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Abstract: In this paper, an automatic radar waveform recognition system in a high noise environment
is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio,
spectrum management and radar applications, etc. We devise a system to classify the modulating
signals widely used in low probability of intercept (LPI) radar detection systems. The radar signals
are divided into eight types of classifications, including linear frequency modulation (LFM), BPSK
(Barker code modulation), Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and
P4). The classifier is Elman neural network (ENN), and it is a supervised classification based on
features extracted from the system. Through the techniques of image filtering, image opening
operation, skeleton extraction, principal component analysis (PCA), image binarization algorithm
and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency
distribution (CWD) image of the received data. In order to reduce the redundant features and simplify
calculation, the features selection algorithm based on mutual information between classes and features
vectors are applied. The superiority of the proposed classification system is demonstrated by the
simulations and analysis. Simulation results show that the overall ratio of successful recognition
(RSR) is 94.7% at signal-to-noise ratio (SNR) of –2 dB.
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1. Introduction

There are considerable interests in radar systems that "to see and not be seen" can commonly called
low probability of intercept (LPI) radar [1]. LPI radar is used more and more widely. Meanwhile, the
number of modulating waveforms is increasing quickly for the LPI radar system. However, it is no
longer easy, solely relying on human operators, to recognize the LPI radar of interest. That is, automatic
recognition of radar waveform is becoming increasingly important for some critical applications in
military-like radar identification, threat analysis, electronic warfare (EW), surveillance, etc. Moreover,
it can be applied in civilian areas including signal recognition, spectrum management and cognitive
radio, etc.

In the past, many scholars have devoted themselves to exploring the automatic recognition system
of the radiation sources in the applications. They have proposed several feasible approaches, making
the system more intelligent, more robust, and more like a real human operator. These achievements
push forward the development in the field of the signal recognition. In [2] and [3] , the statistical
characteristics of the radiation signals is estimated by a maximum likelihood algorithm, and the ratio
of successful recognition (RSR) is greater than 90% in the case of signal-to-noise ratio (SNR) ≥ 10 dB.
However, the classification of the signals are not extensive, as several kinds of LPI radar waveforms
such as Frank code are not mentioned. LPI radar waveform usually has lower signal power, which
makes it difficult to classify the LPI radar waveforms directly. Time-frequency (T-F) techniques are
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used to increase the signal processing gain for LPI radar waveforms [4]. With the application of
time-frequency techniques, the T-F feature extraction image processing has become a significant branch
of radar waveform recognition. In [5] and [6], Wigner–Ville distribution (WVD) and Pseudo–Wigner
distribution (PWD) are adopted to distinguish different frequency modulation (FM) signals, including
linear frequency modulation (LFM), FM hyperbolic, FM sinusoidal and others. However, the algorithm
for distinguishing polyphase codes (such as Frank code) were not mentioned too much. The short-time
Fourier transform (STFT) is presented to analyze the differences between four typical radar signals
(LFM, Phase shift keying (PSK), Frequency shift keying (FSK) and continuous wave) in [7] and [8].
In such cases, the RSR is more than 90% at SNR ≥ 0 dB. Nevertheless, it is difficult to distinguish
polyphase codes. Zilberman and Pace discussed five kinds of radar waveforms (Binary phase shift
keying (BPSK), Frequency modulated continuous wave (FMCW), Frank code, P4 and PT1), who used
Choi–Williams time-frequency distribution (CWD) image processing to extract signal features, and
the RSR is more than 80% at the SNR of 0 dB [9,10]. Lundén addressed the algorithm which can
distinguish eight types of radar waveforms based on Wigner–Ville distribution (WVD) and CWD
processing with a high RSR [11]. However, the algorithm estimators of subpulse rate and carrier
frequency are needed. In [12], Rihaczek distribution (RD) and Hough transform (HT) are presented
to derive two new characteristic features that are especially suitable for the LFM and FSK. However,
the RSR of the system reached 90%, in the case that SNR is larger than 24 dB. In [13], three kinds
of radar waveforms are recognized (LFM, FSK and PSK), based on random projections and sparse
classification, with the RSR over 90% at SNR of 0 dB. Normally, the more kinds of radar waveforms
the system identifies, the less robust it is. How to classify more types of radar waveforms in a high
noise environment is a challenging problem.

In this paper, an automatic radar waveform recognition system is exploited. Eight types of
waveforms (LFM, Costas codes, BPSK, Frank code and P1–P4) were applied in LPI radar, which can
identify less but necessary features. Some of the features are obtained from signals directly (we call
signal features), and others from a T-F distribution 2D image (we call image features). The signal
features consist of second order statistics, power spectral density (PSD) and instantaneous properties
(including instantaneous frequency and instantaneous phase), etc. These features are helpful to
distinguish polyphase codes from others. Image features are extracted from CWD images of detected
signals. CWD is a member of Cohen classes that has fewer cross terms than traditional T-F distributions,
such as Wigner–Ville distribution. The extraction procedures from the CWD image includes image
binarization, image opening operation, skeleton extraction, Pseudo–Zernike moments [14] and PCA,
etc. Image features classify different polyphase codes accurately. After feature extraction, a features
selection algorithm based on mutual information, is utilized to pick up more utilitarian features from
redundant ones. By applying the greedy selection method, the algorithm selects the features one by
one. In other words, the selected features vector is the one that maximizes the mutual information in
the classes and the current feature vectors. Elman neural network (ENN) is selected as the classifier cell
(networks1 and networks2) of the recognition system since it is a feedback network which is suitable
for the classifier. The whole structure of the classifier that we proposed consists of two cells, and
each cell has a three-layer ENN for different classifying purposes. This structure is suitable for the
automatic waveform system, which has been seldom mentioned before. It has higher RSR in the low
SNR environments and less training time. Experimental results show that the recognition system has
total RSR over 94%, when SNR ≥ –2 dB.

