent the fluorescence
intensity at 518 nm with and without the addition of GO.

Some amino acids and proteins may also show the electrostatic and π–π interactions with GO.
This maybe has a negative effect on the interaction of FITC-PPLRINRHILTR and GO. For this view,
we studied the impact of hydrophilic or aromatic amino acids (Arg, His, Lys, Asp, Glu, Phe, Trp
and Tyr) and proteins (BSA, IgG, rHuEPO and thrombin) on the quenching efficiency of GO to
FITC-PPLRINRHILTR (Figure 2). Consequently, we found that Lys, His, Glu and Asp showed negligible
effects on the quenching efficiency. However, the presence of Arg, Phe, Trp, Tyr and the four tested
proteins weakened the interaction of GO to FITC-PPLRINRHILTR, thus decreasing the quenching
efficiency in different degree. The use of excess concentrations of GO may reduce the interference
of some matrix components existing in biological samples. Herein, we found that the fluorescence
of FITC-PPLRINRHILTR could be quenched effectively by a high concentration of GO even in the
presence of these tested interferences. Thus, in the following detection assays, GO at an excess
concentration of 2 µg/mL was used for the detection assay.
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Figure 2. Effects of various amino acids and proteins on the quenching efficiency of 0.5 and 2 μg/mL 
GO to FITC-PPLRINRHILTR. The final concentrations of FITC-PPLRINRHILTR, amino acids and 
proteins were 50 nM, 50 μM and 10 ng/mL, respectively. 
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Figure 2. Effects of various amino acids and proteins on the quenching efficiency of 0.5 and 2 µg/mL
GO to FITC-PPLRINRHILTR. The final concentrations of FITC-PPLRINRHILTR, amino acids and
proteins were 50 nM, 50 µM and 10 ng/mL, respectively.

3.2. hCG Detection

The fluorescence spectra of FITC-PPLRINRHILTR/GO in the absence (curve a) and presence
(curve b) of hCG are shown in Figure 3A. It can be observed that the fluorescence signal increased in
the presence of hCG. The result demonstrated that the specific binding of hCG to the peptide resulted
in the desorption of FITC-PPLRINRHILTR from the GO surface. For three parallel experiments,
the fluorescence intensities were found to be 59.2, 61.8 and 62.1, suggesting a good reproducibility.
The result indicated that the FITC-PPLRINRHILTR/GO complex is a good probe for the detection of
hCG. We also investigated the effect of the incubation time of hCG with the probe on the fluorescence
intensity. As shown in Figure 3B, the fluorescence intensity increased gradually within 20 min
incubation. The result indicated that the competitive binding of hCG with GO for FITC-PPLRINRHILTR
diminished the GO and peptide contact, leading to the gradual desorption of peptide from the
GO surface.
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presence (curve b) of hCG. The concentrations of FITC-PPLRINRHILTR and hCG were 50 nM and 
50 IU/mL, respectively; (B) Fluorescence restoration of FITC-PPLRINRHILTR/GO by hCG as a 
function of time. 
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this method. The analytical performances of this method were compared to those achieved by other 
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Figure 3. (A) Fluorescence spectra of FITC-PPLRINRHILTR/GO in the absence (curve a) and presence
(curve b) of hCG. The concentrations of FITC-PPLRINRHILTR and hCG were 50 nM and 50 IU/mL,
respectively; (B) Fluorescence restoration of FITC-PPLRINRHILTR/GO by hCG as a function of time.

3.3. Sensitivity to hCG

We determined the sensitivity and detection limit of this method. Figure 4A shows the
fluorescence spectra of FITC-PPLRINRHILTR/GO in the presence of different concentrations of hCG.
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The fluorescence intensity increased with increasing hCG concentration. As shown in Figure 4B,
the fluorescence intensity was linearly proportional to the hCG concentration in the range of
0.05–20 IU/mL. The linear regression equation is F = 8.6 + 2.2 [hCG] (IU/mL) (R = 0.993). The relative
standard deviations (RSDs, shown as the error bars in Figure 4B) for assays of the different
concentrations of hCG samples are all less than 8.5%, further indicating a good reproducibility of
this method. The analytical performances of this method were compared to those achieved by other
methods (Table 1). The detection limit of 20 mIU/mL was comparable to (or even lower than) that
achieved by immunochromatography, photoluminescence, surface plasmon resonance, fluorescent
immunoassays, liquid crystal-based assay and AuNPs-based colorimetric assays. Although the
detection limit is higher than that achieved by ELISA and some electrochemical methods, our method
obviates the pre-modification of nanomaterials, requires very simple sample handling, and does not
need to use the relatively expensive and less stable antibodies.
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Table 1. Analytical performances of various methods for hCG detection. 

Materials Methods Detection Limit Linear Range Reference
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Table 1. Analytical performances of various methods for hCG detection.

Materials Methods Detection Limit Linear Range Reference

SPAAB-HRP/anti-hCG ELISA 0.012 mIU/mL - [3]
anti-hCG/ZnO PL 2 ng/mL 2–20 ng/mL [6]

anti-hCG/CdSe-ZnS QDs PL 0.5 mIU/mL - [7]
anti-hCG/AuNPs IGCA 5 ng/mL 10–600 ng/mL [5]

anti-hCG/gold film SPR <500 ng/mL - [8]
peptide aptamer LC 1 IU/mL 12.5–100 mIU/mL [2]

