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Abstract: The low frequency errors (LFE) of star trackers are the most penalizing errors for high-accuracy
satellite attitude determination. Two test star trackers- have been mounted on the Space Technology
Experiment and Climate Exploration (STECE) satellite, a small satellite mission developed by China.
To extract and compensate the LFE of the attitude measurements for the two test star trackers, a new
approach, called Fourier analysis, combined with the Vondrak filter method (FAVF) is proposed in
this paper. Firstly, the LFE of the two test star trackers’ attitude measurements are analyzed and
extracted by the FAVF method. The remarkable orbital reproducibility features are found in both of
the two test star trackers’ attitude measurements. Then, by using the reproducibility feature of the
LFE, the two star trackers’ LFE patterns are estimated effectively. Finally, based on the actual LFE
pattern results, this paper presents a new LFE compensation strategy. The validity and effectiveness
of the proposed LFE compensation algorithm is demonstrated by the significant improvement in the
consistency between the two test star trackers. The root mean square (RMS) of the relative Euler
angle residuals are reduced from [27.95”, 25.14", 82.43"'], 30 to [16.12", 15.89", 53.27"'], 30.
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1. Introduction

High precision attitude determination is very important for many satellite missions [1,2].
The extended Kalman filter (EKF) has been widely used in high precision attitude determination
systems consisting of star trackers and rate gyros in the past few decades [3]. Star trackers are optical
sensors which measure the angles between stars in order to determine the absolute 3-axes attitude.
Star trackers typically yield accuracies an order of magnitude better than other attitude sensors such
as an infrared earth sensor, sun sensor and magnetometer, etc. [4,5]. At present, there are mainly
two kinds of star trackers, those based on charge coupled device (CCD) detectors, and those based on
complementary metal oxide semiconductor (CMOS) active pixel sensor (APS) detectors [6]. To boost
the technology development of the star trackers, a new CCD based star tracker (CCDO01) and a new
CMOS APS based star tracker (APS01) have been loaded on the Space Technology Experiment and
Climate Exploration (STECE) satellite as the test payloads.

STECE, a small satellite mission developed by China, was launched into a dusk-dawn
sun-synchronous orbit on 20 November 2011. Its altitude is about 790 km and its orbit inclination is
about 98.4°. The predicted life time of STECE is two years (it is still in orbit by now). The STECE satellite
uses the earth-oriented 3-axes stabilized attitude determination and control mode, i.e., maintains a
fixed-pointing to the earth with its z-axis. Besides the CCDO01 and APSO01 star trackers, STECE also
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carries an ASTRO 10 star tracker (CCD based) [7] which is from Jena-Optronik GmbH as the attitude
and orbit control system (AOCS) sensor. In addition, STECE carries two fiber optic gyros (FOG) and
a dual-frequency GPS receiver. The three star trackers are aligned with their field of view opposite
to the direction of the sun. The installation Euler angle of the ASTRO 10 is [13.74° 115.74° 26.41°]
in the “3-1-2” sequence (i.e., the yaw-roll-pitch sequence, is used in the whole study), the relative
installation Euler angle of CCDO01 and APS01 relative to ASTRO 10 is [130.45° —173.81° —48.11°]
and [31.29° 81.54° 43.89°], respectively. The boresights of the three star trackers are their own z-axis,
respectively. The field of view (FOV) of the CCD01 and APS01 are 20° x 20° and 18° x 18° square,
respectively. During the mission, the CCD01 and APS01 provide 10 Hz and 8 Hz quaternion data
(represented by [g0 1 42 431", a four element vector with gq as scalar part and qj, g, g3 as vector part,
which satisfies g5 + g7 + g3 + 3 = 1).

In the EKE, the star tracker measurement error is generally considered to be Gaussian white
noise [8]. However, the measurement of the star tracker contains several error sources which include
bias, low frequency errors (LFE) [9,10] and noise. The bias is characterized by a fix offset between
the measurement reference frame and the mechanical reference frame. The LFE are errors that vary
periodically with the satellite orbit and are of systematic nature. Possible sources of LFE are the
thermal effects and changing FOV [11,12]. As the satellite flies along the orbit, the sun irradiation angle
varies periodically. Thereby the thermal effect on the satellite platform is not uniform, and this will
cause thermal deformation on the optical head and the alignment structure of the star tracker, which
yields pointing change of the boresight. In addition, the star tracker’s FOV varies periodically along
with the orbit, which causes the number and brightness of the tracked stars to change periodically.
Consequently, the star tracker error will fluctuate dynamically.