Our major contributions are summarized as follows: (1) modifying the type of network of classifier
(using Elman neural network instead of traditional neural network), CWD image feature extraction
(using skeleton extraction instead of Wigner–Ville distribution, data driven and peak search) provided
in Lundén’s approaches and improving the experimental results effectively (see Section 6); (2) creating
two original features, θ̂max and âmax, which increase the recognition ability; (3) the proposed approaches
being classified into eight kinds of waveforms without prior knowledge; and (4) proposing a new
classifier structure, with two three-layer Elman neural networks.
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The paper is organized as follows. The automatic waveform recognition system and signal model
are introduced in Section 2. Section 3 describes the composition of the classifier. Section 4 explains the
features that the system required and how to calculate them. After that, a great number of features are
calculated. In order to improve the efficiency of the system, the features selection algorithm is given in
Section 5. Section 6 shows the simulation results and makes discussions. Finally, Section 7 draws the
conclusions.

2. System Overview

As shown in Figure 1, the system is composed of four modules: time-frequency processing,
signal feature estimation, image feature extraction and classifiers. In order to obtain the signal power
accurately, it is necessary to estimate the adding of white noise (σ2

ε ) in the samples. Different from
majority of the existing systems, the carrier frequency estimation is not required in local systems
because the carrier frequency shows the shift of the position in the CWD image. However, the signal
structure is not changed at a different frequency, and the advantage of image features is not being
sensitive to where the object lies in the image.

Recognition

Waveform
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Processing

Image Feature

Extraction

Signal Feature

Estimation

Classifier Classification

Training
Off-line

Training

Preprocessing Recognition

Figure 1. The figure has shown the system components. The adding white noise σ2
ε is estimated in

signal feature section.

The classifier consists of two classifier cells, network1 and network2. It can be identified including
LFM, Costas codes, BPSK, as well as Frank code and P1–P4 polyphase codes. According to all of signal
features and several image features, four types of classifications are classified in network1. They are
LFM, Costas codes, BPSK and polyphase codes (including Frank and P1–P4). After that, the polyphase
codes are classified in network2. At the same time, network2 is controlled by network1. As the signal is
considered as polyphase codes by network1, network2 will begin to work. The reason to design two
subsidiary cell structures is to reduce the number of input features and to improve accuracy of the
signal classification. For more details, see Figure 2.

In this paper, the center frequency of the signal bandwidth is considered as carrier frequency.
In addition, the signal is disturbed by additive white Gaussian noise, which means that the intercepted
discrete time signal model is given by

y(nT) = s(nT) + m(nT) = Aejφ(nT) + m(nT) (1)

where n is an integer, T is a sampling interval, s(nT) is the complex of the transmitted signals, and
m(nT) is complex white Gaussian noise with the variance σ2

ε . A is amplitude, for simplicity and
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without loss of generality, so we assume that A is an invariant constant. φ is the instantaneous phase
of the complex signal. If the input signal is real, the Hilbert transform is used:

y(k) = x(k) + jH[x(k)] (2)

where x(k) is the real signal, and H[·] is Hilbert transform. For more details, see [15].

Network1

Polyphase

Network2

Frank

P1

P2

P3

P4

LFM

Costas

Binary Phase

Classifier

Figure 2. There are two classifier cells, network1 and network2. network2 is controlled by network1.
When the recognition result is regarded as polyphase by network1, network2 will start to work.
In addition, the input features are classified into five types of polyphase codes directly.

3. Waveform Classifier

The three-layer ENN is used for the signal classification in the paper. There are connections
from the hidden layer to these context units fixed with a weight of one [16]. At each time step,
the input is propagated in a standard feed-forward fashion, and then the error back propagation (BP)
learning rule is applied [17]. The fixed back connections result in context units always maintaining
a copy of previous values of hidden units (since they propagate over the connections before the BP
learning rule is applied). Thus, the network can maintain a sort of state, allowing it to perform such
tasks as sequence-prediction that are beyond the power of a standard multi-layer perceptron [18,19].
In Figure 3, the hidden layer contains 46 neurons, sigmoid activation f (x) = 1/(1 + e−x) is selected
in each layer, and the number of input and output layers’ neurons are determined by the vector
dimension, respectively.
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Figure 3. There are three layers in the Elman neural network. The neurons of input layers are
determined by the number of input features. The output layers are decided by the classification.
The hidden layer contains 46 neurons as well.