PF@SiO2-Ab2 and Fe3O4@PANI-Ab1 fluorescence 3 pg/mL 0.01–100 ng/mL [4]
peptide aptamer/AuNPs/4-nitrophenol colorimetry 15 mIU/mL 15–750 mIU/mL [26]

peptide aptamer/AuNPs colorimetry 25 mIU/mL 25–1000 mIU/mL [27]
anti-hCG/Au-MWCNTs/GS/GCE DPV 0.0026 mIU/mL 0.005–500 mIU/mL [13]

anti-hCG/AuE SWSV 15 pM 15–300 pM [10]
HRP-Ab2/hCG/Ab1/nafion/GCE CA 11.2 mIU/mL 200 mIU/mL [9]

anti-hCG/CS/graphene-SPE EIS 0.016 ng/mL 0.1–25 ng/mL [19]
anti-HCG/ FPD/GCE EIS 0.03 ng/mL 0.1–10 ng/mL [14]

anti-hCG/Pd@SBA-15/TH/HSO3-GS/GCE CV 8.60 pg/mL 0.01–16.00 ng/mL [20]
GCE/GS/NPG/anti-hCG CV 0.034 ng/mL 0.5–40.00 ng/mL [11]

hCG/HRP-anti-hCG/sol–gel/GE DPV 0.3 mIU/mL 0.5–50 mIU/mL [17]
Peptide aptamer/GO fluorescence 20 mIU/mL 0.05–20 IU/mL This work

SPAAB-HRP, horseradish peroxidase (HRP)-loaded nanospherical poly(acrylic acid) brushe (SPAAB); anti-hCG,
human chorionic gonadotropin antibody; QDs, quantum dots; PF@SiO2, poly[(9,9-bis(3′-((N,Ndimethylamino)
N-ethylammonium)propyl)-2,7-fluorene)-alt-2,7-(9,9-p-divinyl-benzene)-alt-fluorene)-alt-2,5-dimethyl-p-phen
ylenediamine] coated SiO2 nanoparticles; Fe3O4@PANI, polyaniline coated Fe3O4 nanoparticles; MWCNTs,
multiwalled carbon nanotubes; CS, graphene sheets; GCE, glassy carbon electrode; AuE, gold electrode;
Ab, antibody; SPE, screen printed electrode; FPD, 2-(4-Formylphenyl)[60]fulleropyrrolidine; HSO3-GS,
Functionalized graphene nanomaterial with introduced -SO3 groups; SBA-15, one of mesoporous silicas with
uniform tubular channels; TH, thionine; NPG, nanoporous gold; PL, photoluminescence; IGCA, immunogold
chromatographic assay; LC, liquid crystal assay; DPV, differential pulse voltammetry; SWSV, square-wave
stripping voltammetry; CA, chronoamperometry; EIS, electrochemical impedance spectroscopy.
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3.4. Selectivity and Real Sample Assay

Biological fluids may contain many proteins (e.g., antibodies, proteases, glycoproteins and other
common proteins). To explore the selectivity of the proposed method, three interfering proteins
(BSA, IgG, thrombin) and serum sample containing FSH, LH and TSH were tested. Moreover,
beta-subunit of hCG (β-hCG) is also abundant in pregnancy sample. Thus, the specificity of the
aptamer to β-hCG was also investigated. As shown in Figure 5A, compared to the control, none of
these interferences caused a significant increase in the fluorescence intensity, demonstrating that the
established fluorescent platform showed extraordinary selectivity towards hCG. The high selectivity
could be principally attributed to the strong and specific interaction between hCG and its binding
peptide (KD = 0.9 nM) [2].
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Figure 5. (A) Selectivity of the proposed sensing strategy. The final concentrations of BSA, IgG,
thrombin, β-hCG and hCG were 10 ng/mL, 10 ng/mL, 10 ng/mL, 25 ng/mL and 10 IU/mL,
respectively; (B) Fluorescence spectra of FITC-PPLRINRHILTR/GO for the detection of hCG in
urine samples.

The good selectivity and sensitivity of the method encouraged us to quantify hCG in the biological
samples. Figure 5B shows the fluorescence spectra of FITC-PPLRINRHILTR/GO in the presence of
urine samples provided by one female donor pregnant with different periods. It can be observed that
the fluorescence signal is close to the background level for assay of the urine from the donor without
pregnancy, demonstrating that no detectable hCG was found in the urine. Furthermore, we found
that the recoveries for the added hCG with 1, 2 and 20 IU/mL were 97.4% ± 7.6%, 106.3% ± 8.1%
and 96.6% ± 6.3%, respectively. The result also indicated that the matrix components in blank urine
showed no or poor interaction with the aptamer. More interestingly, the fluorescence signal increased
greatly at the case of 5 weeks and 8 weeks pregnancy. Based on the linear curve presented in Figure 4B,
the concentrations of hCG in the two urine samples were calculated to be 2.54 ± 0.27 IU/mL and
16.7 ± 1.46 IU/mL, respectively. The result indicated that elevated level of hCG was presented in the
urine with long-time pregnancy. Thus, the proposed GO-based biosensor may offer an alternative
means for hCG detection in clinical investigations.

4. Conclusions

In conclusion, we presented an antibody-free GO-based fluorescent platform for the detection
of hCG using a fluorescently labeled hCG-specific binding peptide as the probe, which can be
manufactured cheaply and consistently. Compared with the previously reported optical and electronic
immunoassays, our method requires simple operating procedure and obviates the use of less stable
antibodies. The detection limit is comparable to that achieved by the AuNPs-based colorimetric
assays with the hCG-specific binding peptide as the probe. However, our method shows good
anti-interference ability for assays of biological samples, thus facilitating the detection of hCG in
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urine samples. Furthermore, this was coupled in a process format that directly links binding of hCG
to aptamer to a colourimetric quenching competitive quantitative signal. This can form the basis
of an inexpensive, quantitative hCG disposable POCT type device. This same format can also be
used when the aptmer is replaced to quantitatively measure other important biomolecules such as
carcino-embryonic antigen (CEA), cancer antigen 125 (CA-125) and alpha-fetoprotein (AFP) all in a
POCT device.
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