Generally, the bias can be eliminated by in-flight calibration algorithms and the noise can be
smoothed by filter algorithms [10]. However, the LFE is difficult to eliminate by the in-flight calibration
algorithms and also cannot be smoothed by filter algorithms [13,14]. As a consequence, the LFE are one
of the most penalizing errors for high accuracy satellite attitude determination. Due to the presence of
the LFE, the assumption of Gaussian white noise for star tracker measurement is not appropriate and
the performance of the attitude determination EKF is no longer optimal.

Two kinds of approaches have been investigated to mitigate the effect of LFE over the past
decade. One approach comes from hardware modifications [10,15], which includes optimizing the
thermal-mechanical design, choosing appropriate materials and controlling on-orbital temperature,
etc. Another approach comes from error calibration at the measurement level [13,14,16]. In these LFE
calibration methods, the LFE are essentially estimated by using the measurement of the gyro. However,
the performance of these methods depends on the precision of the gyro closely. The LFE estimation
result may be contaminated by the gyro drift and gyro noise.

In this paper, we analyze the LFE of the CCDO01 and APS01 star trackers, and propose a novel
approach for star tracker LFE extraction and compensation based solely on their attitude measurements.

2. Methodology

The main difficulty in the star tracker LFE extraction and compensation is that we don’t have the
true attitude of the satellite. So we need to create a reference attitude quaternion which represents the
true attitude as accurately as possible. For this purpose, Schmidt et al. [9] use a fifth degree polynomial
to fit the measured quaternions over a time period of 2000 s to acquire the reference quaternions.
However, the fit function model of the measured quaternions is unknown, so the selection of the
polynomial degree may be subjective and rough. Additionally, according to our experience with real
data, the polynomial method is only suitable for fitting the data of a short period. When the attitude
data set is long (e.g., several consecutive satellite revolutions), selecting an appropriate polynomial
degree is difficult, because the star tracker LFE vary periodically with the satellite orbit (as we
demonstrate later in this article), and we need to analyze the attitude data for several consecutive
satellite revolutions. Under the condition that the fit function model is unknown and there is a
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long period of data to analyze, the Vondrak filter may be an appropriate method due to its superior
performance [17-19]. As for additional benefit, The Vondrak filter relies only on the observed data and
the filter values at the two ends of the data series can be calculated. It can expediently and reasonably
smooth the data serials by choosing a factor to control its level of smoothing. In this paper, we will use
a Fourier analysis combined with a Vondrak filter to fit the star tracker measured quaternion data to
obtain the reference quaternion data. For convenience of reference, we will name the Fourier analysis
method combined with the Vondrak filter as the FAVF method.

For a series of observational data (x;,y;), i = 1,2, - -, N, where x; is the measurement epochs
and y; is the measurements. The filter values of the Vondrak filter are derived by satisfying the
following condition:

Q = F+A%S — min (1)

where F denotes the degree of filtering and S denotes the smoothness of the smoothed curve.
The definitions of F and S are as follows:

o -1 N N2
F=(N=3)"Y pilvi—v}) )
i=1

S=(s—n" [ lp" () dx 3)

r

where y! = ¢(x;) is the filter value; p; is the weight of measurements; ¢ is the smoothed curve
expressed in terms of x and ¢" the third numerical derivatives of the smoothed curve which is
calculated based on a cubic Lagrange polynomial; s = xy_1, 7 = x5. The coefficient A? is a positive
coefficient that controls the degree of compromise between the two extreme possibilities: if A> — oo,
S — 0 and F — min, the result is a smooth parabola and the operation is called absolute smoothing.
If A2 = 0, F — 0, then the solution is simply y/ = y; and the operation is called absolute fitting.
Here ¢ = 1/A? is called the smoothing factor.