For ENN, a method to fix the number of hidden layer neurons Hnum is discussed in [20]. A simple
calculation formula is formulated as:

Hnum =
C× X + 0.5× C× (X2 + X)− 1

C + X
(3)
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where C is the number of classification, and X is the dimension of a feature vector obtained. A slight
adjustment of the number of hidden layer neurons needs to be done, until the network achieves the
optimal situation. A simple suggestion is to re-enter the training data as the test data, and the correct
recognition rate should be greater than 99%. Otherwise, the number of hidden layer neurons should
be adjusted. Forty-six neurons are used in this paper.

4. Features Extraction

In this section, the feature extraction is described in details. Feature extraction plays a key role
in the automatic recognition system, the algorithm of which determines not only the RSR but also
the robustness of the system. The features include signal features and image features. The section
is organized as follows. First, the signal features that based on the second order statistics, PSD, and
instantaneous properties are illuminated. Then, the Choi–Williams distribution is introduced, and a
further eight types of radar waveforms are shown in CWD images, respectively. After that, image
preprocessing based on image morphology is addressed. Finally, the image features of the waveforms
are estimated and extracted from the CWD image.

Table 1 lists the necessary features that are presented in network1 and network2. Meanwhile,
in order to keep the classifiers as concise as possible, other features are considered but not listed.
For example, higher order moments (up to the fourth order) and cumulants (up to the fourth order),
Pseudo–Zernike moments (up to the eighth order) and other instantaneous properties, etc. However,
these features are not found discriminative enough in the system recognition. How to select the final
features will be described in Section 5.

Table 1. List of features selected for the networks.

Index Features Network1 Network2

1 Moment M̂10 X

2 Moment M̂20 X

3 Cumulant Ĉ20 X

4 PSD maximum γ1 X X

5 PSD maximum γ2 X X

6 Std. of instantaneous phase σ̂φ X X

7 Std. of instantaneous freq. σ̂f X

8 Num. of objects (10%) Nobj1 X X

9 Num. of objects (50%) Nobj2 X X

10 CWD time peak location tmax X X

11 Std. of object width σ̂obj X X

12 Maximum of PCA degree θ̂max X

13 Std. of fn σ̂W f X

14 Statistics test pR X

15 Autocorr. of fn r X

16 FFT of corr. fn âmax X
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Table 1. Cont.

Index Features Network1 Network2

17 Pseudo–Zernike moment Ẑ20 X

18 Pseudo–Zernike moment Ẑ22 X

19 Pseudo–Zernike moment Ẑ30 X

20 Pseudo–Zernike moment Ẑ31 X

21 Pseudo–Zernike moment Ẑ32 X

22 Pseudo–Zernike moment Ẑ33 X

23 Pseudo–Zernike moment Ẑ43 X

4.1. Signal Features

4.1.1. Based on Second Order Statistics

The nth order moment of the complex signal is given by

M̂nm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

yn−m(k)(y∗(k))m

∣∣∣∣∣ (4)

where N is the number of samples, and (∗) is conjugated components. M̂10 and M̂20 are calculated
from this formula. The absolute value is ensured that the estimate value is an invariant constant when
the signal phase rotated.

The nth order cumulant is given by [21,22]

Ĉnm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

(y(k)− M̂10)
n−m

(y∗(k)− M̂10)
m
∣∣∣∣∣ (5)

where M̂10 is given in Equation (4). In the system, Ĉ20 is calculated. Additive independent complex
second order circular noise does not affect moment features and cumulant features.

4.1.2. Based on Power Spectral Density (PSD)

PSD describes how the signal power distributes in frequency domain. Two features based on PSD
are utilized. The signal should be estimated as an invariant scaling before PSD is calculated. Therefore,
invariant scaling is estimated as [23]:

ỹ(k) =
y(k)√

M̂21 − σ2
ε

(6)

where y(k) is the kth of samples, and M̂21 is the three-order moment obtained in Equation (4). The
variance of the additive noise σ2

ε can be obtained in [24].
The features about PSD are given by

γm =
1
N

max
n

 1
N

∣∣∣∣∣N−1

∑
k=0

ỹm(k)e−j2πnk/N

∣∣∣∣∣
2
 (7)

where ỹ(k) is given in Equation (6). γ1 is a nice feature to distinguish between binary phase and Costas
codes. In fact, the square of the complex envelope is constant for binary phase modulation signals.
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The feature γ2 makes an outstanding performance in distinguishing binary phase modulation signals
from others.

4.1.3. Based on Instantaneous Properties

Instantaneous properties, which include enormous information, work well in distinguishing
frequency modulation signal from phase modulation signal. In this paper, instantaneous frequency
and instantaneous phase need to be estimated. The standard deviation of the absolute value of
instantaneous phase is estimated as [25]. For the sake of simplicity, φ(k) = tan−1[Im(y(k))/Re(y(k))]
is utilized, where Im and Re are the imaginary and real parts of the signal, respectively:

σ̂φ =

√√√√ 1
N

(
N−1

∑
k=0

φ2(k)

)
−
(

1
N

N−1

∑
k=0
|φ(k)|

)2

(8)

where N is the number of samples, φ is the instantaneous phase of the complex signal, and the range
of φ is between −π and π. For more details, see [3].

In order to estimate the instantaneous frequency clearly, the method is decomposed into
several steps:

a. calculate φ(k);
b. compute φu(k)

∗ from φ(k);
c. set f (k)∗∗ = φu(k)− φu(k− 1);
d. calculate µ f := 1

N ∑N−1
k=0 f (k);

e. calculate the normalized centered instantaneous frequency f̃ (k), i.e.;

f̃ (k) = ( f (k)− µ f )/(max | f (k)− µ f |)

f. the absolute value of the normalized centered instantaneous frequency is given by;

σ̂f =

√√√√ 1
N

(
N−1

∑
k=0

f̃ 2(k)

)
−
(

1
N

N−1

∑
k=0

∣∣ f̃ (k)∣∣)2

(9)

* φu(k) corrects the radian phase angles in φ(k) by adding multiples of ±2π when absolute jumps
between consecutive element of φ(k) is greater than or equal to the jump tolerance of π radians.

** There are some spikes in the instantaneous frequency estimation in the vicinity of phase
discontinuity of some waveforms. In order to smooth the f (k) and to remove the spikes,
a median-filter with window size 5 is used.

4.2. Choi–Williams Distribution (CWD)

Choi–Williams distribution is a member in Cohen Classes [26], which can reduce image
interference from cross terms effectively:

C(t, ω) =
∫∫∫

∞
ej2πξ(s−t) f (ξ, τ)

· x(s + τ/2)x∗(s− τ/2)e−jωτdξdsdτ
(10)

where t and ω are time and frequency axes, and f (ξ, τ) is the kernel function given by

f (ξ, τ) = exp

[
(πξτ)2

2σ

]
(11)

The kernel function is a low-pass filter to eliminate cross terms. σ refers to controllable factor.
The bigger σ is, the more obvious cross terms are. Meanwhile, σ = 1 is used in this paper to balance
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the cross terms and resolution. Eight types of waveforms of CWD transformation are shown in
Figure 4. A method for fast calculation of CWD is found in [10]. The structure of a fast CWD method is
based on the standard fast Fourier transformation (FFT). Therefore, the number of sampling points is
recommended to be a small power of two, such as 128, 256, 512, etc. In this paper, 1024× 1024 points
are selected.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. In this figure, (a)–(h) are different waveform classes, which including Linear frequency
modulation (LFM), Costas codes, Binary phase shift keying (BPSK), Frank, P1, P2, P3 and P4
sequentially. There are significant differences among the Choi–Williams time-frequency distribution
(CWD) images. The controllable factor σ = 1 also be used.

4.3. Image Preprocessing

In the following parts, the real parts of CWD results of waveforms is treated as a 2D image. Digital
image processing is explored to gain interested features. In this part, CWD image is processed into a
binary image with three operations.
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First, the length of detected signal, however, is N < 1024 points in most cases. Zero padding is
utilized because we select the CWD transformation of 1024 points. Then, the CWD image is resized
to N × N to reduce the computation load. Finally, the resized image is converted to a binary image,
based on global thresholding algorithm [27]. The operation steps are as following:

a. transform the resized image to gray image between [0, 1], i.e.;

G(x, y) =
CWDN×N(x, y)−min CWDN×N(x, y)

max(CWDN×N(x, y)−min CWDN×N(x, y))

b. estimate the initial threshold T. It can be obtained from the average of the minimum and
maximum from the image G(x, y);

c. divide the image into two pixel groups G1 and G2 after the comparison with the threshold T.
G1 includes all pixels in the image that the values > T, and G2 includes all pixels in the image
that the values ≤ T ;

d. calculate the average value µ1 and µ2 of two pixel groups G1 and G2, respectively;
e. update the threshold value;

T =
µ1 + µ2

2
f. repeat (b–e), and calculate δT, i.e.;

δT = Tnow − Tbe f ore

g. until the δT is smaller than a predefined convergence value, 0.001 is used in the paper;
h. calculate B(x, y);

B(x, y) =

{
1 G(x, y) ≥ T

0 others

i. output the final binary image B(x, y).

After the image binarization, however, there is some isolated noise and processing noise in the
binary images. Isolated noise is generated because the signal is transmitted in the noisy environment.
In addition, processing noise is generated in the kernel of CWD itself. It is a kind of special straight line,
thin but long. The width of the line is less than three pixels, whereas the majority of lines in the CWD
image are longer than half of the image length. In order to remove the noise, a morphological opening
is applied (erosion followed by dilation). Erosion and dilation are the basic operations in morphological
image processing. Morphological techniques probe an image with a small shape or template called
a structuring element. The structuring element is positioned at all possible locations in the image.
Furthermore, it is compared with the corresponding neighbourhood of pixels. The structuring element
is said to fit the image if, for each of its pixels set to 1, the corresponding image pixel is also 1. Similarly,
a structuring element is said to hit, or intersect, an image if, at least for one of its pixels set to 1, the
corresponding image pixel is also 1. The opening is so called because it can open up a gap between
objects connected by a thin bridge of pixels. Any regions that have survived from the erosion are
restored to their original size through the dilation. In the paper, the structuring element in the size of
3× 3 pixels is used. After the opening operation, the groups as small as a minimum 10% of the size of
the largest group are removed. The image process is introduced in Figure 5.
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Figure 5. In this figure, P3 code is selected at signal-to-noise ratio (SNR) of –6 dB as an example.
Original image is resized by N × N, and the bicubic interpolation is adopted. That is, the output
pixel value is a weighted average of pixels in the nearest 4-by-4 neighborhood. By using the opening
processing, the binary image is smoother and the noise is removed in the last.