How to choose the smoothing factor ¢ is the key issue in using the Vondrak filter. A general way is
to select the smoothing factor by trial and error. In some cases, the smoothing factor chosen by this way
can also meet the needs of the data processing, though it is not the optimal one. A more rigorous way
is using the cross-validation method [20-22] to find the optimal smoothing factor. The basic concept of
the cross-validation method is to divide the observation data into two parts: the filtering series and
the validation series. The filtering series is used to generate the filtered results (the smoothed curve)
and the validation series is used to cross-validate the filtered results. First, the observation data (x;, ;)
is randomly divided into the filtering part (x1;, y1,), i = 1,2,-- -, Nj, and the validation (x;;, y2,),
i=1,2,---,Np part. Here the filtering sample size N; is much larger than the validation sample size
N in order to maintain the low-frequency signals in the observation data and not to degrade the
resolution. Second, for a given smoothing factor ¢;, the smoothed curve ¢ can be obtained based on
the filtering part (x1 ;, y1 ;). Then, the variance of the validation series relative to the filter values can be

calculated by
Ny

Clet, D) = ;1 i = 92 @)
i=1

where D,; denotes the mth division of the measurement. For each smoothing factor ¢;, suppose that

the measurement data is randomly sampled for M times, then M variances C(¢;, D;,) can be obtained
and the mean of them is acquired by

_ 1 M

C(el/D) = M Z C(SZ/DW) (5)

m=1

Finally, the optimum smoothing factor is the one that makes the C(¢;, D) smallest.
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When using the cross-validation method to find the optimum smoothing factor of the Vondrak
filter, the L different alternative smoothing factors ¢; = 10~/ (I=1,2,---,L) are used to determine
the magnitude (supposed as —I) of the smoothing factor first. Then compare the different smoothing
factors ¢ = k10~! (usually k = 1,2, - - -,9 will be enough) to find the optimum smoothing factor.

Because the STECE satellite maintains an Earth-fixed pointing with its z-axis directed towards
nadir, as the satellite flies along the orbit, the attitude quaternion measured by the star tracker varies
as a sinusoidal wave with a period equal to the orbital period. Therefore, to make the Vondrak filter
better fit the quaternion data, we will use the Fourier analysis to extract the large periodic signals of
the quaternion data in the FAVF method firstly. Considering that the measured quaternion data are
discrete, the periods provided by the Fourier analysis are rough and need to be further adjusted. In this
study, the optimal period of the periodic signal with the largest amplitude will be searched around the
max period (corresponding to the signal with the largest amplitude) provided by the Fourier analysis.
The optimal period will be determined by a performance criterion defined in Equation (7). Then the
period signal with the optimal period will be removed from the data. The residuals will be analyzed
again by the Fourier analysis to check if there are still periodic signals. The Fourier analysis may be
carried out several times until the periodic signal of the residuals becomes negligible.

Let qjr1(t;, Tj1), qjp2(ti, Tj2), - - i (ti, Tix) G = 0,1,--+,N, j = 0,1,2,3) be the k periodic
signals extracted by the Fourier method of the j elements of the measured quaternion q(t;)
(I90(t)) g1 (t:)q2(t:)ga(t)]). Here Tj is the period of the corresponding periodic signals, N is the
size of the data set. Let Aq]‘,Fk(tj, Tj,k) be the corresponding residual, then we have:

qi(t) = qjp (4, Tjn) + qir2 (8, Tio) + -+ qim (b, Tix) + Aqiee(ti, Tik) (6)
The period Tj is determined by the following performance criterion

Tj=t: min  J(Agjrx(ti t)) @)

te [Tj,k 73,T‘j/k+3]

where T]-,k is the max period provided by the k times Fourier analysis, ] (Aq;x(;,t)) is defined as:

z

[Agime(ti 1)> = L [Agime (ti Tix—1) — it 1))
=0 ®)
1) = qir2(ti, Tj2) — -+ — @it (i, Tieo1) — gt )]

J(AgjFi(ti b)) =

i

[q;(t:) — q;r1(t;,

— gMz

M=z

1

When the main periodic signals of the quaternion data have been extracted, the residual
Aq;pk(t;, Tjx) will be fitted by the Vondrak filter. Let q;,(t;) be the Vondrak filter fit value of
Aq;ri(ti, Tjx), and Ag;y(t;) be the residual error of the Vondrak filter, then we have:

Agjrx(ti, Tjn) = qj5 (t) + Dgjv(ti)

. 9
quv(ti) = Vondrakfit (Aq]‘,Fk(ti, T]-,k),s ©)
where ¢ is the smoothing factor of the Vondrak filter.
According to Equations (6) and (9), the final fit value of the j elements is:
9 (t) = qip1(t) +qjp2(t) + - + g4 (t) (10)

Finally, the reference quaternion g, (t;) is acquired by

90 (1) = [0, ()31, (5) 02 (15, ()] /507t (0, (8:) + 91e(8)” + qae(t) + 35, (£)7) (A1)
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When the reference quaternion ¢,(t;) is obtained, we can compute the residual quaternions
between the reference quaternion ¢, (f;) and the measured quaternion gq(¢;) at the epochs ¢;:

Aq(t;) = q,(t:) " @ q(t) (12)
where qr(if,-)_1 is the inverse quaternion of g,(t;), defined as qr(ti)_1 = [qor — G1r — Jor — q3,r]T
The operator ® is quaternion multiplication defined as [23]:

po —P1 —P2 —P3 q0
Pt Po P3 P2 q1
Qp= 13
ep P2 —pP3  Po p1 92 ~
ps3 P2 —P1 Po q3
. T T
With g = [q0 91 42 43]", p = [Po p1 P2 P3] -
The 3-axes attitude measurement residuals are obtained by converting the residual quaternions to

the 3-axes delta Euler angles in “3-1-2” rotation sequence:

Aq(t) = [Aqo(t;) Aqi(t:) Aqa(t) Ags(t:)]T = [Ag(t;) 26(8) dy(t)]" (14)
where Ag is the roll angle, Af is the pitch angle and A is the yaw ang]le.
3. Results

3.1. LFE Extraction Results of the CCDO1 and APS 01 Star Trackers

Figures 1 and 2 show the periodic signal extraction results of the g element of the CCDO1 star
tracker quaternion data g(#;) for four orbits (from 02:13:31 to 08:56:43 of 1 July 2012). In the first pass of
the Fourier analysis, a sinusoidal signal with a period of 12,096 s (about two orbits) is extracted. In the
second pass, a sinusoidal signal with a period of 4032 s (about 2/3 orbits) is extracted.

) | © measurement quaternion data—— periodic signaIL
05 N\ d N\ /7
07 —
0.5 —
1 1 |
o, 6048 12096 18144 24192
X 10 | :
——first residual
0.5
0\ _
-05 V =
1 1 1
0 6048 12096 18144 24192

Time(s,2012/07/01)

Figure 1. The first pass periodic signal extraction results of gy element of CCDO01 quaternion data
(a sinusoidal signal with a period of 12,096 s is extracted).



Sensors 2016, 16, 1669

6 of 13

-3

1x10

* residual error — periodic signal

0.5

0_
-0.5-

.10 »

1x10
0.5

0_ —
-0.5

1 | I I

0 6048 18144

12096
Time(s,2012/07/01)

24192

Figure 2. The second pass periodic signal extraction results of gy element of CCD01 quaternion data
(a sinusoidal signal with a period of 4032 s is extracted).

We can see that, after the second pass periodic signal extraction, the sinusoidal signal in the
residual is not evident any more. At this time, we can use the Vondrak filter to fit the residual.
The fitting result is shown in Figure 3. Here, according to the cross-validation method (using 5% of the
measurement data series as the validation series and M = 50 times divisions), the smoothing factor is

selected as 1013,

5x10

4 *+ second residual error——\Vondrak Filter value,
3

2 I
1 —
0 { .
-1
2 =
-3
-4
5 ‘

6048 12096 18144 24192

——residual
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(@)

Figure 3. The Vondrak filter results of the gy element of CCDO01 quaternion data.
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Figure 4 shows the 3-axes Euler angle residual streams of CCDO01 as time series for four consecutive
orbits. It can be seen that the 3-axes residual streams contain not only the random noise but also some
excursions (drifts and periodic variations which are caused by the LFE). The RMS of the 3-axes residual
streams are [14.7"7, 10.99”, 69.08"], 30. When doing the same data processing of two stage periodic
signal extraction plus the Vondrak filter as CCDO01, the APS01 star tracker shows similar behavior,

as shown in Figure 5.
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roll resiflual; 14.70 ‘arcsec(3siéma)
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Figure 4. The 3-axes Euler angle residual streams of CCDO01 as time series.
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Figure 5. The 3-axes Euler angle residual streams of APS01 as time series.