4.4. Image Features

The number of objects in the binary image (Nobj) is a useful feature. For example, Frank code and
P3 have two objects, respectively, while LFM and P1 only have one. However, Costas codes have many
objects in different location. In order to distinguish different waveforms, two features Nobj1 and Nobj2
are used in the paper. Nobj1 and Nobj2 are the number of the objects that represent larger than 20% and
50% of the size of the largest object, respectively.

A feature is also found in the location of the maximum energy in time domain of the image, i.e.,

tmax =
1

N − 1
arg max

t
{CN×N(t, ω)} (12)

where CN×N(t, ω) is a resized version of the CWD image, and N is the length of the sampling data.
The standard deviation of the width of the signal objects (σ̂obj) and the rotate angle of the largest

object (θ̂max) are appropriate for polyphase codes discrimination. Namely, the feature σ̂obj is suitable to
classify two kinds of waveforms such as “stepped waveform” (including Frank code, P1) and “linear
waveform” (including LFM, P3 and P4). In eight types of waveforms, only P2 has a negative slope.
Therefore, P2 can be picked out by the parameter θ̂max from others easily. The features are calculated
as follows:

• for each object, k = 1, 2, ..., Nobj1;

a. decide the k and mask the other objects away from the binary image;
b. calculate the principal components of the binary image;
c. rotate∗ the image until the principal component of the object is parallel to the vertical axis,

recorded as Br(x, y);
d. calculate the row sum, i.e.,r(x) = ∑N−1

y=0 Br(x, y), x = 0, 1, 2, ..., N − 1;
e. normalize r(x), i.e., r̂(x) = r(x)/ max{r(x)};
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f. calculate the standard deviation of r̂(x), i.e.,

σ̂k,obj1 =
√
(1/N)∑x r̂2(x)− ((1/N)∑x r̂(x))2

where N is the number of samples.

• output the rotation degree of the maximum of objects θ̂max;
• output the average of the σ̂k,obj1, i.e.;

σ̂obj = (∑
Nobj1
k=1 σ̂k,obj1)/Nobj1 (13)

* nearest neighbor interpolation is used in rotation processing.

Next, we select the maximum object with others removed, extracting the skeleton of the maximum
object and estimating the linear trend of it. In the estimation, minimizing the square errors method is
applied. The linear trend is subtracted from skeleton of the object to acquire the resulting vector fn.
The standard deviation of fn is given by

σ̂W f =

√√√√ 1
M− 1

M

∑
k=1

f 2
n(k)−

(
1

M− 1

M

∑
k=1

fn(k)

)2

(14)

where M is the length of fn.
In order to express the randomness of fn, a statistical characteristics test is proposed. The details

of the test are as follows:

a. calculate the average of fn;

b. calculate b(k) as follows b(k) =

{
1 fn(k) > f̄n

0 others
,k = 1, ..., N;

c. a consecutive sequence of 0’s or 1’s is called a unit, and R is the number of units. Let NA and NB
denote the statistics number of b(k) = 1 and b(k) = 0, respectively, i.e., NA + NB = N;

d. calculate the mean of units, i.e.;

E(R) = (N + 2NANB)/N

e. calculate the variance of units, i.e.;

Var(R) =
2NANB(2NANB − N)

N2(N − 1)

f. calculate the value of test statistic Y, i.e.;

Y = (R− E(R))/Var(R)

g. output the probability feature, i.e.;

pR
∗,∗∗ = 2(1−Φ(|Y|)) (15)

* where Φ(·) is the standard normal cumulative distribution function. The value of pR is between
0 and 1.

** note that pR is no longer a probability. It is a measure of the similarity with Gaussian distribution.
The standard deviation

√
Var(·) value is too small for machine precision. Therefore, it is replaced

by variance Var(·) in (f).

When the pR is closer to 1, the test signal is more similar to Gaussian distribution, and the
number of N is more than 50, the distribution of R is similar to the standard normal distribution,
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i.e., Z = (R− E(R))/
√

Var(R) ∼ N (0, 1). However, the values of Var(R) are quite small for machine
precision for the P4 codes. Therefore, the value of R is normalized by using the equation
Y = (R− E(R))/Var(R). The feature pR is worked in network2 only.

The other three features are obtained from the autocorrelation of fn, i.e., c(m) = ∑k fn(k) fn(k−m),
and m = 0, 1, ..., N − 1. Figure 6 indicates the differences of P1 and P4. In order to characterize these
differences, the features are introduced.
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Figure 6. In this figure, (a) and (c) are resulting vector fn of P1 and P4, respectively. (b) and (d) are the
autocorrelation of P1 and P4. The autocorrelation of P1 has a strong oscillation, similar to a periodic
signal. However, the autocorrelation of P4 has a random oscillation, similar to a white noise signal.

The ratio of maximum and sidelobe maximum, i.e.,

r =
Nmaxm∈[m0,N−1]c(m)

(N −m1)max c(m)
(16)

where, m0 is the location of the minimum of the lag value, and m1 is the location of the sidelobe
maximum of the lag value in the [m0, N − 1]. The FFT result is selected to characterize the power of
oscillation of c(m), and the feature is estimated as:

âmax = max{abs(FFT(c(m)))} (17)

where c(m) is normalized by using the maximum value of itself. Namely, the range of c(m) is [−1, 1].
The final features are the members of Pseudo–Zernike moments. Pseudo–Zernike moments are

invariant to translation, rotation, scaling and mirroring. It is suitable for the problems about pattern
recognition [28–30]. These invariant features can reduce the amount of data used in training, which
makes the recognition easy. The p + q order of the image geometric moments are defined as:

mpq = ∑x ∑y B(x, y)xpyq (18)
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where B(x, y) is the binary image. The scaling and translation invariant central geometric moments
are given by

Gpq =
1

m(p+q+2)/2
00

∑
x

∑
y

B(x, y)(x− x̄)p(y− ȳ)q (19)

where x̄ = m10/m00 and ȳ = m01/m00.
The scaling and translation invariant radial geometric moments are given by

Rpq =
1

m(p+q+3)/2
00

∑
x

∑
y

B(x, y)(x̃2 + ỹ2)
1/2

x̃pỹq (20)

where x̃ = x− x̄ and ỹ = y− ȳ.
The Pseudo–Zernike moments are defined as:

Znm =
n + 1

π

n−|m|

∑
s=0

n−s−m=even

k

∑
a=0

m

∑
b=0

(−j)b

(
k
a

)(
m
b

)
DnmsG2k−2a+m−b,2a+b

+
n + 1

π

n−|m|

∑
s=0

n−s−m=odd

d

∑
a=0

m

∑
b=0

(−j)b

(
d
a

)(
m
b

)
DnmsR2d−2a+m−b,2a+b

(21)

where k = (n− s−m)/2, d = (n− s−m− 1)/2 and

Dnms = (−1)s (2n + 1− s)!
s!(n− |m| − s)!(n + |m|+ 1− s)!

(22)

The dynamic range can be reduced by calculating the logarithm, i.e., Ẑnm = ln|Znm|. The members
of the Pseudo–Zernike moments, including Ẑ20, Ẑ22, Ẑ30, Ẑ31, Ẑ32, Ẑ33 and Ẑ43, are selected.
The features are used in network2 only because the features in the network1 can distinguish between
LFM, Costas codes, BPSK and polyphase codes very well.

5. Features Selection

In this section, the features selection algorithm for final feature vectors is exploited. With the
increase of dimension of feature vector, the redundant information should be removed. The algorithm
can select excellent features from a large number of them. Thus, the training time is reduced [31].
Based on the mutual information in the features, greedy selection algorithm is selected. It means that
a new feature that has the maximum of mutual information is joined to the feature vector (which
includes the previously selected features) in each cycle. The procedure is continued until the number
of selected features reaches our design. Mutual information is estimated between class C and the
feature vectors X :

Î(X; C) = H(C)− Ĥ(C|X)

= −
c

∑
k=1

p(ck) log p(ck)

+
1
N

N

∑
j=1

c

∑
k=1

p̂(ck|xj) log p̂(ck|xj)

(23)
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where ck is the kth class and c is the number of classes. H(·) denotes the entropy, N is the total
number of training data and xj is the jth training vector. Probability density function p̂(ck|xj) is
estimated by using Parzen windows. Entropy of the class H(C) is calculated by using the training
data, i.e., p(ck) = Nk/N, where Nk is the total number of training data from class ck. The p̂(ck|xj) is
given by

p̂(ck|xj) =
∑i∈ck

exp(− (xj−xi)
T∆−1(xj−xi)

2h2 )

∑c
k=1 ∑i∈ck

exp(− (xj−xi)
T∆−1(xj−xi)

2h2 )

(24)

where ∆ is a covariance matrix of a d-dimensional vector, and h is the window width parameter,
(i.e., h = 1/log2(n)), in which, n is the number of samples. For more details, see [31].

In this stage, a total of 23 features for network1 and network2 are selected. The mutual information
between each individual feature and class are estimated. In addition, there are 10 and 19 features
remaining for network1 and network2, respectively. The mutual information estimation at each step of
the features selection algorithm for network1 and network2 are shown in Figure 7. However, features
selection would be stopped, when the mutual information less than 10−4 because the estimation of
mutual information is not very accurate especially in a high dimension [32]. See Figure 7 and Table 1
for the list of selected features.
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Figure 7. In this figure, the features were selected by the mutual information. The abscissa was the
index of selected features at each cycle. There was one-to-one correspondence between the index and
the Table 1. For example, the 5th feature was selected at the second cycle in network1. It indicated that
the 5th feature (γ2) had the greatest mutual information in all of the features except the 8th feature
(Nobj1). Its ordinate was the sum mutual information of Nobj1 and γ2. In network1, 11 features were
used, and the H(C) = 1.5488. In addition, in network2, 19 features were used, and H(C) = 2.3219.