Further, we compare the four orbits 3-axes Euler angle residual streams of the two star trackers by
plotting them versus the satellite mean anomaly (M), see Figures 6 and 7. For clarity, the roll, pitch
residual streams have been offset by 20" and yaw by 200" for each orbit. It can be seen that the 3-axes
Euler angle residual streams all show the same variations for each star tracker. The excursions repeat
from orbit to orbit and features of the residual streams reappear at the same position along the orbit.
The orbital reproducibility feature is remarkable. This means that the LFE of the two star trackers are
periodic signals with patterns that repeat with each orbital period.

As the features of the 3-axes delta Euler angles repeat themselves at the same position along
the satellite orbit, we can estimate the star tracker LFE pattern as a function of the mean anomaly
intervals. In this study, the 3-axes Euler angle error streams are averaged over mean anomaly intervals
(with length AM). Then, for each interval [(m — 1) - AM,m - AM) (m =1,2,- - -,360°/ AM), we will
compute the mean value of all the 3-axes Euler angle errors which fall in this range. In this way, the
random noise will be smoothed out by multi-orbits statistics and the resulting mean value will be
the estimate of the 3-axes LFE. The 3-axes LFE estimation results of the CCD01 and APS01, obtained
by using 40 orbit revolutions data from 1 to 3 July 2012, are showed in Figures 8 and 9, respectively.
Here the value of AM is selected as 1°.
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Figure 6. The 3-axes Euler angle residual streams of CCDO01 vs. satellite mean anomaly.
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Figure 7. The 3-axes Euler angle residual streams of APS01 vs. satellite mean anomaly.
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Figure 8. The low frequency errors pattern of the CCDO01 star tracker.
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Figure 9. The low frequency errors pattern of the APSO1 star tracker.

It is important to note that the attitude data used to calculate the LFE pattern cannot be too long
because the LFE changes slowly over time. The attitude accuracy of the star trackers depends, among
others, on the number and brightness of the stars in the FOV and may be affected by the thermal effects.
For a given satellite anomaly, the patterns of stars seen in the FOV are similar for several consecutive
satellite revolutions. Furthermore, for the STECE satellite with a dusk-dawn sun-synchronous orbit,
the thermal distortion patterns are also similar for several consecutive satellite revolutions. These facts
explain the remarkable orbital reproducibility of the LFE. Furthermore, as the earth moves along its
orbit around the sun, the stars” pattern and the thermal distortion pattern (due to different eclipse
seasons) will change slowly. As a result, the LFE pattern will change slowly over time too. Similar
behavior can also be seen in the star camera systematic errors of the gravity recovery and climate
experiment (GRACE) satellite [24,25]. In conclusion, the LFE pattern needs to be calculated again for
other periods.

When the 3-axes LFE estimation results (denoted by the 3-axes delta Euler angles
[Ap(m) AB(m) Ap(m)], m = 1,2,---,360°/AM) of the star tracker are obtained, we can remove
the LFE from the attitude measurements. Firstly, we convert the LFE estimate delta Euler angles
[A@(m) AB(m) Ap(m)] to the corresponding delta quaternions (denoted by Ag(m)). Then, according
to Equation (12), the LFE of the star tracker attitude measurements are compensated by multiplying
the measurement one g(t;) with the inverse of the LFE estimate quaternion Ag(m) if the satellite mean
anomaly (M(t;)) belongs to [(m — 1) - AM, m - AM):

q(ti) = q(t) © Ag(m) ™", if M(t;) € [(m — 1) - AM,m - AM) (15)