6. Simulation and Discussion

In this section, the automatic waveform recognition system is measured by simulation signals.
The purpose is to test accurate rate of the identification results, robustness and computational
complexity in different conditions.

6.1. Create Simulation Signals

In this part, we create the simulation signals for experiments. In order to expedite the system
recognition, the continuous sampling points are intercepted from the observation window. Supposing
radar sources are disturbed by additive white Gaussian noise (AWGN) in propagation channel.
In addition, SNR is defined as SNR = 10 log10(σ

2
s )/(σ2

ε ), where σ2
s and σ2

ε are variances of original
signal and noise respectively. U(·) denotes a uniform frequency. For example, there is a original
frequency f0 = 1000, and the sample rate fs = 8000. The uniform result is f0 = U( f0/ fs) = U(1/8).
For every waveform, there are different parameters that need to be set. For LFM, the initial frequency
is a random number between U(1/16) and U(1/8). Bandwidth ∆ f ranges from U(1/16) to U(1/8) as
well. For BPSK, the random value of the carrier frequency is U(1/8, 1/4), and the length of Barker
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codes selects from {7, 11, 13}. The number of code periods (Np) and the number of cycles per phase
code (cpp) are range of [100, 300] and [1, 5], respectively. For Costas codes, the number of frequency
change is a random value between 3 and 6. The fundamental frequency fmin is U(1/24). For instance,
once the Costas codes are selected, the number is 4, namely, a no-repeating sequence {3, 2, 1, 4} is
generated. Then, the Costas codes {3 fmin, 2 fmin, fmin, 4 fmin} is decided. For Frank code, the carrier
frequency is U(1/8, 1/4). In addition, cpp and M are range of [1, 5] and [4, 8], respectively. For P1–P4
polyphase codes, the parameters are similar to Frank code. For more details, see Table 2.

Table 2. List of simulation parameters.

Radar Waveforms Parameter Ranges

- Sampling rate fs 1

LFM
Initial frequency f0 U(1/16, 1/8)

Bandwidth ∆ f U(1/16, 1/8)

Number of samples (N) [500, 1024]

BPSK

Carrier frequency fc U(1/8, 1/4)

Barker codes {7, 11, 13}
Number of code periods Np [100, 300]

Cycles per phase code (cpp) [1, 5]

Costas codes
Number change [3, 6]

Fundamental frequency fmin U(1/24)

N [512, 1024]

Frank & P1 code
fc U(1/8, 1/4)

cpp [1, 5]

M [4, 8]

P2 code
fc U(1/8, 1/4)

cpp [1, 5]

M 2× [2, 4]

P3 & P4 code
fc U(1/8, 1/4)

cpp [1, 5]

M 2× [16, 35]

6.2. Experiment With SNR

The experiment research shows the relationship between the RSR and SNR. One thousand groups
are provided for every type of radar waveform, from which 90% of the groups data are used for
training and 10% for testing. The SNR would be increased from –8 dB to 14 dB with a step of 2 dB.
The system will compare with Lundén’s [11] because his system has similar classifications to us, and
also is considered as the satisfactory automatic radar classification system at present. The simulation
results are shown in Figure 8.

Figure 8 plots the classification probabilities as a function of the SNR. The probabilities are
measured by the testing data of each kind of waveforms, and the overall probabilities are also calculated.
As shown in Figure 8, our system performs better on the classification of each kind of waveform
than Lundén’s, especially at low SNR. At SNR > 8 dB, RSR of our system approaches 100%. With the
decrease of SNR, the successful ratio can still be kept at a high level. However, the performance of
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Lundén’s is far from satisfactory. At SNR of –2 dB, most waveforms of RSR reach 90%. Moreover,
the overall RSR of the waveforms approach 95%. Nevertheless, the overall RSR of Lundén’s is less
than 70% in the same conditions. Costas codes and BPSK are not sensitive with SNR, and P4 code
has low RSR in the simulations. Table 3 shows the confusion table at SNR of –2 dB, while the overall
RSR is 94.7%. As the table shows, the probabilities of error recognition of Frank code and P4 code are
higher than others. Some of Frank codes are identified as P3 codes by the system, while P4 codes are
identified as LFM. In fact, the two pairs are very similar, which can be seen in Figure 4. When the SNR
is low, the probabilities of error recognition is also reasonable.
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Figure 8. In this figure, (a)–(h) are the probabilities of 8 types of radar waveforms that measured by the
testing data respectivel; (i) is the successful rate of overall waveforms.
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Table 3. Confusion matrix for the system at signal-to-noise ratio (SNR) of −2 dB. The overall ratio of
successful recognition (RSR) is 94.7%.