3.2. LFE Compensation and Validation Results

In the following we are using the relative Euler angle (REA) residual measurements to validate
the LFE compensation approach. The REA represents the rotation from one star tracker measurement
reference frame to the other star tracker measurement reference frame. The REA residuals are acquired
by removing the fixed relative installation Euler angle from the measured REA. Ideally, the REA
residuals between two star trackers are constant (ignore the noise) in time. However, the LFE will
cause the REA to change with time. Therefore, the LFE compensation approach can be validated by
comparing the REA residuals between the CCDO01 star tracker and the APS01 star tracker before and
after compensating for the LFE.
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First, we calculate the REA residuals from CCDO01 to APS01 without LFE compensation for the
two test star trackers” quaternion measurements, and the results are shown in Figure 10. It can be
seen that, due to the LFE, there are excursions in the REA residual streams and these excursions are
repeated from orbit to orbit. The RMS of the 3-axes REA residual streams are [27.95", 25.14"/, 82.43"'],
30. On the basis of the actual LFE patterns of the two star trackers, we compensate the LFE for the
respective quaternion measurements according to Equation (15). The REA residuals with the LFE
compensation are shown in Figure 11. As a consequence, the periodic excursions of the REA residual
streams in Figure 10 are greatly eliminated and the RMS of the REA residuals are reduced to [16.12”,
15.89’/,53.27"'], 30. The REA residual streams become more flat as time series.

{ T T
roll residual: 27.95 arcsec(3sigma)
=
3
g
8
3
5
3
g
g
£
£ .
3
]
=
z
w
¢
:
| i \ I I \ | I
3.00:00 3:30:00 4.00:00 4:30:00 5.00:00 £:30:00 6:00:00 6:30:00 7:00:00 7.30:00 §.00:00 §:30:00
Time (2012107101)
Figure 10. The relative Euler angle residual streams as time series (without LFE compensation).
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Figure 11. The relative Euler angle residual streams as time series (with LFE compensation).

Figure 12 shows the one-side power spectral densities (PSDs) (with the x, y-axis in the logarithmic
scale) of the 3-axes REA residuals without and with LFE compensation. It can be seen that, before
LFE compensation, the PSDs at some low frequencies (in the range of about 1 mHz to 20 mHz) are
significantly higher than those at other frequencies. This indicates that the REA residuals have a higher
amplitude at these low frequencies. Furthermore, after LFE compensation, the PSDs at these low
frequencies have been reduced and the PSDs of the REA residuals become more flat, which indicates
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that the low frequency components which have the higher amplitude in the REA residuals have been
greatly eliminated and the REA residuals are more consistent with white noise. Based on the PSDs of
the REA residuals without and with LFE compensation, we can also conclude that the LFE is a strong
contributor to the non-white noise in the star tracker data.

10 One-side Power Spectral Density
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Figure 12. The power spectral densities of the REA residuals (with the X, y-axis in the logarithmic scale).

In short, both of the REA residual results and their PSDs results demonstrate that the consistency
between the two star trackers has improved after the LFE compensation. It is thus clear that the LFE
of the two star trackers are compensated effectively and the validity of the proposed attitude LFE
compensation approach is demonstrated.

4. Summary and Conclusions

This paper presents a new approach to extract and compensate the LFE of the star tracker’s attitude
measurement based on the experiment mission of the CCD01 and APS01 star trackers on-board the
STECE satellite. Firstly, the LFE of the two test star trackers’ attitude measurements are analyzed and
extracted by the proposed approach. By using the Fourier analysis method combined with the Vondrak
filter, the remarkable orbital reproducibility feature of the two test star trackers” attitude LFE is well
characterized. Then, the LFE of the test two star trackers are estimated effectively by taking advantage
of the LFE orbital reproducibility feature. Finally, based on the actual LFE estimation results, a new
LFE compensation strategy is presented.

The significant improvement in the consistency between the two test star trackers’ attitude
can be seen by comparison of the REA residual results and their PSDs results before and after LFE
compensation. The REA residuals with the LFE compensation become more flat than those without
the LFE compensation. The RMS of the REA residual streams are reduced from [27.95", 25.14"/, 82.43"'],
30 to [16.12”,15.89", 53.27""], 30 after LFE compensation.
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