LFM BPSK Costas Frank P1 P2 P3 P4

LFM 100 0 0 0 0 0 0 18

BPSK 0 100 0 0 0 0 0 0

Costas 0 0 100 1 0 0 0 0

Frank 0 0 0 91 3 0 4 0

P1 0 0 0 0 92 0 0 0

P2 0 0 0 0 0 100 0 0

P3 0 0 0 8 0 0 93 0

P4 0 0 0 0 5 0 3 82

6.3. Experiment with Robustness

In this part, we explore the robustness of approach through a different number of training samples.
There are 200 groups of testing samples for each of the radar waveform, and the number of training
samples would be increased from 100 to 900 with a step of 200. To be more adequate, the experiment
would be repeated three times with samples from –8 dB, –2 dB and 10 dB.

As shown in Figure 9, with the increase in number of training samples, the successful recognition
is also increased. Meanwhile, for all groups of SNR, the change of successful recognition is not obvious
with the number over 500. It means that as long as the number is over 500, the classifier will be able to
work in the best state. The approach works well in the small number of samples, which has important
significance for radar waveform analysis.
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Figure 9. In this figure, successful recognition is measured by a different number of training samples.

6.4. Experiment with Computation

Computational complexity issue is an important indicator to measure the the performance of
classification system. We reproduce Lundén’s method [11], and compare it with this paper in the
same conditions. All eight kinds of waveforms are tested under three different SNRs: –8 dB, –2 dB
and 10 dB, and each test repeats 10 times on average. The testing environment and testing results are
demonstrated as Tables 4 and 5, respectively.
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Table 4. The testing environment.

Item Model/Version

CPU E5-1620V2 (Intel)

Memory 16 GB (DDR3@1600 MHz)

GPU NVS315 (Quadro)

MATLAB R2012a

Table 5. Computational complexity test (This paper/Lundén, Unit: Sec.).

LFM BPSK Costas Frank

–8 dB 55.604/86.324 51.332/82.374 54.875/84.279 56.336/87.022

–2 dB 54.979/86.111 51.195/81.560 54.009/84.183 56.294/86.654

10 dB 54.783/85.899 50.867/81.055 53.336/83.807 55.793/86.131

P1 P2 P3 P4

–8 dB 58.628/88.282 56.754/88.360 58.830/87.798 54.895/85.999

–2 dB 58.422/87.923 55.801/88.180 58.107/87.353 54.428/85.187

10 dB 57.679/87.005 55.368/87.448 57.505/86.901 53.900/84.533

As shown in Table 5, the proposed method spends about 55 s and Lundén’s about 85 s, respectively.
However, Lundén’s method has several approaches which do not apply in this paper, such as
Wigner–Ville distribution, data driven and peak search, etc. These approaches consume extra time.
In each waveform, there is the trace of reduction in time, when SNR is increasing. BPSK spends
the least time and P3 spends the most time, but in the overall range, the difference is not obvious.
The recipe in this paper is stable, and the variety of SNR and waveforms have little effect on the
computational complexity of system.

7. Conclusions

In this paper, an automatic radar waveform recognition system is explored. The recognition
system can identify eight types of LPI radar waveforms (including LFM, Costas codes, BPSK (Barker
modulation), Frank code and P1–P4) in a highly noisy environment. The RSR relies more on the choice
of the features extracted from an intercepted radar pulse as well. The features include two categories,
one is extracted from waveforms directly (signal features), the other is from time-frequency image
(image features). To reduce cross terms, the CWD transformation is adopted in the time-frequency
image. The final feature vectors have been selected by using the information theoretic features
selection algorithm.

Elman neural network, a typical global network, is applied as the classifier cell of the recognition
system. It is a robust network that has a memory function. The structure of the classifier is composed of
two cells, network1 and network2. In network1, the waveforms are classified into four types (including
LFM, Costas codes, BPSK and polyphase codes), through the use of all signal features and a part of
image features. The polyphase codes are further classified into five types (including Frank code,
P1–P4) in network2.

New features have been proposed from the time-frequency image. By adopting translation,
scaling and rotation features, we can focus more on the structure of the waveform itself. It is important
to classify different kinds of polyphase codes and improve the RSR of polyphase codes. The simulation
results show when SNR ≥ –2 dB, and the RSR is more than 94%.
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Abbreviations

The following abbreviations are used in this manuscript:

LPI Low Probability of Intercept
LFM Linear Frequency Modulation
FM Frequency Modulation
ENN Elman Neural Network
BPSK Binary Phase Shift Keying
FMCW Frequency Modulated Continuous Wave
CWD Choi–Williams Time-Frequency Distribution
PSK Phase Shift Keying
FSK Frequency Shift Keying
PCA Principal Component Analysis
RSR Ratio of Successful Recognition
SNR Signal-to-Noise Ratio
EW Electronic Warfare
STFT Short-Time Fourier Transform
WVD Wigner–Ville Distribution
PWD Pseudo–Wigner Distribution
RD Rihaczek Distribution
HT Hough Transform
AWGN Additive White Gaussian Noise
PSD Power Spectral Density
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